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Abstract: Pickering stabilisation is a manufacturing process
involving the adsorption of colloidal particles at gas—liquid in-
terfaces. It is used to create the shells of stable, long-lived
ultrasound contrast agent microbubbles. The purpose of the
present study is to determine whether high-amplitude soni-
cation influences the integrity of Pickering-stabilised shells.
To this purpose, Pickering-stabilised microbubbles were sub-
jected to high-speed photography at 10 million frames per
second during 1-MHz, 1-MPa sonication. In addition, ra-
dial excursions as a function of time were simulated us-
ing the Rayleigh-Plesset equation for free gas microbubbles
and microbubbles encapsulated by Pickering-stabilised shells
of 7.6-Nm™"' stiffness. The maximum expansions observed
from camera recordings were either agreeing with those com-
puted for Pickering-stabilised microbubbles or corresponding
to greater values. The results indicate that optically identical
microbubbles may undergo shell disruption of different sever-
ity. We conclude that the disruption occurs during sonication
and not prior to it. These findings may aid in the develop-
ment of Pickering-stabilised agents that facilitate ultrasound-
triggered release.

Keywords: Acoustic cavitation, ultrasound contrast agent,
shell stiffness, microbubble oscillation modelling, high-speed
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1 Introduction

Ultrasound contrast agents comprising gas microbubbles sur-
rounded by stabilising elastic or viscoelastic shells are com-
monly used in diagnosis [1, 2]. Their highly nonlinear oscil-
lation behaviour makes them suitable aides for harmonic ul-
trasonic imaging [3]. The dynamics of individual ultrasound
contrast agent microbubbles under sonication has tradition-
ally been studied with high-speed photography setups [4, 5].
The manufacturing process of more stable, very long-lived mi-
crobubbles involves the adsorption of colloidal particles at the
interfaces, a process which is called Pickering stabilisation [6].
This process has been extensively used to stabilise emulsions,
albeit rarely in combination with acoustics [7-9]. Pickering-
stabilised microbubbles and antibubbles have been observed to
generate a harmonic acoustic response, even at modest trans-
mission amplitudes [10]. Therefore, Pickering-stabilised ultra-
sound contrast agents may be of interest in contrast-enhanced
ultrasonic imaging [10, 11]. In a previous study, we deter-
mined the shell stiffness of Pickering-stabilised microbubbles
from oscillation excursion data using low-amplitude sonica-
tion [11]. The stiffness was found to be 7.6 Nm~! [11]. The
purpose of the present study is to determine whether high-
amplitude sonication influences the integrity of the Pickering-
stabilised shell.

2 Materials and methods

Pickering-stabilised microbubbles were produced with
Aerosil® R972 hydrophobised silica particles (Evonik In-
dustries AG, Essen, Germany) as a stabilising agent, identical
to the procedure in our previous studies [10, 11]. A 0.2-ml
volume of microbubble suspension was pipetted into the ob-
servation chamber of a high-speed observation system, which
was placed under an Eclipse Ti inverted microscope (Nikon
Corporation, Minato-ku, Tokyo, Japan) with a Plan Apo LWD
40x WI (N.A. 0.8) objective lens. The microscope was cou-
pled to an HPV-X2 high-speed camera (Shimadzu, Nakagyo-
ku, Kyoto, Japan), operating at a recording speed of 10 million
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Fig. 1: Radius measured as a function of time for a Pickering-
stabilised microbubble (o), simulated R(t) curves of a free (—)
and a shell-stabilised (—) microbubble of Ry=4.8 um, and inlays
extracted from high-speed video footage. Each inlay corresponds
to a 22-um diameter.

frames per second with exposure times of 100ns per frame.
High-speed videos were recorded during sonication. A burst
comprised a 3-cycle sine pulse with a centre frequency of
1 MHz and a peak-negative pressure of 1.0 MPa, which cor-
responds to a high mechanical index of 1.0. The frames were
clipped, segmented, and analysed using MATLAB® (The
MathWorks, Inc., Natick, MA, USA). A total number of one
hundred different microbubbles was included in this study.
In addition, radius as a function of time, R(¢), curves were
computed from the Rayleigh-Plesset equation [12], using the
ode45 differential equation solver of MATLAB®, for free gas
microbubbles and for microbubbles encapsulated by shells
with a 7.6-Nm~! stiffness [11]. The latter can be explained if
shell disruption took place during the first oscillation cycle.

3 Results and discussion

Figure 1 shows the radial dynamics during the first oscillation
cycle of a Pickering-stabilised microbubble of 4.8-ym initial
radius. The measured data correspond to the first cycle of the
simulated R(¢) curve of a microbubble with shell stiffness of
7.6Nm~! and clearly do not correspond to the much greater
expansion of a free microbubble. The microbubble did not ap-
pear to have undergone disruption during its first expansion.
Figure 2 shows the radial dynamics during the first oscillation
cycle of a Pickering-stabilised microbubble of 3.0-pm initial
radius. The measured data correspond to the first cycle of the
simulated R(¢) curve of a free microbubble and clearly do not
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Fig. 2: Radius measured as a function of time for a Pickering-
stabilised microbubble (o), simulated R(t) curves of a free (—)
and a shell-stabilised (—) microbubble of Ry=3.0 um, and inlays
extracted from high-speed video footage. Each inlay corresponds
to a 22-um diameter.

correspond to the almost negligible expansion of a microbub-
ble with shell stiffness 7.6 N m~!. The microbubble whose dy-
namics are shown in Figure 2 did not appear to have undergone
gas release. From this observation, we deduct, that stabilising
particles must have been present on the interface during expan-
sion. From the large expansion, however, we conclude that, if
indeed stabilising particles were present on the interface, these
did not form a uniform stabilising shell.

Figure 3 shows an overview of measured first-cycle os-
cillation amplitudes, Rnax, as a function of initial radius, Ry.
Some 40% of the microbubbles had expanded to excursions
computed for microbubbles with a shell stiffness of 7.6 Nm~".
The remaining microbubbles had expanded to greater excur-
sions, with only three microbubbles reaching free-gas bub-
ble excursions. Microbubbles of the same initial radius were
observed to expand to different maxima. This could indicate
that optically identical microbubbles may have different shell
properties. However, that would also mean that maximum ex-
cursions at lower acoustic amplitudes should be different for
optically identical bubbles, which they are not [11]. A differ-
ent explanation for the observed excursion amplitudes is that
optically identical microbubbles may undergo shell disruption
of different severity. Although disruption prior to sonication
might be possible, we rule it out for an explanation based on
the consistency of excursion observations at low acoustic am-
plitudes [11]. In the absence of other mechanisms observed,
we hold the explanation that the disruption occurs during first
expansion for most plausible.
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Fig. 3: Scatter plot of maximum microbubble expansion measured
as a function of initial radius (o), overlain with simulated Rmax(Ro)
curves of free (—) and Pickering-stabilised (—) microbubbles.

4 Conclusions

In summary, the maximum radial expansions observed were
either agreeing with the maxima predicted by the model of
Pickering-stabilised microbubbles or corresponding to greater
values. These observations support the hypothesis that the
rigidity of Pickering-stabilised shells is affected by sonication.
Nevertheless, gas release from these disrupted microbubbles
was not observed, indicating that the particle structuring re-
mained on the interface during radial oscillation. The results
indicate that optically identical microbubbles may undergo
shell disruption of different severity. We conclude that the dis-
ruption occurs during sonication and not prior to it.

These findings may aid in the development of Pickering-
stabilised agents that facilitate ultrasound-triggered release.
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