
HAL Id: hal-03696376
https://hal.science/hal-03696376

Preprint submitted on 16 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positivity of adelic line bundles over an adelic curve
Huayi Chen, Atsushi Moriwaki

To cite this version:
Huayi Chen, Atsushi Moriwaki. Positivity of adelic line bundles over an adelic curve. 2022. �hal-
03696376�

https://hal.science/hal-03696376
https://hal.archives-ouvertes.fr


POSITIVITY OF ADELIC LINE BUNDLES OVER AN ADELIC
CURVE

HUAYI CHEN AND ATSUSHI MORIWAKI

Contents

1. Introduction 2
2. Notation and preliminaries 7
3. Relative ampleness and nefness 10
4. Geometrically big and pseudoeffective adelic line bundles 24
5. Positivity conditions for adelic line bundles 40
References 43
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portant subjects in algebraic geometry. In this article, we consider an arith-
metic analogue over a general adelic curve as a generalization of the classical
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1. Introduction

The positivity of line bundles is one of the most fundamental and important
notions in algebraic geometry. In Arakelov geometry, the analogue of ampleness
and Nakai-Moishezon criterion have been studied by Zhang [21, 22]. The arithmetic
bigness has been introduced in the works [17, 19, 18] of Moriwaki and Yuan. These
positivity conditions and their properties have various applications in Diophantine
geometry.

The purpose of this article is to revisit the arithmetic positivity notions in the
context of Arakelov geometry over adelic curves. Recall that an adelic curve consists
of a fieldK equipped with a family of a family of absolute values onK (with possible
repetitions), which is parametrized by a measure space. This notion is a very natural
generalization to any countable field of Weil’s adelic approche of number theory.
The fundament of height theory and Arakelov geometry for projective varieties
over an adelic curve have been established in the works of Gubler [14] (in a slightly
different setting of M -fields) and Chen-Moriwaki [10].

Let S be an adelic curve with a countable and perfect underlying field K. We
assume that S is proper, namely the family of absolute values in S satisfies an
analogue of product formula in the number field case. Let X be a projective scheme
over SpecK. Given an adelic line bundle L on X, namely an invertible OX -module
equipped with a measurable and dominated family of continuous metrics on the
analytification of X (in the sense of Berkovich [2]) according to absolute values of K
in the adelic curve structure of S, we are interested in various positivity conditions
of the adelic line bundle L. We say that the adelic line bundle L is relatively ample
if the invertible OX -module is ample and if the metrics of L are all semi-positive.
The relative nefness can then been defined in a limit form of relative ampleness,
similarly to the classic case in algebraic geometry. Recall that the global intersection
number of relatively ample adelic line bundles (or more generally, integral adelic
line bundles) can be defined as the integral of local heights along the measure space
in the adelic structure (cf. [11]). This construction is fundamental in the Arakelov
height theory of projective varieties.

The first contribution of the current article is to introduce a numerical invariant
— asymptotic minimal slope — to describe the global positivity of an adelic line
bundle L such that L is ample. This invariant, which is denoted by µ̂asy

min(L),
describes the asymptotic behaviour (when n → +∞) of the minimal slopes of the
sectional spaces H0(X,L⊗n) equipped with sup norms (which are adelic vector
bundles on S). It turns out that this invariant is super-additive with respect to
L. This convexity property allows to extend the construction of the asymptotic
minimal slope to the cone of adelic line bundles with nef underlying invertible
OX -module (see §3.2 for the construction of the asymptotic minimal slope and its
properties). The importance of this invariant can be shown by the following height
estimate (see Theorem 3.10 for the proof and Proposition 3.18 for its generalization
to the relatively nef case).

Theorem 1.1. Let X be a reduced projective k-scheme of dimension d > 0 over
SpecK, and L0, . . . , Ld be a family of relatively ample adelic line bundles on X.
For any i ∈ {0, . . . , d}, let δi be the geometric intersection number

(L0 · · ·Li−1Li+1 · · ·Ld).
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Then the following inequality holds:

(L0 · · ·Ld)S >
d∑
i=1

δi µ̂
asy
min(Li),

where (L0 · · ·Ld)S denotes the arithmetic intersection number of L0, . . . , Ld (cf.
[11]).

The asymptotic minimal slope always increases if one replaces the adelic line
bundle by its pull-back by a projective morphism (see Theorem 3.25): if g : X → P
is a projective morphism of reduced K-schemes of dimension > 0, then for any
adelic line bundle M on P such that M is nef, one has µ̂asy

min(g∗(M)) > µ̂asy
min(M).

Typical situations includes a closed embedding of X into a projective space, or
a finite covering over a projective space, which allows to obtain lower bounds of
µ̂asy

min(Li) in the application of the above theorem. Note that the particular case
where L0, . . . , Ld are all equal to the same adelic line bundle L gives the following
inequality

(L
d+1

)S
(d+ 1)(Ld)

> µ̂asy
min(L), (1.1)

which relates the normalized height of X with respect to L and the asymptotic
minimal slope of the latter. This inequality is similar to the first part of [22, Theo-
rem 5.2]. However, the imitation of the devissage argument using the intersection
of hypersurfaces defined by small sections would not work in the setting of general
adelic curves. This is mainly due to the fact that the analogue of Minkowski’s first
theorem fails for adelic vector bundles on a general adelic curve. Although the
inequality (1.1) could be obtained in an alternative way by using the arithmetic
Hilbert-Samuel formula of L (cf. [12]), together with the fact that the minimal
slope of an adelic vector bundle on S is always bounded from the above by its slope
(see Proposition 3.26), the proof of Theorem 1.1 needs a new idea. Our approach
consists in combining an analogue of the slope theory of Bost [4, 5] with the height
of multi-resultant to achieve the proof.

Bigness is another type of positivity conditions which describes the growth of
the total graded linear series of a line bundle. In Arakelov geometry of number
fields, the arithmetic bigness describes the asymptotic behaviour of the number
of small sections in the graded sectional algebra of adelic vector bundles. This
notion can be generalized to the setting of Arakelov geometry of adelic curve in
replace the logarithm of the number of small sections by the positive degree of an
adelic vector bundle (namely the supremum of the Arakelov degrees of adelic vector
subbundles). In [10, Proposition 6.4.18], the arithmetic bigness has been related
to an arithmetic sectional invariant — asymptotic maximal slope, which is quite
similar to asymptotic minimal slope: for any integral projective K-scheme and any
adelic line bundle L on X such that L is big, we introduce a numerical invariant
µ̂asy

max(L) which describes the asymptotic behaviour (when n→ +∞) of the maximal
slopes of H0(X,L⊗n) equipped with sup norms (see §4.2 for its construction and
properties). It turns out that this invariant is also super-additive with respect to
L, which allows to extend the function µ̂asy

max(.) to the cone of adelic line bundles L
such that L is pseudo-effective. Moreover, in the case where L is nef, the inequality
µ̂asy

min(L) 6 µ̂asy
max(L) holds.
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Recall that Fujita’s approximation theorem asserts that a big line bundle can
be decomposed in a birational modification into the tensor product of two Q-line
bundles which are respectively ample and effective, with a good approximation
of the volume function. In this article, establish the following relative version of
Fujita’s approximation theorem for the asymptotic maximal slope (see Theorem
4.16 and Remark 4.17).

Theorem 1.2. Let L be an adelic line bundle on X such that L is big. For any
real number t < µ̂asy

max(L), there exist a positive integer p, a birational projective
K-morphism g : X ′ → X, a relatively ample adelic line bundle A and an effective
adelic line bundle M on X ′ such that A is big, g∗(L

⊗p
) is isomorphic to A ⊗M ,

and µ̂asy
min(A) > pt.

As an application, in the case where X is an integral scheme, we can improve
the height inequality in Theorem 1.1 in relaxing the positivity condition of one of
the adelic line bundles and in replacing the asymptotic minimal slope of this adelic
line bundle by the asymptotic maximal slope (see Theorem 4.18).

Theorem 1.3. Let X be an integral projective scheme of degree d over SpecK,
and L0, . . . , Ld be adelic line bundles on X such that L1, . . . , Ld are relatively ample
and L0 is big. For any i ∈ {0, . . . , d}, let δi = (L0 · · ·Li−1Li+1 · · ·Ld). Then the
following inequality holds:

(L0 · · ·Ld)S > δ0 µ̂asy
max(L0) +

d∑
i=1

δi µ̂
asy
min(Li).

In the case where L0, . . . , Ld are all equal to the same relatively adelic line bundle
L, the above inequality leads to

(L
d+1

)S
(Ld)

> µ̂asy
max(L) + d µ̂asy

min(L).

In the case where the adelic curve S comes from the canonical adelic structure
of a number field, if L is a relatively ample adelic line bundle, then µ̂min(L) is
equal to the absolue minimum of the Arakelov (absolute) height function hL on the
set of closed points of X. This is essentially a consequence of [22, Corollary 5.7].
Similarly, the asymptotic maximal slope µ̂sym

max(L) is equal to the essential minimum
of the height function hL. This is a result of Ballaÿ [1, Theorem 1.1]. In this article,
we show that these results can essentially be extended to the case of general adelic
curves, if we consider all integral closed subschemes of X. More precisely, we obtain
the following result (see Theorem 4.23 and Proposition 4.32).

Theorem 1.4. Let X be a non-empty reduced projective scheme over SpecK and
ΘX be the set of integral closed subschemes of X. For any relatively ample adelic
line bundle L on X, the following equality holds:

µ̂asy
min(L) = inf

Y ∈ΘX

(L|dim(Y )+1
Y )S

(dim(Y ) + 1)(L|dim(Y )
Y )

= inf
Y ∈ΘX

µ̂asy
max(L|Y ).

Moreover, if X is an integral scheme, the following equality holds:

µ̂asy
max(L) = sup

Y ∈ΘX
Y 6=X

inf
Z∈ΘX
Z 6⊆Y

µ̂asy
max(L|Y ).
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We also show that a property similar to Minkowski’s first theorem permits to
recover the link between the asymptotic maximal/minimal slopes and the Arakelov
height of closed points in the number field case. More precisely, we say that a
relatively ample adelic line bundle L is strongly Minkowskian if for any Y ∈ ΘX

one has

lim
n→+∞

1

n
sup

s∈H0(Y,L|⊗n
Y )

s 6=0

d̂eg(s) >
(L|dim(Y )+1

Y )S

(dim(Y ) + 1)(L|dim(Y )
Y )

.

This condition is automatically satisfied always satisfied notably when the adelic
curve S comes from a number field (consequence of Minkowski’s first theorem) or
a function field of a projective curve (consequence of Riemann-Roch theorem). We
then establish the following result (see Corollary 4.28).

Theorem 1.5. Let X be an integral projective scheme over SpecK and L be a
relatively ample adelic line bundle on X which is strongly Minkowskian. Denote
by X(0) the set of closed points of X. Then the equality µ̂asy

min(L) = infx∈X(0) hL(x)
holds.

Motivated by Theorem 1.4, we propose the following analogue of successive min-
ima for relatively ample adelic line bundles. Let X be an integral projective scheme
of dimension d over SpecK and L be a relatively ample adelic line bundle on X.
For i ∈ {1, . . . , d+ 1}, let

ei(L) = sup
Y ⊆ X closed
codim(Y )>i

inf
Z ∈ ΘX
Z 6⊆ Y

µ̂asy
max(L|Z).

With this notation, one can rewrite the assertion of Theorem 1.4 as

e1(L) = µ̂asy
max(L), ed+1(L) = µ̂asy

min(L).

We show in Remark 4.33 that, in the number field case, one has

∀ i ∈ {1, . . . , d+ 1}, ei(L) = sup
Y ⊆ X closed
codim(Y )>i

inf
x∈(X\Y )(0)

hL(x). (1.2)

Thus we recover the definition of successive minima in the sens of [21, §5]. We
propose several fundamental questions about these invariants:

(1) Do the equalities holds in the case of a general adelic curve, under the
assumption that the L is strongly Minkowskian?

(2) What is the relation between the invariants e2(L), . . . , ed(L) and the sec-
tional algebra

⊕
n∈NH

0(X,L⊗n) in adelic vector bundles?
(3) Does the analogue of some classic results in Diophantine geometry concern-

ing the successive minima, such as the inequality

(L
d+1

)S
(Ld)

>
d+1∑
i=1

ei(L),

still holds for general adelic curve?
(4) In the case where (X,L) is a polarized toric variety and the metrics in

ϕ are toric metrics, is it possible to describe in a combinatoric way the
positivity conditions of L, and express the the invariants ei(L) in terms
of the combinatoric data of (X,L), generalizing some results of [6, 7] for
example?
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The last part of the article is devoted to the study of global positivity of adelic
line bundles. Motivated by Nakai-Moishezon criterion of ampleness, we say that an
adelic line bundle L on X is ample if it is relatively ample and if the normalized
height with respect to L of integral closed subschemes of X has a positive lower
bound. We show that this condition is equivalent to the relative ampleness together
with the positivity of the invariant µ̂asy

min(L). Therefore, we deduced from Theorem
1.1 that, if L0, . . . , Ld are ample adelic line bundles on X, where d is the dimension
of X, then one has (see Proposition 5.3)

(L0 · · ·Ld)S > 0.

In the case where L is strongly Minkowskian, L is ample if and only if it is relatively
ample and the height function hL on the set of closed points ofX has a positive lower
bound (see Proposition 5.4). Once the ample cone is specified, one can naturally
define the nef cone as its closure. It turns out that the nefness can also be described
in a numerical way: an adelic line bundle L is nef if and only if it is relatively nef
and µ̂asy

min(L) > 0 (see Proposition 5.6).
Bigness and pseudo-effectivity are also described in a numerical way by the

invariant µ̂asy
max(.): an adelic line bundle L is big if and only if L is big and µ̂asy

max(L) >
0 (which coincides with the bigness in [10]); it is pseudo-effective if and only if L
is pseudo-effective and µ̂asy

max(L) > 0 (see [10, Proposition 6.4.18] and Proposition
5.13). We deduce from Theorem 1.3 that, if L0, . . . , Ld are adelic line bundles on
X such that L0 is pseudo-effective and that L1, . . . , Ld are nef, then the inequality
(L0, . . . , Ld)S > 0 holds (see Proposition 5.14).

The article is organized as follows. In the second section, we recall some termi-
nologies and facts of Arakelov geometry over adelic curves. In the third section,
we study relative ampleness and nefness. In the fourth section, we focus on the
asymptotic maximal slope and its relation with positivity of adelic line bundles. In
the fifth and last section, we discuss global positivity conditions.
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2. Notation and preliminaries

2.1. By proper adelic curve, we mean the data S = (K, (Ω,A, ν), φ) consisting
of a field K, a measure space (Ω,A, ν) and a family φ = (|.|ω)ω∈Ω of absolute
values on K, such that, for any a ∈ K \ {0}, the function (ω ∈ Ω) 7→ ln |a|ω is
integrable on (Ω,A, ν) and of integral 0. In this article, we consider an adelic curve
S = (K, (Ω,A, ν), φ) which satisfies the following conditions:

(a) K is a perfect field, that is, either K is of characteristic 0, or K is of
characteristic p > 0 and the Frobenius map (a ∈ K) 7→ ap is surjective;

(b) either the field K is countable, or the σ-algebra A is discrete.
For any ω ∈ Ω, we denote by Kω the completion of K with respect to the absolute
value |.|ω.

2.2. We call adelic vector bundle on S the data E = (E, (‖.‖ω)ω∈Ω) consisting of
a finite-dimensional vector space E over K and family of norms, where each ‖.‖ω
is a norm on Eω = E ⊗K Kω, which satisfy the following conditions:

(1) (measurability) for any s ∈ E, the function

(ω ∈ Ω) 7−→ ‖s‖ω
is A-measurable,

(2) (dominancy) there exists a basis e = (ei)
r
i=1 of E over K and an integrable

function A(.) on (Ω,A, ν) such that, for any ω ∈ Ω and any (λ1, . . . , λr) ∈
Kr
ω \ {(0, . . . , 0)},∣∣∣ln ‖λ1e1 + · · ·+ λrer‖ω − ln max{|λ1|ω, . . . , |λr|ω}

∣∣∣ 6 A(ω).

In this article, all adelic vector bundles are assumed to be ultrametric on non-
Archimedean places, namely we assume that ‖.‖ω is ultrametric when |.|ω is non-
Archimedean.

2.3. Let E = (E, (‖.‖ω)ω∈Ω) be an adelic vector bundle on S and r be the dimen-
sion of E over SpecK. The Arakelov degree of E is defined as

d̂eg(E) := −
∫

Ω

ln ‖e1 ∧ · · · ∧ er‖ω,det ν(dω),

where the determinant norm ‖.‖ω,det on det(Eω) is define as

∀ η ∈ det(Eω), ‖η‖ω,det = inf
(xi)

r
i=1∈E

r
ω

η=x1∧···∧xr

‖x1‖ω · · · ‖xr‖ω.

If E is non-zero, we define the slope of E as

µ̂(E) :=
d̂eg(E)

dimK(E)
,

the maximal slope of E as

µ̂max(E) := sup
06=F⊆E

µ̂(F ),

where F runs over the set of non-zero vector subspaces of E equipped with restricted
norms, and the minimal slope of E as

µ̂min(E) := inf
E�G 6=0

µ̂(G),
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where G runs over the set of non-zero quotient vector spaces of E equipped with
quotient norms.

2.4. Let E and F be two adelic vector bundles on S and ϕ : E → F be a K-linear
map. We define the height of ϕ as

h(ϕ) :=

∫
Ω

ln ‖ϕ‖ω ν(dω),

where ‖ϕ‖ω denotes the operator norm of the Kω-linear map Eω → Fω induced
by ϕ. Moreover, if E is non-zero and if ϕ is injective, then the following slope
inequality holds (see [10, Proposition 4.3.31]):

µ̂max(E) 6 µ̂max(F ) + h(ϕ).

2.5. Let E = (E, (‖.‖E,ω)ω∈Ω) and F = (F, (‖.‖F,ω)ω∈Ω) be two adelic vector
bundles on S. We denote by E ⊗ε,π F the adelic vector bundle (E ⊗ F, (‖.‖ω)ω∈Ω)
defined as follows: when |.|ω is non-Archimedean (resp. Archimedean), the norm
‖.‖ω is the ε-tensor product (resp. π-tensor product) of ‖.‖E,ω and ‖.‖F,ω, which is
the greatest ultrametric norm (resp. greatest norm) on Eω ⊗ Fω such that

∀ (s, t) ∈ Eω × Fω, ‖s⊗ t‖ω = ‖s‖E,ω‖t‖F,ω.

2.6. Let f : X → SpecK be a reduced projective scheme over SpecK (which is
geometrically reduced since K is assumed to be perfect). For any ω ∈ Ω, let Xω be
X ×SpecK SpecKω and let Xan

ω be the analytic space associated with Xω (in the
sense of Berkovich if |.|ω is non-Archimedean). If L is an invertible OX -module,
we call metric family on L any family ϕ = (ϕω)ω∈Ω, where ϕω is a continuous
metric on Lω = L|Xω . We say that L = (L,ϕ) is an adelic line bundle on X if
the metric family ϕ is dominated and measurable (see [10, §6.1]). For example, if
E is an adelic vector bundle on S, g : X → P(E) is a projective K-morphism and
L = g∗(OE(1)), then the invertible OX -module L, equipped with the pullbacks of
Fubini-Study metrics (called a quotient metric family), forms and adelic line bundle
on X.

Let L = (L,ϕ) be an adelic line bundle on X. We denote by f∗(L) the couple
(H0(X,L), (‖.‖ϕω

)ω∈Ω), where for s ∈ H0(Xω, Lω),

‖s‖ϕω = sup
x∈Xan

ω

|s|ϕω (x).

It turns out that f∗(L) is an adelic line bundle on S (see [10, Theorems 6.1.13 and
6.1.32]).

2.7. Let X be a reduced projective scheme over SpecK. Let L be an invertible
OX -module, ϕ = (ϕω)ω∈Ω and ψ = (ψω)ω∈Ω be metric families on L such that
(L,ϕ) and (L,ψ) are both adelic line bundles. Then we define the distance between
ϕ and ψ as

d(ϕ,ψ) :=

∫
Ω

sup
x∈Xω

∣∣∣∣ln |.|ϕω
(x)

|.|ψω (x)

∣∣∣∣ ν(dω).

If L is semiample and if there exists a positive integer m and a sequence (ϕn)n∈N
of quotient metric families (where ϕn is a metric family of L⊗nm), such that

lim
n→+∞

d(nmϕ,ϕn) = 0,

we say that the metric family ϕ is semi-positive.
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2.8. Let X be a non-empty reduced projective scheme over SpecK and d be the
dimension of X. We denote by Înt(X) the set of adelic line bundles L on X which
can be written in the form A1 ⊗ A

∨
2 , where each Ai is an ample invertible OX -

module equipped with a semi-positive metric family. In [11], we have constructed
an arithmetic intersection product(

(L0, . . . , Ld) ∈ Înt(X)d+1
)
7−→ (L0 · · ·Ld)S ∈ R,

which is multi-linear with respect to tensor product. We have also related the
arithmetic intersection number (L0 · · ·Ld)S to the height of the multi-resultant of
L0, . . . , Ld.

2.9. Let f : X → SpecK be an integral projective scheme over SpecK and L be
an adelic line bundle on X such that L is ample. Then the sequence

d̂eg(f∗(L
⊗n

))

nd+1/(d+ 1)!
, n ∈ N>1

converges to a real number which is denoted by v̂olχ(L). This result has been
proved in [12, Theorem-Definition 5.5] under the assumption thatX is geometrically
integral. This hypothesis has been used there to ensure that the K-scheme X
remains integral by a base change to the perfect closure of K. Since here we
assume the field K to be perfect, this result also applies to integral K-schemes.
Moreover, in the case where the metrics in the adelic line bundle structure of L are
all semi-positive, the following Hilbert-Samuel formula holds:

v̂olχ(L) = (L
d+1

)S ,

where d is the dimension of X.
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3. Relative ampleness and nefness

Throughout the section, we fix a proper adelic curve S = (K, (Ω,A, ν), φ) such
that, either K is countable, or (Ω,A) is discrete. We assume in addition that K is
perfect.

3.1. Convergence of minimal slopes.

Lemma 3.1. Let k be a field, X and Y be projective k-schemes and g : Y → X be
a projective k-morphism such that g∗(OY ) = OX . Let L be an ample line bundle
on Y and M be an ample line bundle on X. Then there exists N ∈ N>1 such that,
for any (n,m) ∈ N2 satisfying min{n,m} > N , the k-linear map

H0(Y, L⊗n)⊗K H0(X,M⊗m) = H0(Y,L⊗n)⊗K H0(Y, g∗(M⊗m))

−→ H0(Y,L⊗n ⊗ g∗(M)⊗m)

defined by multiplication of sections is surjective.

Proof. Consider the graphe

Γg : Y −→ Y ×k X

of the morphism g : Y → X. It is a closed immersion since g is separated. Denote
by I the ideal sheaf of the image of Γg. Let p : Y ×k X → Y and q : Y ×k X → X
be the two projections, and A = p∗(L) ⊗ q∗(M). Since M and L are both ample,
the line bundle A on Y ×kX is ample. Moreover, one has Γ∗g(A) = L⊗g∗(M). The
short exact sequence

0 // I // OY×KX
// OY×kX/I

// 0

induces, by tensor product with the invertible sheaf p∗(L⊗n)⊗ q∗(M⊗m) and then
by taking cohomology groups on Y ×k X, an exact sequence of K-vector spaces

H0(Y, L⊗n)⊗k H0(Y, g∗(M)⊗m) −→ H0(Y, L⊗n ⊗ g∗(M)⊗m)

−→ H1(Y ×k X, I ⊗ p∗(L⊗n)⊗ q∗(M⊗m)).

By [15, Example 1.4.4], the line bundles p∗(L) and q∗(M) are nef. By Fujita’s
vanishing theorem (cf. [13, Theorem 5.1]), there exists N ∈ N>1 such that, for any
(n,m) ∈ N2 such that min{n,m} > N , one has

H1(Y ×k X, I ⊗ p∗(L⊗n)⊗ q∗(M⊗m))

= H1(Y ×k X, I ⊗A⊗N ⊗ p∗(L⊗(n−N))⊗ q∗(M⊗(m−N))) = 0.

Therefore the assertion follows. �

Lemma 3.2. Let (k, |.|) be a filed equipped with a complete absolute value. Let X
be a projective scheme over k, L be a semi-ample line bundle on X and ϕ be a
semi-positive metric of L. Then, for any projective K-morphism g : Y → X, g∗(ϕ)
is also semi-positive.

Proof. Replacing L by a tensor power, we may assume that L is generated by global
sections, and that there exists a sequence of quotient metric families (ϕn)n∈N such
that

lim
n→+∞

1

n
d(nϕ, ϕn) = 0.
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Note that for each n ∈ N, the pull-back g∗(ϕn) is still a quotient metric, and one
has

d(ng∗(ϕ), g∗(ϕn)) 6 d(nϕ, ϕn).

Therefore we obtain that g∗(ϕ) is semi-positive. �

In the remaining of the section, we let f : X → SpecK be a non-empty and
reduced projective scheme over SpecK. Since the base field K is supposed to be
perfect, the K-scheme X is geometrically reduced.

Proposition 3.3. Let L = (L,ϕ) be an adelic line bundle on X such that L is
ample. Then the sequence

µ̂min(f∗(L
⊗n

))

n
, n ∈ N, n > 1 (3.1)

converges in R.

Proof. For any n ∈ N>1 let En = (En, ξn) be the adelic vector bundle f∗(L
⊗n

).
Since L is ample, by Lemma 3.1 there exists N ∈ N>1 such that, for any (n,m) ∈
N2
>N , the map

En ⊗K Em −→ En+m, s⊗ t 7−→ st

is surjective. Moreover, if we equip En ⊗ Em with the ε, π-tensor product of the
norm families ξn and ξm, the above map has height 6 0. By [10, Proposition 4.3.31],
one has

µ̂min(En+m) > µ̂min(En ⊗ε,π Em).

Moreover, since the field K is assumed to be perfect, by [10, Corollary 5.6.2] (see
also [12, Remark C.3]), one has

µ̂min(En ⊗ε,π Em) > µ̂min(En) + µ̂min(Em)

− 3

2
ν(Ω∞)(ln(dimK(En)) + ln(dimK(Em))).

Note that
ln(dimK(En)) = O(ln(n)),

and, by [10, Propositions 6.4.4 and 6.2.7], there exists a constant C > 0 such that

µ̂min(En) 6 µ̂max(En) 6 Cn.

Therefore, by [9, Corollary 3.6], we obtain the convergence of the sequence (3.1). �

3.2. Relative ampleness and asymptotic minimal slope.

Definition 3.4. Let L = (L,ϕ) be an adelic line bundle on X. If L is ample, we
define the asymptotic minimal slope of L as

µ̂asy
min(L) := lim

n→+∞

µ̂min(f∗(L
⊗n

))

n
.

By definition, for any m ∈ N such that m > 1, one has

µ̂asy
min(L⊗m) = mµ̂asy

min(L). (3.2)

Proposition 3.5. Let L = (L,ϕ) and M = (M,ψ) be adelic line bundles on X
such that L and M are ample. Then one has

µ̂asy
min(L⊗M) > µ̂asy

min(L) + µ̂asy
min(M). (3.3)
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Proof. By Lemma 3.1, for sufficiently large natural number n, the K-linear map

H0(X,L⊗n)⊗K H0(X,M⊗n) −→ H0(X, (L⊗M)⊗n), s⊗ t 7−→ st

is surjective. Moreover, for any ω ∈ Ω, the following inequality holds:

∀ (s, t) ∈ H0(Xω, L
⊗n
ω )×H0(Xω,M

⊗n
ω ), ‖st‖n(ϕω+ψω) 6 ‖s‖nϕω

· ‖t‖nψω
.

Therefore, if we equip H0(X,L⊗n) ⊗K H0(X,M⊗n) with the ε, π-tensor product
norm family, then the above K-linear map has height 6 0. Hence, by [10, Proposi-
tion 4.3.31 and Corollary 5.6.2] (see also [12, Remark C.3]), we obtain

µ̂min(f∗(L
⊗n ⊗M⊗n)) > µ̂min(f∗(L

⊗n
)) + µ̂min(f∗(M

⊗n
))

− 3

2
ν(Ω∞)

(
ln(dimK(H0(X,L⊗n))) + ln(dimK(H0(X,M⊗n)))

)
.

We divide the two sides of the inequality by n and then take the limit when n →
+∞, using

lim
n→+∞

1

n
ln(dimK(H0(X,L⊗n))) = lim

n→+∞

1

n
ln(dimK(H0(X,M⊗n))) = 0.

we obtain the inequality (3.3). �

Proposition 3.6. Let L be an ample line bundle on X and ϕ1 and ϕ2 be metric
families on L such that (L,ϕ1) and (L,ϕ2) are both adelic line bundles. Then the
following inequality holds:∣∣∣ µ̂asy

min(L,ϕ1)− µ̂asy
min(L,ϕ2)

∣∣∣ 6 d(ϕ1, ϕ2). (3.4)

Proof. For any n ∈ N, the identity maps

f∗(L
⊗n, nϕ1) −→ f∗(L

⊗n, nϕ2)

and
f∗(L

⊗n, nϕ2) −→ f∗(L
⊗n, nϕ1)

have heights 6 d(nϕ1, nϕ2) = nd(ϕ1, ϕ2). By [10, Proposition 4.3.31], we obtain
that ∣∣∣ µ̂min(f∗(L

⊗n, nϕ1))− µ̂min(f∗(L
⊗n, nϕ2))

∣∣∣ 6 nd(ϕ1, ϕ2).

Dividing the two sides of the inequality by n and then taking the limit when n→
+∞, we obtain (3.4). �

3.3. Asymptotic slope and intersection number. In this subsection, we as-
sume that X is integral. Let L be an adelic line bundle on X such that L is ample.
Note that

dimK(H0(X,L⊗n)) =
(Ld)

d!
nd + o(nd), n→ +∞.

Therefore, one has

lim
n→+∞

µ̂(f∗(L
⊗n

))

n
=

v̂olχ(L)

(d+ 1)(Ld)
. (3.5)

We denote by µ̂asy(L) the value
v̂olχ(L)

(d+ 1)(Ld)
and call it the asymptotic slope of L.

We recall below the Hilbert-Samuel formula for adelic line bundles in the frame-
work of Arakelov geometry over an adelic curve.
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Theorem 3.7 (Hilbert-Samuel formula). If L = (L,ϕ) is an adelic line bundle on
X such that L is ample and ϕ is semi-positive, that is, L is relatively ample in the
sense of Definition 3.9 below, then v̂olχ(L) = (L

d+1
)S and hence

µ̂asy(L) =
(L

d+1
)S

(d+ 1)(Ld)
. (3.6)

Proof. See [12, Theorem 1.2] or §2.9. �

Remark 3.8. Let L be an adelic line bundle onX such that L is ample. By definition
the following inequality holds:

µ̂asy(L) > µ̂asy
min(L). (3.7)

3.4. Lower bound of intersection number for relatively ample adelic line
bundles.

Definition 3.9. Let (L,ϕ) be an adelic line bundle onX. We say (L,ϕ) is relatively
ample if L is ample and ϕ is semi-positive. By [10, Proposition 2.3.5], if L and M
are relatively ample adelic line bundle, then the tensor product L⊗M is relatively
ample.

Theorem 3.10. Let Li = (Li, ϕi) be a family of relatively ample adelic line bundles
on X, where i ∈ {0, . . . , d}. For any i ∈ {0, . . . , d}, let

δi = (L0 · · ·Li−1Li+1 · · ·Ld).

Then the following inequality holds:

(L0 · · ·Ld)S >
d∑
i=0

δi µ̂
asy
min(Li). (3.8)

Proof. Without loss of generality, we may assume that L0, . . . , Ld are very ample.
For any n ∈ N>1 and any i ∈ {0, . . . , d}, we denote by Ei,n the K-vector space
H0(X,L⊗ni ), and set ri,n = dimK(Ei,n) − 1. We denote by ξnϕi

the norm family
(‖.‖nϕi,ω )ω∈Ω on Ei,n, and let ξi,n be a Hermitian norm family on Ei,n such that
(Ei,n, ξi,n) forms an adelic vector bundle and that

dω(ξi,n, ξnϕi
) 6

1

2
1lΩ∞(ω) ln(ri,n + 2).

The existence of such a Hermitian norm family is ensured by [10, Theorem 4.1.26].
Let ϕ(n)

i be the metric family on Li such that nϕ(n)
i identifies with the quotient

metric family induced by the closed embedding X → P(Ei,n) and the norm family
ξi,n. Since

lim
n→+∞

1

n
ln(ri,n + 2) = 0

and the metric families ϕi are semi-positive, by [11, Proposition 3.3.12], we obtain
that

lim
n→+∞

d(ϕ
(n)
i , ϕi) = lim

n→+∞

∫
Ω

dω(ϕ
(n)
i , ϕi) ν(dω) = 0.

For any n ∈ N>1, let Rn be the one-dimensional vector space of

Sn
dδ0(E∨0,n)⊗k · · · ⊗k Sn

dδd(E∨d,n) (3.9)
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spanned by any resultant of the closed embeddings X → P(Ei,n). We equip each
Sn

dδ0(E∨i,n) with the orthogonal symmetric power norm family of ξ∨i,n, and the
tensor product space (3.9) with the orthogonal tensor product norm family. By
[11, Remark 4.2.14] and [3, Corollary 1.4.3 and Lemma 4.3.8], we obtain that

((L0, ϕ
(n)
0 ) · · ·(Ld, ϕ(n)

d ))S > −
1

nd+1

(
d̂eg(Rn) + ν(Ω∞)

d∑
i=0

ln

(
ri,n + ndδi

ndδi

))

> − 1

nd+1

(
d̂eg(Rn) + ν(Ω∞)

d∑
i=0

ndδi ln(ri,n + 1)
)
,

(3.10)

where the second inequality comes from

∀ (a, b) ∈ N2
>1,

(
a+ b

b

)
6 (a+ 1)b.

Note that

d̂eg(Rn) 6 µ̂max(Sn
dδ0(E∨0,n, ξ

∨
0,n)⊗ · · · ⊗ Sn

dδd(E∨d,n, ξ
∨
d,n)). (3.11)

In the case where K is of characteristic 0, by [12, Remark B.6] and [10, Proposition
4.3.31], we obtain

µ̂max

(
Sn

dδ0(E∨0,n, ξ
∨
0,n)⊗ · · · ⊗ Sn

dδd(E∨d,n, ξ
∨
d,n)

)
6 µ̂max

(
(E∨0,n, ξ

∨
0,n)⊗n

dδ0 ⊗ · · · ⊗ (E∨d,n, ξ
∨
d,n)⊗n

dδd
)

+ ν(Ω∞)

d∑
i=0

ndδi ln(ndδi).

(3.12)

By [10, Corollaries 4.3.27 and 5.6.2], we have

µ̂max

(
(E∨0,n, ξ

∨
0,n)⊗n

dδ0 ⊗ · · · ⊗ (E∨d,n, ξ
∨
d,n)⊗n

dδd
)

6
d∑
i=0

ndδi

(
µ̂max(E∨i,n, ξ

∨
i,n) +

1

2
ν(Ω∞) ln(ri,n + 1)

)
=

d∑
i=0

ndδi

(
− µ̂min(Ei,n, ξi,n) +

1

2
ν(Ω∞) ln(ri,n + 1)

) (3.13)

Combining (3.10), (3.11), (3.12) and (3.13), we obtain

((L0, ϕ
(n)
0 ) · · ·(Ld, ϕ(n)

d ))S >
d∑
i=0

δi
µ̂min(Ei,n, ξi,n)

n

− 3

2
ν(Ω∞)

d∑
i=0

δi
n

ln(ri,n + 1)− ν(Ω∞)

d∑
i=0

δi
n

ln(ndδi).

(3.14)

In the case where K is of positive characteristic, by [12, Corollary C.2 and Theorem
C.5], we obtain

µ̂max

(
Sn

dδ0(E∨0,n, ξ
∨
0,n)⊗ · · · ⊗ Sn

dδd(E∨d,n, ξ
∨
d,n)

)
6

d∑
i=0

ndδi µ̂max(E∨i,n, ξ
∨
i,n).
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Hence the inequality (3.14) still holds in this case. Since ri,n = O(nd), taking the
limit when n goes to the infinity, we obtain the inequality (3.8). �

3.5. Relative nefness and continuous extension of µ̂asy
min.

Proposition 3.11. Let L and A be adelic line bundle on X. Assume that L is nef
and A is ample. Then the sequence

1

n
µ̂asy

min(L
⊗n ⊗A), n ∈ N>1 (3.15)

converges in R ∪ {−∞}, and the limit does not depend on the choice of A. In
particular, in the case where L is ample, the following equality holds:

lim
n→+∞

1

n
µ̂min(L

⊗n ⊗A) = µ̂min(L). (3.16)

Proof. Let p be a positive integer. By Proposition 3.5, for any ` ∈ N>1 and any
r ∈ {1, . . . , p}, one has

µ̂asy
min(L

⊗p ⊗A) =
1

`+ 1
µ̂asy

min(L
⊗(`+1)p ⊗A⊗(`+1)

)

>
1

`+ 1

(
µ̂asy

min(L
⊗(`p+r) ⊗A) + µ̂asy

min(L
⊗(p−r) ⊗A) + (`− 1) µ̂asy

min(A)
)
.

Taking the limit superior when `p+ r → +∞, we obtain

µ̂asy
min(L

⊗p ⊗A) > p lim sup
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) + µ̂asy

min(A),

which leads to

lim inf
p→+∞

1

p
µ̂asy

min(L
⊗p ⊗A) > lim sup

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A).

Therefore the sequence (3.15) converges in [−∞,+∞]. Moreover, still by Proposi-
tion 3.5, for any p ∈ N>1, one has

µ̂asy
min(L⊗A) =

1

p
µ̂asy

min(L
⊗p ⊗A⊗p) > 1

p
µ̂asy

min(L
⊗p ⊗A) +

p− 1

p
µ̂asy

min(A),

which shows that

lim
p→+∞

1

p
µ̂asy

min(L
⊗p ⊗A) 6 µ̂asy

min(L⊗A)− µ̂asy
min(A) < +∞.

To prove the second assertion, we first show that the limit of the sequence does
not depend on the choice of the metric family on A. For this purpose, we consider
two metric families ϕ1 et ϕ2 on A such that both (A,ϕ1) and (A,ϕ2) are adelic line
bundles on X. By Proposition 3.6, for any n ∈ N one has∣∣∣µ̂asy

min(L
⊗n ⊗ (A,ϕ1))− µ̂asy

min(L
⊗n ⊗ (A,ϕ1))

∣∣∣ 6 d(ϕ1, ϕ2),

so that

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗ (A,ϕ1)) = lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗ (A,ϕ2)). (3.17)

We then show that, for any p ∈ N>2, the following inequality holds:

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) = lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A⊗p). (3.18)
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In fact, by (3.2), for any n ∈ N>1 one has

1

n
µ̂asy

min(L
⊗n ⊗A) =

1

np
µ̂asy

min(L
⊗np ⊗A⊗p).

Taking the limit when n→ +∞, we obtain the equality (3.18).
Note that if B is another adelic line bundle such that B is ample, then the

following inequality holds:

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) 6 lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A⊗B). (3.19)

In fact, by Proposition 3.5, for any n ∈ N>1, one has

1

n
µ̂asy

min(L
⊗n ⊗A⊗B) >

1

n
µ̂asy

min(L
⊗n ⊗A) +

1

n
µ̂asy

min(B).

Taking the limit when n→ +∞, we obtain (3.19).
Finally, we show that, if B is an arbitrary adelic line bundle such that B is

ample, then the equality

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) = lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗B) (3.20)

holds. In fact, there exists p ∈ N>1 such that N = B⊗p⊗A∨ is ample. We equip it
with an arbitrary metric family such that N forms an adelic line bundle. By (3.19)
we obtain

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) 6 lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A⊗N).

Since A⊗N is isomorphic to B⊗p, by (3.17) and (3.18) we obtain

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A⊗N) = lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗B).

Therefore, we deduce

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) 6 lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗B).

Interchanging the roles of A and B we obtain the converse inequality.
To obtain the equality (3.16), it suffices to apply the equality (3.20) in the

particular case where A = L. The proposition is thus proved. �

Definition 3.12. Let L be an adelic line bundle on X such that L is nef, we define

µ̂asy
min(L) := lim

n→+∞

1

n
µ̂asy

min(L⊗n ⊗A),

where A is an arbitrary adelic line bundle such that A is ample. The element
µ̂asy

min(L) of R ∪ {−∞} is called asymptotic minimal slope of L.

Remark 3.13. It is an interesting question to ask when the asymptotic minimal
slope is a real number. As we will show in Theorem 3.25, the asymptotic minimal
slope does not decrease if we replace the adelic line bundle by its pullback by a
projective morphism. In particular, if L is the pullback of an ample line bundle by
a projective morphism, then µ̂asy

min(L) ∈ R.
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Proposition 3.14. Let L and M be adelic line bundles on X such that L and M
are nef. One has

µ̂asy
min(L⊗M) > µ̂asy

min(L) + µ̂asy
min(M). (3.21)

Moreover, one has

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗M) = µ̂asy

min(L) (3.22)

provided that µ̂asy
min(M) > −∞.

Proof. Let A be an adelic line bundle on X such that A is ample. For any n ∈ N>1,
by Proposition 3.5 one has

1

n
µ̂asy

min(L
⊗n ⊗M⊗n ⊗A⊗2

) >
1

n
µ̂asy

min(L
⊗n ⊗A) + µ̂asy

min(M
⊗n ⊗A).

Taking the limit when n→ +∞, we obtain the inequality (3.21).
By (3.21), we obtain that, for any positive integer n, the inequality

1

n
µ̂asy

min(L
⊗n ⊗M) > µ̂asy

min(L) +
1

n
µ̂asy

min(M).

Since µ̂asy
min(M) ∈ R, taking the limit inferior when n→ +∞, we obtain

lim inf
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗M) > µ̂asy

min(L).

Pick an adelic line bundle A on X such that A is ample. Since A ⊗M is ample,
one has

lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗M ⊗A) = µ̂asy

min(L). (3.23)

Moreover, by (3.21) one has
1

n
µ̂asy

min(L
⊗n ⊗M ⊗A) >

1

n
µ̂asy

min(L
⊗n ⊗M) +

1

n
µ̂asy

min(A).

Taking the limit superior, by (3.23) we obtain

lim sup
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗M) 6 µ̂asy

min(L).

Hence the equality (3.22) holds. �

Definition 3.15. Let L = (L,ϕ) be an adelic line bundle on X. We say that L
is relatively nef if there exists a relatively ample adelic line bundle A on X and
a positive integer N such that, for any n ∈ N>N , the tensor product L⊗n ⊗ A is
relatively ample.

Proposition 3.16. Let L = (L,ϕ) be an adelic line bundle on X such that L is
semi-ample and ϕ is semi-positive. Then, for any adelic line bundle A = (A,ψ) on
X which is relatively ample and any n ∈ N, the tensor product L

⊗n⊗A is relatively
ample. In particular, L is relatively nef.

Proof. Since L is semi-ample, we obtain that, for any n ∈ N, L⊗n ⊗ A is ample.
Moreover, by [10, Proposition 2.3.5], nϕ + ψ is semi-positive. Hence L

⊗n ⊗ A is
relatively ample. �

Proposition 3.17. Let L and M be adelic line bundles on X which are relatively
nef. Then the tensor product L⊗M is also relatively nef.
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Proof. Let A and B be relatively ample adelic line bundles on X, and N be a
positive integer such that L

⊗n ⊗ A and M
⊗n ⊗ B are relatively ample for any

integer n > N . We then obtain that (L ⊗M)⊗n ⊗ (A ⊗ B) is relatively ample.
Therefore L⊗M is relatively nef. �

Proposition 3.18. Let L0, . . . , Ld be a family of relatively nef adelic line bundles
on X. For any i ∈ {0, . . . , d}, let

δi = (L0 · · ·Li−1Li+1 · · ·Ld).
Assume that δi > 0 for those i ∈ {0, . . . , d} such that µ̂asy

min(Li) = −∞. Then the
following inequality holds:

(L0 · · ·Ld)S >
d∑
i=0

δi µ̂
asy
min(Li). (3.24)

Proof. If there is i ∈ {0, . . . , d} such that µ̂asy
min(Li) = −∞, then the assertion is

obvious, so that we may assume that µ̂asy
min(Li) > −∞ for all i ∈ {0, . . . , d}.

Let Ai be a relatively ample adelic line bundle on X such that L
⊗n
i ⊗ Ai is

relatively ample for sufficiently large positive integer n. For any i ∈ {0, . . . , d} and
any positive integer n, let

Li,n = L
⊗n
i ⊗Ai,

δi,n = (L0,n · · ·Li−1,nLi+1,n · · ·Ld,n).

By the multi-linearity of intersection product, we obtain that

lim
n→+∞

δi,n
nd

= δi, lim
n→+∞

(L0,n · · ·Ld,n)S
nd+1

= (L0 · · ·Ld)S .

Note that Theorem 3.10 leads to

(L0,n · · ·Ld,n)S >
d∑
i=0

δi,n µ̂
asy
min(Li,n)

for sufficiently large positive integer n. Dividing the two sides by nd+1 and then
taking the limit when n→ +∞, we obtain the inequality (3.24). �

3.6. Pull-back by a projective morphism.

Lemma 3.19. If L = (L,ϕ) is a relatively nef adelic line bundle on X and if
g : Y → X is projective morphism from a reduced K-scheme Y to X, then the
pull-back g∗(L) is a relatively nef adelic line bundle on Y .

Proof. Let A = (A,ψ) be a relatively ample line bundle on X and N be a positive
integer such that L

⊗n⊗A = (L⊗n⊗A,nϕ+ψ) is relatively ample for any n ∈ N>N .
Note that L⊗n⊗A is ample and hence g∗(L)⊗n⊗g∗(A) is semi-ample. Moreover, by
Lemma 3.2, nϕ+ψ is semi-positive. We choose an arbitrary relatively ample adelic
line bundle B on Y . By Proposition 3.16, we obtain that g∗(L)⊗n⊗ (g∗(A)⊗B) is
relatively ample for any n ∈ N>N . Thus the assertion follows. �

Proposition 3.20. Let L = (L,ϕ) be an adelic line bundle on X such that L is nef.
For any non-empty and reduced closed subscheme Y of X, the following inequality
holds:

µ̂asy
min(L|Y ) > µ̂asy

min(L). (3.25)
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Proof. We first consider the case where L is ample. Clearly the restriction of L to
Y is ample, and there exists n0 ∈ N such that the restriction map

πn : H0(X,L⊗n) −→ H0(Y,L|⊗nY )

is surjective for any n ∈ N>n0
. Moreover, if we denote by ϕYω the restriction of the

metric ϕω to Lω|Yω , then, for any s ∈ H0(Xω, L
⊗n
ω ), the inequality

‖s‖nϕω
> ‖πn,ω(s)‖nϕY

ω

holds, so that, by [10, Proposition 4.3.31], we obtain

µ̂min(H0(Y,L|⊗nY ), (‖.‖nϕY
ω

)ω∈Ω) > µ̂min(H0(X,L⊗n), (‖.‖nϕω )ω∈Ω)

for any n ∈ N>n0
. Dividing the two sides of the inequality by n and taking the

limit when n→ +∞, we obtain the inequality (3.25).
In general, let A be an adelic line bundle on X such that A is ample. By the

above argument, one has µ̂asy
min(A|Y ) > µ̂asy

min(A) > −∞. Since L is nef, L|Y is also
nef (see [15, Example 1.4.4]) and therefore µ̂asy

min(L|Y ) is well defined. By (3.22) and
the above case, one has

µ̂asy
min(L|Y ) = lim

n→+∞

1

n
µ̂asy

min(L|⊗nY ⊗A|Y ) > lim
n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) = µ̂asy

min(L),

as required. �

Proposition 3.21. Let Y be a reduced and non-empty closed subscheme of X and
r be the dimension of Y . Let L0, . . . , Lr be a family of relatively nef adelic line
bundles on X. For any i ∈ {0, . . . , r}, let

δi = (L0|Y · · ·Li−1|Y Li+1|Y · · ·Lr|Y ).

Assume that, for any i ∈ {0, . . . , r}, δi > 0 once µ̂asy
min(Li|Y ) = −∞. Then the

following inequality holds:

(L0|Y · · ·Lr|Y )S >
r∑
i=0

δi µ̂
asy
min(Li|Y ). (3.26)

Proof. This is a consequence of Proposition 3.18 and Lemma 3.19. �

Proposition 3.22. Let L0 = (L0, ϕ0), . . . , Ld = (Ld, ϕd) be a family of adelic line
bundles on X. For any i ∈ {0, . . . , d}, let

δi = (L0 · · ·Li−1Li+1 · · ·Ld).

Assume that L1, . . . , Ld are relatively nef, L0 admits a global section s which is a
regular meromorphic section, and, for any i ∈ {1, . . . , d}, δi > 0 once µ̂asy

min(Li) =
−∞. Then the following inequality holds:

(L0 · · ·Ld)S >
d∑
i=1

δi µ̂
asy
min(Li)

−
∫

Ω

∫
Xan

ω

ln ‖s‖ϕ0,ω
c1(L1,ω, ϕ1,ω) · · · c1(Ld,ω, ϕd,ω) ν(dω).

(3.27)
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Proof. If there exists i ∈ {1, . . . , d} such that µ̂asy
min(Li) = −∞, then the inequality

(3.27) is trivial. Therefore, we can assume that µ̂asy
min(Li) ∈ R for any i ∈ {1, . . . , n}.

Let div(s) = a1Z1 +· · ·+anZn be the decomposition of div(s) as linear combination
of prime divisors, where a1, . . . , an are non-negative integers since s is a global
section. By proposition 3.20, for any i ∈ {1, . . . , d} and and any j ∈ {1, . . . , n}, one
has

µ̂asy
min(Li|Zj

) > µ̂asy
min(Li). (3.28)

By [11, Proposition 4.4.4], one has

(L0 · · ·Ld)S =

n∑
j=1

aj(L1|Zj
· · ·Ld|Zj

)S

−
∫

Ω

∫
Xan

ω

ln |s|ϕ0,ω (x) c1(L1,ω, ϕ1,ω) · · · c1(Ld,ω, ϕd,ω)(dx) ν(dω).

By Proposition 3.21, one has
n∑
j=1

aj(L1|Zj
· · ·Ld|Zj

)S >
n∑
j=1

aj

d∑
i=1

δi,j µ̂
asy
min(Li|Zj

) >
n∑
j=1

aj

d∑
i=1

δi,j µ̂
asy
min(Li),

where
δi,j := (L1|Zj

· · ·Li−1|Zj
Li+1|Zj

· · ·Ld|Zj
),

and the second inequality comes from (3.28). Note that, for any i ∈ {1, . . . , d}, one
has

n∑
j=1

ajδi,j = δi.

Hence we obtain the desired inequality. �

3.7. Asymptotic minimal slope of a quotient adelic line bundle.

Proposition 3.23. Let (E, ξ) be an adelic vector bundle on S, L be a quotient line
bundle of f∗(E) and ϕ be the quotient metric family induced by ξ. Then the adelic
line bundle (L,ϕ) is relatively nef. Moreover, the following inequality holds:

µ̂asy
min(L) > µ̂min(E)− 3

2
ν(Ω∞) ln(dimK(E)) (3.29)

Proof. By [16, Propositions 6.1.8 and 6.1.2], f∗(E) is a nef vector bundle on X and
hence L is a nef line bundle. Moreover, since quotient metrics are semi-positive (see
[10, Remark 2.3.1]), the adelic line bundle L is relatively nef.

In the following, we prove the inequality (3.29). Let p be an integer and A be
a relatively ample adelic line bundle on X. Then L

⊗p ⊗ A is relatively ample.
Let Y = P(f∗(E)⊗p) and g : Y → X be the structural morphism. The quotient
homomorphism f∗(E) → L induces by taking the tensor product a surjective ho-
momorphism f∗(E)⊗p → L⊗p, which corresponds to a section s : X → Y such that
s∗(OY (1)) ∼= L⊗p. Hence

s∗(OY (1)⊗ g∗(A)) ∼= L⊗p ⊗A.

By Proposition 3.20, one has

µ̂asy
min(L

⊗p ⊗A) > µ̂asy
min(OY (1)⊗ g∗(A)), (3.30)
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where we consider Fubini-Study metric fiber by fiber on OY (1). Note that, for any
integer n ∈ N>1, by the adjunction formula one has

H0(Y,OY (n)⊗g∗(A)⊗n) = H0(X,Sn(f∗(E)⊗p)⊗A⊗n) = Sn(E⊗p)⊗H0(X,A⊗n).

Moreover, the projection map

E⊗np ⊗H0(X,A⊗n) −→ Sn(E⊗p)⊗H0(X,A⊗n),

where we consider the ε, π-tensor product norm family on the left hand side of the
arrow, and the adelic vector bundle structure of (fg)∗(OY (n) ⊗ g∗(A)⊗n) on the
right hand side. By [10, Corollary 5.6.2] (see also [12, Remark C.3]), we obtain

µ̂min

(
g∗(OY (n)⊗ g∗(A⊗n)

)
n

>
1

n

(
np µ̂min(E) + µ̂min(f∗(A

⊗n
))

− 3

2
ν(Ω∞) ln

(
dimK(E)np · dimK(H0(X,A⊗n))

))
.

Taking the limit when n→ +∞, we obtain

µ̂asy
min(OY (1)⊗ g∗(A)) > p µ̂min(E) + µ̂asy

min(A)− 3

2
ν(Ω∞)p ln(dimK(E)).

Combining this inequality with (3.30), we obtain

1

p
µ̂asy

min(L
⊗p ⊗A) > µ̂min(E) +

1

p
µ̂asy

min(A)− 3

2
ν(Ω∞) ln(dimK(E)).

Thus, due to Definition 3.12, we obtain

µ̂asy
min(L) > lim sup

p→∞

1

p
µ̂asy

min(L
⊗p ⊗A) > µ̂min(E)− 3

2
ν(Ω∞) ln(dimK(E)),

as required. �

3.8. Asymptotic minimal slope of a pull-back.

Proposition 3.24. Let g : Y → X be a projective morphism of K-schemes, which
is surjective and such that g∗(OY ) = OX . Let L be an adelic line bundle on X such
that L is nef. Then the following inequality holds:

µ̂asy
min(g∗(L)) > µ̂asy

min(L).

Proof. By [15, Example 1.4.4], the line bundle g∗(L) is nef, and hence µ̂asy
min(g∗(L))

is well defined. We first consider the case where L is ample. Let p be a positive
integer and A be an adelic line bundle on Y such that A is ample. By Lemma 3.1,
for sufficiently positive integer n, the K-linear map

H0(Y,A⊗n)⊗H0(X,L⊗pn) −→ H0(Y,A⊗n ⊗ g∗(L)⊗pn)

is surjective. Moreover, if we equip the left hand side of the arrow with the ε, π-
tensor product norm family of those of (fg)∗(A

⊗n
) and f∗(L

⊗pn
), then theK-linear

map has height 6 0. Therefore, by [10, Corollary 5.6.2] we obtain

µ̂min((fg)∗(A
⊗n⊗g∗(L)⊗pn)) > µ̂min((fg)∗(A

⊗n
)) + µ̂min(f∗(L

⊗pn
))

− 3

2
ν(Ω∞) ln(dimK(H0(Y,A⊗n)) dimK(H0(X,L⊗pn))).
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Dividing the two sides of the inequality by pn and then taking the limit when
n→ +∞, we obtain

1

p
µ̂asy

min(A⊗ g∗(L)⊗p) >
µ̂asy

min(A)

p
+ µ̂asy

min(L),

which leads to

µ̂asy
min(g∗(L)) > lim sup

p→+∞

1

p
µ̂asy

min(A⊗ g∗(L)⊗p) > µ̂asy
min(L).

We now consider the general case. Let B be an adelic line bundle on X such that
B is ample. By the above argument we obtain that µ̂asy

min(g∗(B)) > µ̂asy
min(B) > −∞

and, for any positive integer n,

1

n
µ̂asy

min(g∗(L
⊗n

)⊗ g∗(B)) >
1

n
µ̂asy

min(L
⊗n ⊗B).

Taking the limit when n→ +∞, by (3.22) we obtain µ̂asy
min(g∗(L)) > µ̂asy

min(L). �

Theorem 3.25. Let g : Y → X be a projective morphism of K-schemes. We
assume that Y is non-empty and reduced. For any adelic line bundle L on X such
that L is nef, one has µ̂asy

min(g∗(L)) > µ̂asy
min(L).

Proof. The projective morphism g can be written as the composition of a closed
immersion from Y into a projective bundle on X and the projection from the
projective bundle to X. Hence the inequality follows from Propositions 3.24 and
3.20. �

3.9. Comparison with the normalized height. The following height estimate
can be deduced from Theorem 3.18. Here we provide an alternative proof in the
particular case where X is integral by using the arithmetic Hilbert-Samuel formula.

Proposition 3.26. Let L be a relatively nef adelic line bundle on X such that
(Ld) > 0. Then the following inequality holds

(L
d+1

)S
(d+ 1)(Ld)

> µ̂asy
min(L). (3.31)

Proof. We assume that X is integral. In the case where L is relatively ample, it is
a consequence of Theorem 3.7 and Remark 3.8.

We now consider the general case where L is only relatively nef. Let A be a
relatively ample adelic line bundle and N be a positive integer such that L⊗n ⊗ A
is relatively ample for any n ∈ N>N . For any n ∈ N>N , the adelic line bundle
Ln = L

⊗n ⊗ A is relatively ample. Hence the particular case of the proposition
proved above shows that

∀n ∈ N>N ,
(L

d+1

n )S

(d+ 1)(L
d

n)
> µ̂asy

min(Ln).

Moreover, by the multi-linearity of intersection product, one has

lim
n→+∞

(L
d+1

n )S
nd+1

= (L
d+1

)S , lim
n→+∞

(Ldn)

nd
= (Ld).
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Therefore, one obtains

µ̂asy
min(L) = lim

n→+∞

1

n
µ̂asy

min(Ln) 6 lim
n→+∞

(L
d+1

n )S

n(d+ 1)(L
d

n)
=

(L
d+1

)

(d+ 1)(Ld)
.

�

Corollary 3.27. Let L be a relatively nef adelic line bundle on X. For any non-
empty and reduced closed subscheme Y of X, the following inequality holds:

µ̂asy
min(L) 6

hL(Y )

(dimL(Y ) + 1) degL(Y )
. (3.32)

In particular, for any closed point x, one has

µ̂asy
min(L) 6 hL(x).

Proof. By Lemma 3.19, the restriction of L to Y is relatively nef. By Proposition
3.26 one has

µ̂asy
min(L|Y ) 6

hL(Y )

(dimL(Y ) + 1) degL(Y )
.

By Proposition 3.20, we obtain (3.32). �
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4. Geometrically big and pseudoeffective adelic line bundles

As in the previous section, we fix a proper adelic curve S = (K, (Ω,A, ν), φ) such
that, either K is countable, or (Ω,A) is discrete. We assume that K is perfect.

4.1. Convergence of maximal slopes.

Proposition 4.1. Let X be an integral projective scheme over SpecK, and L =
(L,ϕ) and M = (M,ψ) be adelic line bundles on X such that H0(X,L) and
H0(X,M) are non-zero. Then the following inequality holds:

µ̂max(f∗(L⊗M)) > µ̂max(f∗(L)) + µ̂max(f∗(M))− 3

2
ν(Ω∞)(ln(h0(L) · h0(M))),

where h0(L) = dimK(H0(X,L)) and h0(M) = dimK(H0(X,M)).

Proof. By [10, Theorem 4.3.58], there exist non-zero vector subspaces E and F of
H0(X,L) and H0(X,M), respectively, such that

µ̂min(E) = µ̂max(f∗(L)), µ̂min(F ) = µ̂max(f∗(M)),

where we consider restricted norm families on E and F . Since X is integral, the
map

E ⊗K F −→ H0(X,L⊗M), s⊗ t 7−→ st

is non-zero. Moreover, for any ω ∈ Ω, one has

∀ (s, t) ∈ Eω × Fω, ‖st‖ϕω+ψω 6 ‖s‖ϕω · ‖t‖ψω .

Therefore, the height of the above K-linear map is 6 0 if we consider the ε, π-tensor
product norm family on E ⊗K F . By [10, Theorem 4.3.31 and Corollary 5.6.2], we
obtain

µ̂max(f∗(L⊗M))

> µ̂min(E ⊗ε,π F ) > µ̂min(E) + µ̂min(F )− 3

2
ν(Ω∞) ln(dimK(E) · dimK(F ))

= µ̂max(f∗(L)) + µ̂max(f∗(M))− 3

2
ν(Ω∞) ln(dimK(E) · dimK(F ))

> µ̂max(f∗(L)) + µ̂max(f∗(M))− 3

2
ν(Ω∞)(ln(h0(L) · h0(M))),

as required. �

Corollary 4.2. Let L be an adelic line bundle on X such that H0(X,L⊗n) is
non-zero for sufficiently large natural number n. The sequence

1

n
µ̂max(f∗(L

⊗n
)), n ∈ N>1

converges in R.

Proof. The convergence of the sequence follows from Proposition 4.1, using the
same argument as in the proof of Proposition 3.3. �
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4.2. Asymptotic maximal slope. In this subsection, we let f : X → SpecK be
an integral projective K-scheme.

Definition 4.3. Let L be an adelic line bundle on X such that L is big. We define

µ̂asy
max(L) := lim

n→+∞

µ̂max(f∗(L
⊗n))

n
.

By definition, for any p ∈ N>1, the following equality holds:

µ̂asy
max(L

⊗p
) = p µ̂asy

max(L).

Proposition 4.4. Let L and M be adelic line bundles on X such that L and M
are both big. One has

µ̂asy
max(L⊗M) > µ̂asy

max(L) + µ̂asy
max(M). (4.1)

Proof. For any n ∈ N>1, let an = dimK(H0(X,L⊗n)) and bn = dimK(X,M⊗n).
One has

ln(an) = O(ln(n)), ln(bn) = O(ln(n)), n→ +∞.
By Proposition 4.1, for sufficiently large n, one has

µ̂max(f∗((L⊗M)⊗n))

n
>
µ̂max(f∗(L

⊗n
))

n
+
µ̂max(f∗(M

⊗n
))

n
− 3

2
ν(Ω∞)

ln(anbn)

n
.

Taking the limit when n→ +∞, we obtain the inequality (4.1). �

Proposition 4.5. Let L and A be adelic line bundle on X. We assume that L is
pseudo-effective and A is big. Then the sequence

1

n
µ̂asy

max(L
⊗n ⊗A), n ∈ N>1

converges in R ∪ {−∞}. Moreover, its limit does not depend on the choice of A.
In particular, in the case where L is big, the following equality holds:

lim
n→+∞

1

n
µ̂asy

max(L
⊗n ⊗A) = µ̂asy

max(L). (4.2)

Proof. The proof relies on the super-additivity of the function µ̂asy
max(.) (see Propo-

sition 4.4) and follows the same strategy as that of Proposition 3.11. We omit the
details. �

Definition 4.6. Let L be an adelic line bundle onX such that L is pseudo-effective.
We define µ̂asy

max(L) as the limite

lim
n→+∞

1

n
µ̂asy

max(L
⊗n ⊗A),

where A is an arbitrary adelic line bundle on X such that A is big. The element
µ̂asy

max(L) of R ∪ {−∞} is called the asymptotic maximal slope of L.

Proposition 4.7. Let L and M be adelic line bundles on X such that L and M
are pseudo-effective. Then the following inequality holds:

µ̂asy
max(L⊗M) > µ̂asy

max(L) + µ̂asy
max(M).
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Proof. Let A be an adelic line bundle on X such that A is big. For any n ∈ N,
(L⊗M)⊗n ⊗A⊗2 = (L⊗n ⊗A)⊗ (M⊗n ⊗A)

is big. Moreover, by Proposition 4.4, one has
1

n
µ̂asy

max

(
(L⊗M)⊗n ⊗A⊗2)

>
1

n
µ̂asy

max(L
⊗n ⊗A) +

1

n
µ̂asy

max(M
⊗n ⊗A).

Taking the limit when n→ +∞, we obtain

µ̂asy
max(L⊗M) > µ̂asy

max(L) + µ̂asy
max(M).

�

4.3. Pullback by a surjective projective morphism. Let X and Y be integral
projective K-schemes and g : Y → X be a surjective projective morphism.

Lemma 4.8. Let L be an invertible OX-module. If L is pseudo-effective, then the
pullback g∗(L) is also pseudo-effective.

Proof. Let A be a big invertible OX -module and B be a big invertible OY -module.
For any positive integer p, the invertible OX -module L⊗p ⊗ A is big and hence
g∗(L⊗p ⊗ A) is pseudo-effective since it has a tensor power which is effective.
Similarly, g∗(A) is also pseudo-effective. Thus we obtain that g∗(A) ⊗ B and
g∗(L)⊗p ⊗ g∗(A)⊗B are big. In particular, g∗(L) is pseudo-effective. �

Proposition 4.9. Let L be an adelic line bundle on X such that L is pseudo-
effective. Then the following inequality holds:

µ̂asy
max(g∗(L)) > µ̂asy

max(L).

Proof. We have seen in Lemma 4.8 that the invertible OX -module L is pseudo-
effective, so that µ̂asy

max(L) is well defined. We choose an adelic line bundle A on X
such that A is big.

We first assume that L is big. Let n and p be positive integers. We consider the
K-linear map

H0(X, g∗(A
⊗n))⊗H0(X,L⊗np) −→ H0(X, g∗(A

⊗n)⊗ L⊗np)
= H0(Y,A⊗n ⊗ g∗(L⊗np))

induced by multiplication of sections. Let E be the destabilizing vector subspace
of (fg)∗(A

⊗n
) and let F be the destabilizing vector subspace of f∗(L

⊗np
). By [10,

Proposition 4.3.31], one has

µ̂min(E ⊗ε,π F ) 6 µ̂max((fg)∗(A
⊗n ⊗ g∗(L⊗np))).

by [10, Corollary 5.6.2 and Remark 4.3.48] (see also [12, Remark C.3]), one deduces

µ̂max((fg)∗(A
⊗n ⊗ g∗(L⊗np)))

> µ̂min(E) + µ̂min(F )− 3

2
ν(Ω∞)(ln(dimK(E)) + ln(dimK(F )))

> µ̂max((fg)∗(A
⊗n

)) + µ̂max(f∗(L
⊗np

))− 2ν(Ω∞) ln dimK(H0(Y,A⊗n))

− 2ν(Ω∞) ln dimK(H0(X,L⊗np)).

If we divide the two sides by np, taking the limit when n→ +∞, we obtain
1

p
µ̂asy

max(A⊗ g∗(L⊗p)) > 1

p
µ̂asy

max(A) + µ̂max(L).
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Taking the limit when p→ +∞, we obtain µ̂asy
max(g∗(L)) > µ̂asy

max(L), as required.
We then consider the general case where L is only assumed to be pseudo-effective.

Let B be an adelic line bundle on X such that B is big. Note that, for any positive
integer p, L⊗p ⊗ B is big. Hence, by the particular case of the proposition shown
above, one has

µ̂asy
max(g∗(L)⊗p ⊗ g∗(B)) > µ̂asy

max(L
⊗p ⊗B).

Therefore, by Proposition 4.7, we obtain
1

p
µ̂asy

max(g∗(L)⊗p ⊗ g∗(B)⊗A) >
1

p
µ̂asy

max(L
⊗p ⊗B) +

1

p
µ̂asy

max(A).

Taking the limit when p→ +∞, we obtain µ̂asy
max(g∗(L)) > µ̂asy

max(L). �

Remark 4.10. Let L be an adelic line bundle on X. Assume that L is the pull-back
of a big line bundle by a surjective projective morphism. Then Proposition 4.9
shows that µ̂asy

max(L) ∈ R.

4.4. Relative Fujita approximation. Let f : X → SpecK be a projective K-
scheme, K(X) be the field of rational functions on X, and MX be the sheaf of
meromorphic function on X.

Definition 4.11. Let L be a big line bundle on X. Note that MX ⊗OX
L is

isomorphic to the trivial invertible MX -module. In particular, if s and t are two
global sections of L such that s 6= 0, then there existe a unique rational function
λ ∈ K(X) such that t = λs. We denote by t/s this rational function. If E is a
K-vector subspace of H0(X,L). We denote by K(E) the sub-extension of K(X)/K
generated by elements of the form t/s, where t and s are non-zero sections in K(E).
We say that E is birational if K(E) = K(X). Moreover L is said to be birational
if K(H0(X,L)) = K(X).

Remark 4.12. Let L and M be line bundle on X, E be a vector subspace of
H0(X,L), s be a non-zero global section of M and

F = {ts | t ∈ E} ⊆ H0(X,L⊗M).

Then by definition one has K(F ) = K(E). In particular, if E is birational, so is F ;
if L is birational, so is L⊗M .

Proposition 4.13. Let L be a big line bundle on X. For sufficiently positive integer
p, the line bundle L⊗p is birational.

Proof. Since L is big, there exists a positive integer q, an ample line bundle A and
an effective line bundle M on X such that L⊗q ∼= A ⊗M . By replacing q by a
multiple, we may assume that the graded K-algebra⊕

n∈N
H0(X,A⊗n)

is generated by H0(X,A) and that L⊗(q+1) is effective. For any a ∈ N>1, one has

X = Proj
(⊕
n∈N

H0(X,A⊗an)
)
,

which implies that A⊗a is birational and hence L⊗aq is birational. Moreover, since
L⊗(q+1) is effective, for any b ∈ N>1, the line bundle L⊗b(q+1) is also effective.
Therefore, for any (a, b) ∈ N2

>1, the line bundle L⊗aq+b(q+1) is birational. Since
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q and q + 1 are coprime, we obtain that L⊗p is birational for sufficiently large
p ∈ N. �

Definition 4.14. Let L = (L,ϕ) be an adelic line bundle on X. If s ∈ H0(X,L) is
a non-zero global section such that ‖s‖ϕω 6 1 for any ω ∈ Ω, we say that the global
section s is effective. We say that L is effective if it admits at least an effective
global section.

Lemma 4.15. Let L be an adelic line bundle such that L is big. For any t <
µ̂asy

max(L) and any N ∈ N>1, there exists an integer p > N and a vector subspace E
of H0(X,L⊗p) such that K(E) = K(X) and µ̂min(E) > pt.

Proof. By replacing L by one of its tensor powers, we may assume without loss of
generality that L is birational. For any n ∈ N, let rn = dimK(H0(X,L⊗n)). Since
t < µ̂asy

max(L), for sufficiently large n ∈ N, one has

µ̂max(f∗(L
⊗n

)) > (n+ 1)t− µ̂min(f∗(L)) +
3

2
ν(Ω∞) ln

(
rn · r1

)
.

Let F be a vector subspace of H0(X,L⊗n) such that

µ̂min(F ) = µ̂max(f∗(L
⊗n

)).

The existence of F is ensured by [10, Theorem 4.3.58]. Let E be the image of
F ⊗K H0(X,L) by the K-linear map

H0(X,L⊗n)⊗H0(X,L) −→ H0(X,L⊗n+1), s⊗ t 7−→ st.

Since L is birational and F is non-zero, we obtain that E is birational. By [10,
Corollary 5.6.2], one has

µ̂min(E) > µ̂min(F ⊗ε,π f∗(L))

> µ̂min(F ) + µ̂min(f∗(L))− 3

2
ν(Ω∞) ln(dimK(F ) · r1)

= µ̂max(f∗(L
⊗n

)) + µ̂min(f∗(L))− 3

2
ν(Ω∞) ln(dimK(F ) · r1) > (n+ 1)t.

�

Theorem 4.16 (Relative Fujita approximation). Let L be an adelic line bundle
on X such that L is big. For any real number t < µ̂asy

max(L), there exist a positive
integer p, a birational projective K-morphism g : X ′ → X, a relatively nef adelic
line bundle A and an effective adelic line bundle M on X ′ such that A is big,
g∗(L⊗p) is isomorphic to A⊗M and µ̂asy

min(A) > pt.

Proof. We pick a positive integer p and a birational vector subspace V ofH0(X,L⊗p)
such that

µ̂min(V ) = µ̂max(f∗(L
⊗p

)) > pt+
3

2
ν(Ω∞) ln(dimK(H0(X,L⊗p))).

Let g : X ′ → X be the blow-up of L along the base locus of V , namely

X ′ = Proj

(
Im

(⊕
n∈N

Sn(f∗(V )) −→
⊕
n∈N

L⊗np
))

.

Denote by E the exceptional divisor and by sE the global section of OX(E) which
trivializes OX(E) outside of the exceptional divisor. One has

OX′(1) ∼= g∗(L⊗p)⊗OX(−E).
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Moreover, the canonical surjective homomorphism

g∗(f∗(V )) −→ OX′(1) (4.3)

induces a K-morphism i : X ′ → P(V ) such that i∗(OV (1)) = OX′(1), where OV (1)
denotes the universal invertible sheaf on P(V ). Since V is birational, the line bundle
OX′(1) is big.

We equip V with the induced norm family of (‖.‖pϕω
)ω∈Ω and OX′(1) with the

quotient metric family ϕ′ = (ϕ′ω)ω∈Ω induced by (‖.‖pϕω
)ω∈Ω and the surjective

homomorphism (4.3). We identify OX(E) with g∗(L⊗p) ⊗ OX′(1)∨ and equip it
with the tensor product metric family. Then the section sE is effective. Moreover,
by Proposition 3.23, the adelic line bundle OX′(1) is relatively nef, and the following
inequality holds

µ̂asy
min(OX′(1)) > µ̂min(V )− 3

2
ν(Ω∞) ln(dimK(V )) > pt,

as required.
�

Remark 4.17. Let L be an adelic line bundle on X such that L is big. Let B be
a relatively ample adelic line bundle. There exists a positive integer N such that
L⊗m ⊗B∨ is big for any m ∈ N>N . Let t be a real number such that t < µ̂asy

max(L).
There exists m ∈ N>N such that

mt− µ̂asy
min(B) < (m−N) µ̂asy

max(L) + µ̂asy
max(L

⊗N ⊗B∨) 6 µ̂asy
max(L

⊗m ⊗B∨),

where the second inequality comes from If we apply Theorem 4.16 to L
⊗m ⊗ B∨,

we obtain the existence of a positive integer p, a birational projective K-morphism
g : X ′ → X, a relatively nef adelic line bundle A and an effective adelic line bundle
M on X ′ such that A is big, g∗(L

⊗mp ⊗B∨⊗p) is isomorphic to A⊗M and

µ̂asy
min(A) > p(mt− µ̂asy

min(B)). (4.4)

Let N = A⊗ g∗(B)⊗p. This is a relatively ample line bundle, and one has

N ⊗M ∼= A⊗M ⊗ g∗(B)⊗p ∼= g∗(L
⊗mp

).

Moreover, one has

µ̂asy
min(N) > µ̂asy

min(A) + p µ̂asy
min(g∗(B)) > µ̂asy

min(A) + p µ̂asy
min(B),

where the first inequality comes from Proposition 3.14, and the second comes from
Theorem 3.25. By (4.4), we obtain

µ̂asy
min(N) > pmt.

Therefore, in Theorem 4.16, the adelic line bundle A can be taken to be relatively
ample.

4.5. Lower bound of intersection product.

Theorem 4.18. Let X be an integral projective K-scheme, and L0, . . . , Ld be adelic
line bundles on X. For any i ∈ {0, . . . , d}, let

δi = (L0 · · ·Li−1Li+1 · · ·Ld).
Suppose that

(1) L1, . . . , Ld are relatively nef and L0 is pseudo-effective.
(2) if δ0 = 0, then µ̂asy

max(L0) > −∞,
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(3) for any i ∈ {1, . . . , d}, if δi = 0, then µ̂asy
min(Li) > −∞.

Then the following inequality holds:

(L0 · · ·Ld)S > δ0 µ̂asy
max(L0) +

d∑
i=1

δi µ̂
asy
min(Li). (4.5)

Proof. If the set
{µ̂asy

max(L0), µ̂asy
min(L1), . . . , µ̂asy

min(Ld)}
contains −∞, then the inequality (4.5) is trivial. So we may assume without loss
of generality that

{µ̂asy
max(L0), µ̂asy

min(L1), . . . , µ̂asy
min(Ld)} ⊆ R.

Let M be an adelic line bundle on X such that M is big. For any n ∈ N>1, let

L0,n = L
⊗n
0 ⊗M.

For any i ∈ {1, . . . , n}, let

δ′i = (ML1 · · ·Li−1Li+1 · · ·Ld)
δi,n = (L0,nL1 · · ·Li−1Li+1 · · ·Ld) = nδi + δ′i,n.

By Theorem 4.16 (see also Remark 4.17), for any real number t < µ̂asy
max(L0,n),

there exists a positive integer p, a birational projective morphism g : X ′ → X, a
relatively ample adelic line bundle A and an effective adelic line bundle E on X ′

such that
g∗(L

⊗p
0,n) = A⊗ E, µ̂asy

min(A) > pt.

By Theorem 3.25 for any i ∈ {1, . . . , d}, one has

µ̂asy
min(g∗(Li)) > µ̂

asy
min(Li).

Therefore, by Proposition 3.22 and Proposition 3.18, we obtain

(E · g∗(L1) · · · g∗(Ld))S >
d∑
i=1

(E · L1 · · ·Li−1 · Li · · ·Ld) µ̂asy
min(Li),

(A · g∗(L1) · · · g∗(Ld))S > δ0 µ̂asy
min(A) +

d∑
i=1

(A · L1 · · ·Li−1 · Li · · ·Ld) µ̂asy
min(Li).

Taking the sum, we obtain

(L
⊗p
0,n · L1 · · ·Ld)S > δ0 µ̂asy

min(A) +

d∑
i=1

pδi,n µ̂
asy
min(Li) > δ0pt+

d∑
i=1

pδi,n µ̂
asy
min(Li).

Since t is arbitrary, we deduce

(L
⊗p
0,n · L1 · · ·Ld)S > δ0 µ̂asy

max(L0,n) +

d∑
i=1

δi,n µ̂
asy
min(Li).

Dividing the two sides by n and then taking the limit when n→ +∞, we obtain

(L0 · · ·Ld)S > δ0 µ̂asy
max(L0) +

d∑
i=1

δi µ̂
asy
min(Li).

�
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4.6. Convergence of the first minimum. In this section, we let f : X → SpecK
be an integral projective scheme over SpecK.

Definition 4.19. Let E = (E, (‖.‖ω)ω∈Ω) be an adelic vector bundle on S. For
any non-zero element s in E, let

d̂eg(s) := −
∫

Ω

ln ‖s‖ω ν(dω).

If E is non zero, we define

λmax(E) := sup
s∈E\{0}

d̂eg(s).

Clearly one has
λmax(E) 6 µ̂max(E). (4.6)

Proposition 4.20. Let L = (L,ϕ) and M = (M,ψ) be adelic line bundles on X
such that both H0(X,L) and H0(X,M) are non-zero. Then the following inequality
holds:

λmax(f∗(L⊗M)) > λmax(f∗(L)) + λmax(f∗(M)).

Proof. Let s and t be respectively non-zero elements of H0(X,L) and H0(X,M).
For any ω ∈ Ω, one has

‖st‖ϕω+ψω
6 ‖s‖ϕω

· ‖t‖ψω
,

which leads to

λmax(f∗(L⊗M)) > d̂eg(st) > d̂eg(s) + d̂eg(t).

Taking the supremum with respect to s and t, we obtain the required inequality. �

Let L be an adelic line bundle on X such that L is big. Similarly to Corollary
4.2, the sequence

1

n
λmax(f∗(L

⊗n
)), n ∈ N>1

converges to a real number, which we denote by λasy
max(L) and called the asymptotic

first minimum of L. By definition, for any p ∈ N>1 one has

λasy
max(L

⊗p
) = pλasy

max(L).

Proposition 4.20 also implies that, if L and M are adelic line bundles on X such
that both L and M are big, one has

λasy
max(L⊗M) > λasy

max(L) + λasy
max(M). (4.7)

Similarly to Proposition 4.5, this inequality allows to extend continuously the func-
tion λasy

max(.) to the cone of adelic line bundles L such that L is pseudo-effective: if
L is an adelic line bundle on X such that L is pseudo-effective, then, for any adelic
line bundle A on X, the sequence

1

n
λasy

max(L
⊗n ⊗A), n ∈ N>1 (4.8)

converges in R ∪ {−∞} and its limit does not depend on the choice of A. For the
proof of this statement one can following the strategy of the proof of Proposition
3.11 in using the inequality 4.7 and the fact that, if A is a big line bundle and B
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is a line bundle on X, then there exists a positive integer p such that B∨ ⊗A⊗p is
big. We denote the limit of the sequence (4.8) by λasy

max(L). By (4.6) we obtain that

λasy
max(L) 6 µ̂asy

max(L) (4.9)

for any adelic line bundle L such that L is pseudo-effective.

4.7. Height inequalities.

Proposition 4.21. Let f : X → SpecK be an integral projective scheme over
SpecK and L be an adelic line bundle on X which is relatively nef and such that
(Ld) > 0. Then the following inequality holds:

µ̂asy(L) =
(L

d+1
)S

(d+ 1)(Ld)
6 µ̂asy

max(L). (4.10)

Proof. We first consider the case where L is relatively ample. As in the proof of
Proposition 3.26, one has

(L
d+1

)S
(d+ 1)(Ld)

= lim
n→+∞

µ̂(f∗(L
⊗n

))

n
6 lim
n→+∞

µ̂max(f∗(L
⊗n

))

n
= µ̂asy

max(L).

We now consider the general case. Let A be a relatively ample adelic line bundle
on X such that L

⊗n⊗A is relatively ample for sufficiently large positive integer n.
For any n ∈ N>1, let Ln = L

⊗n⊗A. The particular case of the proposition proved
above shows that

(L
d+1

n )S
(d+ 1)(Ldn)

6 µ̂asy
max(Ln)

if n is sufficiently large. Taking the limit when n→ +∞, by the relations

lim
n→+∞

(L
d+1

n )S
nd+1

= (L
d+1

)S , lim
n→+∞

(Ldn)

nd
= (Ld)

and Proposition 4.5 we obtain the desired result. �

Remark 4.22. Combining Propositions 4.21 and 3.26, we obtain that, if L is rela-
tively nef and if (Ld) > 0, then the inequality µ̂asy

min(L) 6 µ̂asy
max(L). This inequality

also holds for relatively nef adelic line bundle L with (Ld) = 0. It suffices to choose
an auxiliary relatively ample adelic line bundle M and deduce the inequality from

1

n
µ̂asy

min(L
⊗n ⊗M) 6

1

n
µ̂asy

max(L
⊗n ⊗M)

by taking the limit when n→ +∞.

Theorem 4.23. Let X be a non-empty and reduced projective K-scheme and ΘX

be the set of all integral closed subschemes of X. Let L = (L,ϕ) be a relatively
ample adelic line bundle on X. Then the following equality holds:

µ̂asy
min(L) = inf

Y ∈ΘX

µ̂asy
max(L|Y ) = inf

Y ∈ΘX

hL(Y )

(dim(Y ) + 1) degL(Y )
. (4.11)

Proof. For any Y ∈ ΘX and any n ∈ N, let VY,n(L) be the image of the restriction
map

H0(X,L⊗n) −→ H0(Y,L|⊗nY ).

We equip VY,n(L) with the quotient norm family ξYn induced by ξnϕ = (‖.‖nϕω
)ω∈Ω

to obtain adelic vector bundle on S.
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Claim 4.24. For any Y ∈ ΘX , the following equality holds

lim
n→+∞

µ̂max(VY,n(L), ξYn )

n
= µ̂asy

max(L|Y ).

Proof. Since L is ample, there exists N ∈ N>1 such that, for any n ∈ N>N , the
following conditions hold:

(a) L⊗n is generated by global sections, and the canonical K-morphism

jn : X −→ P(H0(X,L⊗n))

is a closed embedding,
(b) one has VY,n(L) = H0(Y,L|⊗nY ).

For any n ∈ N>N , we denote by ψn the metric family on L such that nψn coincides
with the quotient metric family induced by ξnϕ. Similarly, we denote by ψYn the
metric family on L|Y such that nψYn coincides with the quotient metric family
induced by ξYn . By definition, ψYn identifies with the restriction of ψn to L|Y .
Moreover, we denote by ϕY the restriction of the metric family ϕ to L|Y . By [10,
Proposition 2.2.22], for any ω ∈ Ω, one has ψYn,ω > ϕYω , and

ξYn = (‖.‖nψY
n,ω

)ω∈Ω.

Since ϕ is semi-positive, for any ω ∈ Ω, one has

lim
n→+∞

dω(ψYn , ϕ
Y ) = 0.

Denote by ξnϕY the norm family (‖.‖nϕY
ω

)ω∈Ω. Since

dω(ξYn , ξnϕY ) 6 dω(nψYn , nϕ
Y ) = ndω(ψYn , ϕ

Y ),

we obtain
lim

n→+∞

1

n
dω(ξYn , ξnϕY ) = 0. (4.12)

By [10, Proposition 2.2.22 (5)], the function

(ω ∈ Ω) 7−→ dω(ξYn , ξnϕY )

is dominated. Therefore, by Lebesgue’s dominated convergence theorem we obtain

lim
n→+∞

1

n
d(ξYn , ξnϕY ) = lim

n→+∞

1

n

∫
ω∈Ω

dω(ξYn , ξnϕY ) ν(dω). (4.13)

Finally, by [10, Proposition 4.3.31], one has∣∣∣∣ µ̂max(VY,n(L), ξYn )

n
−
µ̂max(VY,n(L), ξnϕY )

n

∣∣∣∣ 6 1

n
d(ξYn , ξnϕY ).

Passing to limit when n→ +∞, we obtain the desired equality. �

Combining Claim 4.24 with [10, Theorem 7.2.4], we obtain

µ̂asy
min(L) > inf

Y ∈ΘX

µ̂asy
max(L|Y ).

By Proposition 4.21, for any Y ∈ ΘX , one has
hL(Y )

(dim(Y ) + 1) degL(Y )
6 µ̂asy

max(L|Y ).

Finally, by Corollary 3.27, for any Y ∈ ΘX , one has
hL(Y )

(dim(Y ) + 1) degL(Y )
> µ̂asy

min(L).
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Thus (4.11) is proved.
�

Corollary 4.25. Let X be an integral projective K-scheme and ΘX be the set of
all integral closed subschemes of X. Let L = (L,ϕ) be a relatively ample adelic line
bundle on X. Then the following inequality holds:

(L
(d+1)

)S
(d+ 1)(Ld)

>
1

d+ 1
λasy

max(L) +
d

d+ 1
inf

Y ∈ΘX\{X}
µ̂asy

max(L|Y ). (4.14)

In particular, if

λasy
max(L) >

(L
(d+1)

)

(d+ 1)(Ld)
,

then the inequality
(L

(d+1)
)S

(d+ 1)(Ld)
> inf
Y ∈ΘX\{X}

µ̂asy
max(L|Y ) (4.15)

holds.

Proof. The case where d = 0 is trivial. In the following, we suppose that d > 1. By
replacing L by a tensor power, we may assume that

V•(L) =
⊕
n∈N

H0(X,L⊗n)

is generated asK-algebra by V1(L). For any n ∈ N, we let h0(L⊗n) be the dimension
of H0(X,L⊗n) over K. Let s be a non-zero global section of L and I• be the
homogeneous ideal of V•(L) generated by s. Then one can find a sequence

I• = I0,• ( I1,• ( . . . ( Ir,• = V•(L)

of homogeneous ideals of R• and non-zero homogeneous prime ideals Pi,•, i ∈
{1, . . . , r}, of V•(L) such that

∀ i ∈ {1, . . . , r}, Pi,• · Ii,• ⊂ Ii−1,•.

We denote by Yi the integral closed subscheme of X defined by the homogeneous
ideal Pi,•.

Consider the following sequence

V0(L)
·s−→ I0,1 ↪→ · · · ↪→ Ii,1 ↪→ · · · ↪→ Ir,1 = V1(L)
...

...
...

...
...

...
·s−→ I0,j ↪→ · · · ↪→ Ii,j ↪→ · · · ↪→ Ir,j = Vj(L)
·s−→ I0,j+1 ↪→ · · · ↪→ Ii,j+1 ↪→ · · · ↪→ Ir,j+1 = Vj+1(L)
...

...
...

...
...

...
·s−→ I0,n ↪→ · · · ↪→ Ii,n ↪→ · · · ↪→ Ir,n = Vn(L)

By [10, Proposition 4.3.13], one has

d̂eg(f∗(L
⊗n

)) >
n∑
j=1

r∑
i=1

d̂eg(Ii,j/Ii−1,j) + d̂eg(s)

n−1∑
k=0

h0(L⊗k). (4.16)

By [10, Proposition 7.1.6] and (4.13), one has

lim inf
m→+∞

µ̂min(Ii,m/Ii−1,m)

m
> µ̂asy

min(L|Yi
). (4.17)
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Moreover, by the asymptotic Riemann-Roch formula, one has

h0(L⊗k) =
(Ld)

d!
kd +O(kd−1),

which leads to

lim
n→+∞

1

nh0(L⊗n)

n−1∑
j=0

h0(L⊗j) =
1

d+ 1
.

For any integers n and m such that 1 6 m 6 n, we deduce from (4.16) that

d̂eg(f∗(L
⊗n

)) >
m∑
j=1

r∑
i=1

d̂eg(Ii,j/Ii−1,j)

+ min
i∈{1,...,r}

inf
`∈N>m

µ̂min(Ii,`/Ii−1,`)

`

n∑
j=m+1

j(h0(L⊗j)− h0(L⊗(j−1)))

+ d̂eg(s)

n−1∑
k=0

h0(L⊗k).

Dividing the two sides by nh0(L⊗n) and taking the limit when n→ +∞, we obtain

(L
(d+1)

)S
(d+ 1)(Ld)

>
d

d+ 1
min

i∈{1,...,r}
inf

`∈N>m

µ̂min(Ii,`/Ii−1,`)

`
+

1

d+ 1
d̂eg(s).

Since m is arbitrary, taking the limit when m→ +∞, by (4.17) we obtain

(L
(d+1)

)S
(d+ 1)(Ld)

>
d

d+ 1
min

i∈{1,...,r}
µ̂asy

min(L|Yi
) +

1

d+ 1
d̂eg(s).

By Theorem 4.23, for any i ∈ {1, . . . , r}, one has

µ̂asy
min(L|Yi) = inf

Z∈ΘYi

µ̂asy
max(L|Z) > inf

Z∈ΘX\{X}
µ̂asy

max(L|Z).

Since s is arbitrary, we obtain

(L
(d+1)

)S
(d+ 1)(Ld)

>
1

d+ 1
λ̂max(f∗(L)) +

d

d+ 1
inf

Y ∈ΘX
Y 6=X

µ̂asy
max(L|Y ).

Finally, replacing L by L
⊗p

for p ∈ N>1, we obtain

(L
(d+1)

)S
(d+ 1)(Ld)

>
1

p(d+ 1)
λ̂max(f∗(L

⊗p
)) +

d

d+ 1
inf

Y ∈ΘX
Y 6=X

µ̂asy
max(L|Y ).

Taking the limite when p→ +∞, we obtain the inequality (4.14). �

Proposition 4.26. Let X be an integral projective scheme over SpecK and L be
an adelic line bundle on X such that L is big. Then the following inequality holds:

µ̂asy
max(L) 6 sup

Y ∈ΘX
Y 6=X

inf
x∈(X\Y )(0)

hL(x)

[K(x) : K]
,

where (X \ Y )(0) denotes the set of closed points of X \ Y .

Proof. See [10, Proposition 6.4.4]. �
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4.8. Minkowskian adelic line bundles.

Definition 4.27. Let X be a reduced projective K-scheme and L be an adelic line
bundle on X. We say that L is Minkowskian if the inequality below holds:

λasy
max(L) > µ̂asy(L) =

hL(X)

(dim(X) + 1) degL(X)
.

Moreover, L is said to be strongly Minkowskian if for any integral closed sub-scheme
Y ofX, one has L|Y is Minkowskian. Note that the strongly Minkowskian condition
is satisfied in the following cases:

(1) S is the adelic curve associated with a number field, and the metrics of L
over non-Archimedean places are almost everywhere induced by a common
integral model defined over the ring of algebraic integers in the number
field;

(2) S is the adelic curve associated with a regular projective curve over a field,
and the metrics of L are induced by an integral model of L over the base
curve;

(3) S is the adelic curve of a single copy of the trivial absolute value.
The case (1) comes from the classic Minkowski theory of Euclidean lattices. The
case (2) is a consequence of Riemann-Roch theorem on curves. The case (3) follows
from [10, Remark 4.3.63].

Corollary 4.28. Let X be an integral projective K-scheme and L be a relatively
ample adelic line bundle on X. Assume that L is strongly Minkowskian. Then the
following inequality holds:

(L
(d+1)

)S
(d+ 1)(Ld)

> inf
x∈X(0)

hL(x), (4.18)

where X(0) denotes the set of closed points of X. Moreover, one has

µ̂asy
min(L) = inf

x∈X(0)

hL(x)

[K(x) : K]
. (4.19)

Proof. We reason by induction on the dimension d of X. The case where d = 0 is
trivial. Assume that d > 1 and that the result is true for any integral projective
K-scheme of dimension < d. By Corollary 4.25 one has

(L
(d+1)

)S
(d+ 1)(Ld)

> inf
Y ∈ΘX\{X}

µ̂asy
max(L|Y ) > inf

Y ∈ΘX\{X}

hL(Y )

(dim(Y ) + 1) degL(Y )
,

where the second inequality comes from Proposition 4.21. For any Y ∈ ΘX such
that Y 6= X, one has dim(Y ) 6 1. Hence the induction hypothesis leads to

hL(Y )

(dim(Y ) + 1) degL(Y )
> inf
x∈Y (0)

hL(x)

[K(x) : K]
> inf
x∈X(0)

hL(x)

[K(x) : K]
. (4.20)

The inequality (4.18) is thus proved.
By Corollary 3.27, the inequality

µ̂asy
min(L) 6 inf

x∈X(0)

hL(x)

[K(x) : K]
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holds. Conversely, by Theorem 4.23 and the inequality (4.20), one has

µ̂asy
min(L) = inf

Y ∈ΘX

hL(Y )

(dim(Y ) + 1) degL(Y )

> inf
Y ∈ΘX

inf
x∈Y (0)

hL(x)

[K(x) : K]
= inf
x∈X(0)

hL(x)

[K(x) : K]
.

�

Lemma 4.29. Let π : X → Y be a generically finite and surjective morphism
of d-dimensional projective integral schemes over K. Let M be a relatively ample
adelic line bundle on Y . Then we have the following:

(1) µ̂asy(π∗(M)) = µ̂asy(M).
(2) λasy

max(π∗(M)) > λasy
max(M).

(3) If M is Minkowskian, then π∗(M) is also Minkowskian.

Proof. (1) By the Hilbert-Samual formula,

µ̂asy(M) =
(M

d+1
)S

(Md)(dimY + 1)
and µ̂asy(π∗(M)) =

(π∗(M)d+1)S
(π∗(M)d)(dimX + 1)

,

and hence the assertion follows because

(π∗(M)d+1)S = (deg π)(M
d+1

)S and (π∗(M)d) = (deg π)(Md).

(2) is obvious because d̂eg(s) = d̂eg(π∗(s)) for s ∈ H0(Y,M) \ {0}. Moreover,
(3) is a consequence (1) and (2). �

Proposition 4.30. Let π : X → Y be a finite morphism of projective integral
schemes over K. Let M be an adelic line bundle on Y such that M is ample and
M is semi-positive. If M is strongly Minkowskian, then π∗(M) is also strongly
Minkowskian.

Proof. Let Z be a subvariety of X. Then π|Z : Z → π(Z) is a finite and sur-
jective morphism, and hence, by Lemma 4.29, π∗(M)

∣∣
Z

= (π|Z)∗(M
∣∣
π(Z)

) is
Minkowskian, as required. �

Remark 4.31. Let L be a very ample line bundle on X. Then there exist a finite
and surjective morphism π : X → PdK such that π∗(OPd

K
(1)) ' L. It is not dif-

ficult to give a semipositive metric family ψ on OPd
K

(1) such that (OPd
K

(1), ψ) is
Minkowskian, so that, by Lemma 4.29, (L, π∗(ψ)) is Minkowskian.

4.9. Successive minima. Let X be a reduce projective scheme over SpecK and
L be a relatively ample adelic line bundle on X. For any i ∈ {1, . . . , d+ 1}, let

ei(L) = sup
Y ⊆ X closed
codim(Y )>i

inf
Z ∈ ΘX
Z 6⊆ Y

µ̂asy
max(L|Z).

By definition, the following inequalities hold:

e1(L) > . . . > ed+1(L).

Moreover, by Theorem 4.23, one has

ed+1(L) = µ̂asy
min(L).
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Proposition 4.32. Assume that the scheme X is integral. For any relatively ample
adelic line bundle L on X, the equality e1(L) = µ̂asy

max(L) holds.

Proof. If Y is a closed subscheme of codimension 1 of X, then X 6⊆ Y . Therefore,
the inequality e1(L) 6 µ̂asy

max(L) holds. In the following, we show the converse
inequality. Let t be a real number such that t > e1(L). By definition, there exists
a family (Zi)i∈I of integral closed subschemes of Y such that µ̂asy

max(L|Zi
) 6 t for

any i ∈ I and that the generic points of Zi form a Zariski dense family in X.
Let m be a positive integer and Em be a vector subspace of H0(X,L⊗m) such

that
µ̂min(Em) = µ̂max(f∗(L

⊗m
)). (4.21)

For any positive integer n, let Fm,n be the image of E⊗nm by the multiplication map

H0(X,L⊗m)⊗n −→ H0(X,L⊗mn).

By [10, Proposition 4.3.31 and Corollary 5.6.2] (see also [12, Remark C.3]), one has

µ̂min(Fm,n) > n
(
µ̂min(Em)− 3

2
ν(Ω∞) ln(dimK(Em))

)
. (4.22)

Moreover, there exists i ∈ I such that the generic point of Zi does not belong to
the base locus of Em (namely the closed subscheme of X defined by the ideal sheaf
Im(Em ⊗ L∨⊗m → OX)). Therefore the image of Fm,n by the restriction map

H0(X,L⊗mn) −→ H0(Zi, L
⊗mn|Zi

)

is non-zero. By [10, Proposition 4.3.31], one has

µ̂min(Fm,n) 6 µ̂max((f |Zi
)∗(L|⊗mnZi

)).

Combining this inequality with (4.21) and (4.22), we obtain
1

m
µ̂max(f∗(L

⊗m
)) 6

1

mn
µ̂max((f |Zi)∗(L|⊗mnZi

)) +
3

2m
ν(Ω∞) ln(dimK(Em)).

Taking the limit when n→ +∞, we obtain
1

m
µ̂max(f∗(L

⊗m
)) 6 t+

3

2m
ν(Ω∞) ln(dimK(Em)).

Taking the limit when m → +∞, we obtain µ̂asy
max(L) 6 t. Since t > e1(L) is

arbitrary, we get µ̂asy
max(L) 6 e1(L), as required. �

Remark 4.33. Let L be a relatively ample adelic line bundle on X. For any t ∈ R
and any positive integer n, we let V tn(L) be the vector subspace of H0(X,L⊗n)
generated by non-zero vector subspaces of minimal slope > nt and rn(t) be the
dimension of the base locus of V tn(L). For t ∈ R, let

r(t) = lim inf
n→+∞

rn(t).

By using the method used in the proof of Proposition 4.32, we can show that, for
any i ∈ {1, . . . , d+ 1}

sup{t ∈ R | r(t) 6 i} 6 ei(L).

It is a natural question to ask if the equality holds. Moreover, we expect that the
following inequality is true:

(d+ 1)µ̂asy(L) >
d+1∑
i=1

ei(L). (4.23)
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For any i ∈ {1, . . . , d+ 1}, one has

ei(L) = sup
Y ⊆ X closed
codim(Y )>i

inf
Z ∈ ΘX
Z 6⊆ Y

µ̂asy
max(L|Z) 6 sup

Y ⊆ X closed
codim(Y )>i

inf
x∈(X\Y )(0)

hL(x),

where (X \ Y )(0) denotes the set of closed points of X outside of Y . In the case
where S is the adelic curve consisting of places of a number field, by [1, Theorem
1.5], for any integral closed subscheme Z of X, one has

µ̂asy
max(L|Z) = sup

W∈ΘZ
W 6=Z

inf
x∈(Z\W )(0)

hL(x).

If Z is not contained in Y , then

µ̂asy
max(L|Z) > inf

x∈(Z\Y )(0)
hL(x) > inf

x∈(X\Y )(0)
hL(x).

Therefore, in this case ei(L) identifies with the i-th minimum of the height function
hL in the sense of Zhang. In particular, the inequality follows from [22, Theorem
5.2].
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5. Positivity conditions for adelic line bundles

Let K be a perfect field and S = (K, (Ω,A, ν), φ) be a proper adelic curve whose
underlying field is K. We assume that, either the field K is countable, or the σ-
algebra A is discrete. We also assume that ν(A) 6⊆ {0,∞}, and hence there exists
an integrable function ϑ on Ω such that∫

Ω

ϑ(ω) ν(dω) > 0.

5.1. Ampleness and nefness. In this subsection, we let X be a non-empty and
reduced projective scheme over SpecK, and let d be the dimension of X.

Definition 5.1. We say that an adelic line bundle L on X is ample if it is relatively
ample and if there exists ε > 0 such that the inequality

hL(Y ) > εdegL(Y )(dim(Y ) + 1)

holds for any integral closed subscheme Y of X.

Proposition 5.2. Let L be an adelic line bundle which is relatively ample. Then
the following statements are equivalent:

(1) L is ample,
(2) µ̂asy

min(L) > 0,
(3) there exists ε > 0 such that, for any integral closed subscheme Y of X, one

has µ̂asy
max(L|Y ) > ε.

Proof. This is a consequence of Theorem 4.23. �

Proposition 5.3. If L0, . . . , Ld are ample adelic line bundles on X, then the in-
equality

(L0 · · ·Ld)S > 0

holds.

Proof. This is a consequence of Theorem 3.10 and Proposition 5.2. �

Proposition 5.4. Let L be an adelic line bundle which is relatively ample and
strongly Minkowskian. Then the following conditions are equivalent:

(1) L is ample,
(2) there exists ε > 0 such that, for any closed point x of X, one has hL(x) > ε.

Proof. This is a consequence of Corollary 4.28. �

Definition 5.5. We say that an adelic line bundle L on X is nef if there exists an
ample adelic line bundle A and a positive integer N such that L

⊗n ⊗ A is ample
for any n ∈ N>N .

Proposition 5.6. Let L be an adelic line bundle on X. The following conditions
are equivalent:

(1) L is nef,
(2) L is relatively nef and µ̂asy

min(L) > 0.
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Proof. Assume that L is nef. By definition, it is relatively nef. Let A be an ample
adelic line bundle and N be a positive integer such that L

⊗n ⊗A is ample for any
n ∈ N>N . Then one has µ̂asy

min(L
⊗n ⊗A) > 0, which leads to

µ̂asy
min(L) = lim

n→+∞

1

n
µ̂asy

min(L
⊗n ⊗A) > 0.

Conversely, we assume that L is relatively nef and µ̂asy
min(L) > 0. Since L is

relatively nef, there exists a relatively ample line bundle A and a positive integer
N such that L

⊗n⊗A is relatively ample for any n ∈ N>N . By dilating the metrics
of A, we may assume that µ̂asy

min(L) > 0. Then, by Proposition 3.14 we obtain that

∀n ∈ N>N , µ̂asy
min(L

⊗n ⊗A) > n µ̂asy
min(L) + µ̂asy

min(A) > µ̂asy
min(A) > 0.

Therefore L
⊗n ⊗A is ample. �

Proposition 5.7. (1) If L0, . . . , Ld are nef adelic line bundles on X, then the
inequality (L0 · · ·Ld)S > 0 holds.

(2) If L is a nef adelic line bundle on X and if g : Y → X is a projective
K-morphism, then the pullback g∗(L) is nef.

(3) If L is a nef adelic line bundle on X, for any integral closed subscheme Y
of X, one has hL(Y ) > 0.

(4) If L is a relatively ample adelic line bundle on X such that hL(Y ) > 0 for
any integral closed subscheme Y of X, then L is nef.

(5) If L is a relatively ample adelic line bundle on X such that µ̂asy
max(L|Y ) > 0

for any integral closed subscheme Y of X, then L is nef.

Proof. The first statement is a consequence of Proposition 3.18 and Proposition 5.6.
The second statement follows from Lemma 3.19, Theorem 3.25 and Proposition 5.6.
The third statement is a consequence of the first and the second ones. The last two
statements are consequences of Theorem 4.23 and Proposition 5.6. �

5.2. Bigness and pseudo-effectivity. In this subsection, we let X be an integral
projective K-scheme f : X → SpecK and let d be its dimension.

Definition 5.8. Let L be an adelic line bundle on X. We define the arithmetic
volume of L as

v̂ol(L) := lim sup
n→+∞

d̂eg+(f∗(L
⊗n

))

nd+1/(d+ 1)!
.

If v̂ol(L) > 0, we say that L is big. It has been shown in [10, Proposition 6.4.18]
that L is big if and only if L is big and µ̂asy

max(L) > 0.

Proposition 5.9. An ample adelic line bundle is big.

Proof. Let L be an ample adelic line bundle on X. Then one has µ̂asy
min(L) > 0,

namely for sufficiently large positive integer n one has µ̂min(f∗(L
⊗n

)) > 0. By [10,
Proposition 4.3.13], for such n one has

d̂eg(f∗(L
⊗n

)) = d̂eg+(f∗(L
⊗n

)),

which leads to, by Theorem 3.7,

v̂ol(L) = (L
d+1

)S > 0,

where the inequality comes from Proposition 5.3. Hence L is big. �
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Remark 5.10. We expect that a variant of the method in the proof of Theorem 4.16
leads to an arithmetic version of Fujita’s approximation theorem for big adelic line
bundles, which generalizes the results of [8, 20].

Proposition 5.11. Let L0, . . . , Ld be adelic line bundles on X. Assume that L0 is
big and L1, . . . , Ld are ample, then

(L0 · · ·Ld)S > 0.

Proof. This is a consequence of Theorem 4.18. �

Definition 5.12. Let L be an adelic line bundle on X. We say L is pseudo-effective
if there exist a big adelic line bundle M on X and a positive integer n0 such that
L
⊗n ⊗M is big for any n ∈ N>n0 .

Proposition 5.13. Let L be an adelic line bundle on X. The following assertions
are equivalent:

(1) L is pseudo-effective,
(2) L is pseudo-effective and µ̂asy

max(L) > 0.

Proof. Assume that L is pseudo-effective. LetM be a big adelic line bundle and n0

be a positive integer such that L
⊗n⊗M is big for any integer n > n0. In particular,

L⊗n ⊗M is big for any integer n > n0. Hence L is pseudo-effective. Moreover, for
n > n0, one has µ̂asy

max(L
⊗n ⊗M) > 0, which implies that

µ̂asy
max(L) = lim

n→+∞

1

n
µ̂asy

max(L
⊗n ⊗M) > 0.

Conversely, assume that L is pseudo-effective and µ̂asy
max(L) > 0. Let M be a

big adelic line bundle on X. Since L is pseudo-effective, for any positive integer n,
L⊗n ⊗M is big. Moreover, by Proposition 4.7 one has

µ̂asy
max(L

⊗n ⊗M) > n µ̂asy
max(L)⊗ µ̂asy

max(M) > 0.

Hence L
⊗n ⊗M is big for any n ∈ N, which shows that L is pseudo-effective. �

Proposition 5.14. (1) Let L0, . . . , Ld be adelic line bundles on X. Assume
that L0 is pseudo-effective and that L1, . . . , Ld are nef, then the inequality
(L0 · · ·Ld)S > 0 holds.

(2) If L is a pseudo-effective adelic line bundle on X and if g : Y → X is a
surjective and projective morphism, then the pullback g∗(L) is also pseudo-
effective.

(3) If L is nef, then it is pseudo-effective.

Proof. The first statement is a consequence of Theorem 4.18; the second one is a
consequence of Proposition 4.9.

(3) Since L is nef, we obtain that L is nef, and hence is pseudo-effective. Let A
be an ample adelic line bundle. For any positive integer p, by Proposition 4.7 one
has

1

p
µ̂asy

max(L
⊗p ⊗A) > µ̂asy

max(L) +
1

p
µ̂asy

max(A).

Taking the limit when p→ +∞, we obtain µ̂asy
max(L) > 0. By Proposition 5.13, L is

pseudo-effective. �
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