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Weighted Residual NMF with Spatial
Regularization for Hyperspectral Unmixing

Taner Ince, Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE

Abstract—This paper proposes a weighted residual nonnegative
matrix factorization (NMF) with spatial regularization to unmix
hyperspectral data. NMF decomposes a matrix into the product
of two nonnegative matrices. However, NMF is known to be
generally sensitive to noise, which makes difficult to retrieve the
global minimum of the underlying objective function. To over-
come this limitation, we include a residual weighting mechanism
in the conventional NMF formulation. This strategy treats each
row of the residual based on the weighting factor. In this manner,
residuals with large values are penalized less and residuals with
small values are penalized more to make NMF based unmixing
problem more robust. Furthermore, we include a weight term in
the form of an ℓ1 norm regularizer to provide spatial information
of the abundance matrix. Experimental results are conducted to
validate the effectiveness of the proposed method.

Index Terms—Hyperspectral unmixing, NMF, sparse unmix-
ing, residual weighting.

I. INTRODUCTION

HYPERSPECTRAL sensors capture the light spectrum
reflected from objects over hundred narrow wavelengths.

The high spectral resolution brought by hyperspectral (HS)
sensors allows the properties of imaged materials to be an-
alyzed with an accuracy unattainable by panchromatic and
multispectral sensors. Therefore, HS imaging is used in many
applicative areas ranging from Earth observation to health sci-
ence. In the specific context of Earth observation, HS imaging
is used mainly to understand the properties of ground materials
and to infer a meaningful description of the observed scene.
One of the main issues raised by HS imaging is the limited
spatial resolution of the images, which leads to the presence
of mixed pixels, i.e., the spectrum measured in each spatial
position is a combination of the spectral signatures associated
with several distinct materials present in the considered. The
objective of spectral unmixing (SU) is to find the pure spectral
signatures representative of these materials (endmembers) and
their related fractions (abundances) in each mixed pixel [1].

SU generally leverages on a prescribed analytic model
describing how the endmember spectral signatures contribute
to the observed pixel spectra. These models can be linear or
nonlinear depending on the light interactions of the materials
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in the scene. While nonlinear mixing models may account
for multiple scattering effects occurring in particular scenarios
[2], the linear mixing model (LMM) is generally considered
as quite reasonable first approximation of the physical pro-
cess underlying the measurements. LMM assumes that the
measured pixel spectra result from weighted linear combina-
tions of the endmember spectra. Based on the LMM, several
classes of unmixing algorithms have been proposed in the
literature. Geometrical approaches recover the endmembers
by identifying the vertices of the simplex formed by the
mixed pixels and abundances are subsequently obtained by
conducting an inversion step [3]–[5]. Sparse regression based
unmixing aims at estimating the abundances using an a priori
available spectral library [6]–[10]. Alternatively, nonnegative
matrix factorization (NMF) [11] embraces a wide class of al-
gorithms that have encountered a certain success in address the
problem of HS unmixing [12]–[14]. This success can be easily
explained by the fact that the generic formulation of NMF is
particularly well suited to conduct an LMM-based unmixing
task. Indeed, NMF decomposes the matrix associated with the
measurements into the product of two nonnegative matrices,
associated with the endmember signatures and abundances in
the context of HS unmixing. However, besides nonnegativity,
the canonical instance of NMF does not impose any additional
constraint on the sought solution. Due to the nonconvexity of
the underlying optimization problem, the retrieved solution is
rarely guaranteed to be a global minimum and the algorithm is
very sensitive to the initialization. Some strategies have been
deployed to stabilize the solution by incorporating additional
constraints imposed to the endmembers, e.g., penalizing the
volume of the simplex they span [12], their variance [15] or
their similarity [16].

Another way to reach a relevant solution consists in regular-
izing the abundance matrix. Most of the approaches advocated
in the literature rely on sparsity-promoting penalizations to
reflect the fact that each pixel is composed of a few endmem-
bers. Various sparsity measures have been considered since
the seminal work of Jia and Qian [13], including the use
of ℓ1-norm [17] or ℓ1/2-norm [18]. To extract the structural
information in HS data, the ℓ1/2-NMF (GLNMF) proposed in
[19] constructs a graph to extract the local information and
ℓ1/2-norm enforces the sparsity of the abundance matrix. It
is also known that pixels within a local region are likely to
share the same set of endmembers. Thus spatial group sparsity
regularized NMF (SGSNMF) is proposed in [20] where local
spatial regions are extracted using superpixel segmentation.
Furthermore, using the piecewise smooth property of abun-
dance map, total variation (TV) regularized reweighted sparse



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, JUNE 2022 2

NMF (TV-RSNMF) is proposed in [21]. Reweighting strategy
enhances the sparsity of the abundance matrix and TV captures
the spatial information of the abundance map. Spectral-spatial
weighted sparse NMF (SSWNMF) [22] includes spatial and
spectral information as a weight term in the ℓ1-NMF frame-
work. Furthermore, robust NMF approaches are developed to
make unmixing robust to outliers [23]. Sparsity regularized
robust NMF (RNMF) [24] solves a sparsity regularized NMF
problem and at the same time eliminates sparse noise by
introducing an additional regularizer in the model. Robust
collaborative NMF (R-CoNMF) [25] exploits the row-sparse
structure of the abundance matrix using a ℓ2,1-mixed norm
regularizer.

In this paper, we capitalize on this latest advances to
define a new NMF-based unmixing algorithm. More precisely,
a weighting term is included into the data fitting term to
make the decomposition more robust in high noise scenarios.
Moreover, a spatial weighting term is incorporated as a reg-
ularization to exploit the smoothness of the abundance maps.
These two simple ingredients are shown to lead to state-of-the
art unmixing results in the considered experimental setups.

The remaining of this letter is organized as follows. Section
II gives a brief background and explains the proposed method.
Experimental results are reported in Section III and Section IV
concludes the paper.

II. WEIGHTED RESIDUAL NMF (WRNMF)

A. Problem formulation

Let Y = [y1, . . . ,yN ] ∈ RL×N denote the matrix com-
posed of N observed pixels spectra in L spectral bands. LMM
states that the observation matrix can be decomposed as Y =
MA+ E where M ∈ RL×K is the matrix containing the K
endmember spectral signatures, A = [a1, . . . ,aN ] ∈ RK×N is
the fractional abundance matrix and E ∈ RL×N accounts for
noise and modeling error. Because of physical considerations,
the entries of these matrices are expected to be nonnegative.
Thus, recovering the endmember and abundance matrices M
and A from the observation matrix Y can be cast as an NMF
problem. This unmixing task consists in solving the following
optimization problem

min
M,A

1

2
∥Y −MA∥2F s.t M ≥ 0, A ≥ 0 (1)

where ≥ stands for an entry-wise inequality.
Several class of algorithms have been proposed to solve

this optimization problem. Most of them consist in updat-
ing the endmember matrix M and the abundance matrix
A iteratively and individually, using conventional first order
descent methods or multiplicative updates [26]. However,
the equation (1) defines a non-convex optimization problem,
which is known to raise several issues to yield physically
interpretable results, in particular the high sensitivity with
respect to noise and to the algorithm initialization. To alleviate,
additional constraints and/or regularizations can be included.
First, in the specific context of HS unmixing, the abundances
are generally accompanied by a sum-to-one constraint to as-
sociate these mixing coefficients with proportions. Moreover,

one can capitalize on the expected spatial homogeneity of
the abundance maps to be estimated. Thus, we propose to
complement the optimization problem (1) with a specific
form of an ℓ1-norm regularization promoting this spatially
homogeneous abundance maps. Besides, to mitigate the impact
of noise, we propose to deploy a reweighting strategy, which
consists in adjusting the data fitting term (also referred to as
the residual) along the algorithm iterations. To summarize, in
this work, the proposed unmixing formulation can be defined
as the optimization problem

min
M,A

1

2
∥W(Y −MA)∥2F + λ∥S⊙A∥1

s.t M ≥ 0, A ≥ 0, 1T
KA = 1T

N (2)

where W ∈ RL×L is a diagonal matrix acting as a weighting
operator, S ∈ RK×N is the spatial weighting matrix and λ is
used to control the spatial regularization of A. The definition
of the weighting matrices will be discussed in paragraph II-C.

B. Optimization problem

Adopting the strategy followed by most of the algorithms
already proposed in the literature, we propose to split the
optimization problem (2) into two subproblems to update
M and A alternately using multiplicative update rules [26].
These two steps are detailed in what follows. Interested
readers are invited to consult the supporting document [27]
for more details.

Updating M – The optimization problem related to the update
of the endmember matrix M is given by

min
M
J (M) ≜

1

2
∥W(Y −MA)∥2F s.t. M ≥ 0.

Following standard derivations similar to those detailed in
[26], the updating rules can be written in a matrix form as

M←M · WTWYAT

WTWMAAT

where the multiplication · and the division should be
understood as entrywise (i.e., component-by-component).

Updating A – Regarding the abundance, the sum-to-one
constraint is implicitly included into the optimization problem
by resorting to the trick proposed in [28]. It consists in
replacing the observation and endmember matrices Y and M
by the extended ones defined as

Ỹ =

[
Y
δ1T

N

]
and M̃ =

[
M
δ1T

K

]
(3)

where δ is used to adjust the importance of the sum-to-one
constraint and 1d ∈ Rd denote a vector composed of 1’s.
Then, the optimization problem becomes

min
A
J (A) ≜

1

2
∥W̃(Ỹ − M̃A)∥2F + λ∥S⊙A∥1 s.t. A ≥ 0

where W̃ is a diagonal matrix whose elements are defined as

w̃ll =

{
wll if l ∈ {1, . . . , L}
β if l = L+ 1.

(4)
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TABLE I
SIMULATED DATA: ASAD AND AMSE AVERAGED OVER 10 MONTE CARLO RUNS.

SNR WRNMF SSWNMF SGSNMF TV-RSNMF RSNMF GLNMF L1/2-NMF VCA-FCLS
aS

A
D

10 0.0999 0.1475 0.5853 0.1081 0.1083 0.1351 0.1360 0.1170
20 0.0406 0.0434 0.1178 0.0429 0.0429 0.0427 0.0432 0.0514
30 0.0072 0.0079 0.0075 0.0079 0.0082 0.0081 0.081 0.0137
40 0.0016 0.0023 0.0028 0.0022 0.0024 0.0024 0.0024 0.0040

aM
SE

10 0.3051 0.3623 0.4565 0.3476 0.3502 0.3561 0.3552 0.3622
20 0.1198 0.1258 0.1377 0.1233 0.1283 0.1239 0.1274 0.1465
30 0.0145 0.0161 0.0146 0.0159 0.0164 0.0163 0.0163 0.0180
40 0.0016 0.0018 0.0024 0.0018 0.0019 0.0019 0.0019 0.0021

where β is a small constant to emphasize the sum-to-one
constraint. The resulting updating rule writes

A← A · M̃TWWT Ỹ

M̃TWWTM̃A+ λS
. (5)

C. Adjusting the weights

This paragraph describes the strategy proposed to adjust
the weighting matrices W and S. Regarding W, its main
objective aims at mitigating the effect of noise whose level
may be different from one band to another. By denoting
R(t) ≜ Y − M(t)A(t) the residual at the tth iteration of
the algorithm detailed in the previous paragraph, the diagonal
entries of W are defined as (for l = 1, . . . , L)

wll = exp

(
− 1

µ
∥R(t)

l,: ∥2
)

(6)

where Rl,: denotes the lth row of R and µ is a constant to
specify the exponential decay of the residual norm. The terms
with high residuals are penalized less and the terms having low
residuals are penalized more. This reweighting strategy allows
the impact of band with high level of noise to be mitigated
during the estimation process.

Besides, at the tth iteration of the algorithm, the element of
the spatial weighting matrix S associated with the abundance
akn of the kth endmember in the nth pixel is adjusted as (for
k = 1, . . . ,K and n = 1, . . . , N )

skn =

 1

|V(n)|
∑

p∈V(n)

a
(t)
kp + ϵ

−1

(7)

where V(n) denotes the set of pixel indices in the spatial
neighborhood of the nth pixel and |V(n)| is its cardinality.
The small constant ϵ aims to avoid numerical instabilities. This
spatial weighting strategy exploits the spatial correlation of the
nearby pixels in a small neighborhood to promote the expected
piecewise smoothness of the abundance maps.

III. EXPERIMENTAL RESULTS

Based on experiments conducted on simulated and real data,
this section compares the performance of the proposed method
with well-known NMF-based unmixing algorithms proposed
in the literature. More precisely, the proposed weighted resid-
ual NMF method (referred to as WRNMF) has been compared
to SSWNMF [22], SGSNMF [20], TV-RSNMF [21], RNMF

[24], ℓ1/2-NMF [18], GLNMF [19] and VCA-FCLS [5]. The
unmixing results are assessed with respect to the abilility of
recovering the endmember spectral signatures and estimating
the abundance maps. The average spectral angle distance
(aSAD) is used to evaluate the similarity of the actual and
estimated endmember signatures as follows

aSAD =
1

K

K∑
k=1

arccos

(
⟨mk, m̂k⟩
∥mk∥∥m̂k∥

)
(8)

where mk and m̂k denote the kth actual and estimated
endmember signatures, respectively. The actual and estimated
abundance maps are estimated with respect to the average
mean-square error (aMSE)

aMSE =
1

N

N∑
n=1

∥an − ân∥2 (9)

where an and ân are the actual and estimated abundance
vectors associated with the nth pixel, respectively. Note
that complementary results are reported in the supporting
document [27].

Simulated data – To generate synthetic HS images, K = 9
endmembers are mixed according to the LMM. More pre-
cisely, these endmembers are randomly selected from the
digital spectral library (splib06) [29] provided by the U.S.
Geological Survey (USGS). This library contains spectrum
of 498 materials in L = 224 bands ranging from 0.4 to
2.5µm. Abundance maps are randomly generated with smooth
and piecewise smooth regions to mimic the expected spatial
diversity of the HS scenes. The resulting 100×100 HS images
(N = 104) are corrupted by an additive centered and white
Gaussian noise whose variance is adjusted to reach SNR
levels in the set {10dB, 20dB, 30dB, 40dB}. For the proposed
WRNMF algorithm, the parameters in (4) and (6) have been
empirically set to β = 0.5 and µ = 20 to reach good results. A
spatial neighborhood V(·) in (7) of size 3×3 has been chosen.
For all algorithms adopting the strategy in (3) to enforce the
sum-to-one constraint, in particular FCLS and WRNMF, we
set δ = 15.

Table I report the aSAD and aMSE of all algorithms.
These results have been averaged over 10 Monte Carlo
runs for each noise level and obtained by adjusting the
regularization parameters of each algorithm to reach the
best performance. We can see that WRNMF performs better
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Fig. 1. Simulated data (SNR= 20dB): estimated abundance maps for endmember #9.

TABLE II
REAL URBAN DATA SET: SAD AVERAGED OVER 10 MONTE CARLO RUNS.

Material WRNMF SSWNMF SGSNMF TV-RSNMF RSNMF GLNMF L1/2-NMF VCA-FCLS
Asphalt 0.0803 0.0821 0.0415 0.0790 0.1520 0.1515 0.1510 0.0943
Grass 0.0689 0.1002 0.1621 0.0972 0.1037 0.1032 0.1029 0.0989
Tree 0.0885 0.0769 0.0629 0.0615 0.0582 0.0578 0.0581 0.0751
Roof 0.0552 0.0792 0.0445 0.0321 0.0634 0.0637 0.0660 0.0439
Dirt 0.0226 0.0577 0.0289 0.0597 0.0615 0.0616 0.0626 0.1507

Mean SAD 0.0631 0.0792 0.0680 0.0659 0.0878 0.0876 0.0881 0.0926

than other algorithms for all noise levels. Moreover, even
if the hyperspectral data is highly corrupted (SNR= 10dB),
WRNMF is shown to provide better results than the compared
algorithms in terms of aSAD and aMSE. Furthermore, the
generated abundance maps estimated by all algorithms for
SNR= 20dB are depicted in Fig. 1. We can observe that
the abundance map obtained by WRNMF is more similar to
reference map compared to other algorithms.

Real data – To illustrate, the real Urban dataset1 has been
unmixed by the compared algorithms. This image initially
contains 210 bands covering the wavelength range 0.4 to
2.5µm with a spatial size of 307 × 307 pixels. However,
only L = 162 bands have been kept by removing bands
which are highly corrupted. We remove them before the
analysis. We consider five types of signatures referred to
as ”Asphalt”, ”Grass”, ”Tree”, ”Roof” and ”Dirt” and the
reference spectral signatures can be obtained online1. We
report the SAD scores associated to this image in Table II.
It can be observed that WRNMF provides the lowest overall
spectral distorsion over all compared algorithms. Fig. 3 shows
the library signatures and the estimated endmember spectra
obtained by the WRNMF. It can be observed that endmember
signatures are close to library signatures. Moreover, qualitative
results for abundance maps obtained by WRNMF are shown in
Fig. 2 for materials identified as asphalt, grass, tree, roof and
dirt. We can see that abundance maps obtained by WRNMF
are in good agreement with the reference abundance maps.

1Available online at http://www.tec.army.mil/hypercube.
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Fig. 2. Real Urban data set: reference (left) and abundance maps estimated
by WRNMF (right).

IV. CONCLUSION

In this letter, we proposed an efficient yet simple unmixing
method named WRNMF, which employed two weighting



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, JUNE 2022 5

20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Real

WRNMF

20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Real

WRNMF

20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Real

WRNMF

20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Real

WRNMF

20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1

Real

WRNMF

Fig. 3. Real Urban data set: library signatures and endmember estimates obtained by WRNMF. (a) Asphalt road. (b) Grass. (c) Tree. (d) Roof. (f) Dirt.

strategies. One of them applied to the residual term to assign
different weights to the data fitting term across bands, which
may account for different noise levels over the spectral range.
The weighting strategy elaborated on a sparse regularization to
adjust the spatial regularization of the abundance maps with
respect to the spatial neighborhood. The resulting objective
function is minimized by iteratively updating the endmember
and abundance matrices using multiplicative rules, yielding
a computationally efficient algorithm. The accuracy of the
proposed method was assessed by comparing its performance
with those of state-of-the-art algorithms when unmixing sim-
ulated and real hyperspectral images. WRNMF was observed
to outperform recently NMF-based approaches even in the
case where the hyperspectral data to be unmixed was highly
corrupted.
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