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ABSTRACT 

This article proposes a method for taking into account the 

indirect flexibility (charging of Electric Vehicles) 

available in buildings for the sizing of stationary battery 

storage systems (direct flexibility). A Linear Programming 

approach was applied to data sourced from the Predis-

MHI platform (a living lab) such that the day-to-day 

charging of EVs, as well as the scheduling of the charging 

and discharging of the proposed battery, were optimized 

whilst simultaneously dimensioning the battery capacity. 

Our results indicate that based on the percentage increase 

in self-consumption with reference to the base case, it is 

possible to reduce the battery capacity required by up to 

100% as compared to a methodology that doesn’t account 

for the indirect flexibility. Whilst relevant, the sizing 

approach proposed in this article assumes optimal human 

behavior, which is usually difficult to achieve. Our 

proposed approach can be adapted and used for the 

dimensioning of direct flexibilities for both residential and 

commercial/public buildings. 

INTRODUCTION 

The topic of climate change is a cause for immediate action 

and in recent times has gained a justifiably large response 

from the press, researchers, and the general populace. The 

resulting consequence has been a global shift towards 

sustainable practices in all sectors of the economy. 

Transportation and electricity generation have been 

identified as major contributors of Green House Gases 

(GHGs). Statistical data indicates that transport accounted 

for 25.8%, energy industries (electricity generation, 

petroleum refinery, heat production, etc.)  24.1.0%, and the 

building sector 14.2% of the EU's GHG emissions in 

2019[1]. Given these figures, these two sectors have seen 

an enormous shift and uptake of sustainable policies, 

innovations, and interventions (renewable energy and E-

mobility). 

Additionally, Energy Communities (a group of individuals 

with a common goal, who actively participate in the energy 

sector and organize collective and citizen-driven energy 

actions [2]) have emerged and are a key component in 

achieving the EU’s energy transition goals. These energy 

communities bring to the table energy services, however, 

they play an ancillary role of increasing energy awareness 

and potentially streamlining the behavior of their members 

(in terms of energy use) in a desirable and much-needed 

direction [3]. 

As renewable energy and e-mobility (electric vehicles, 

electric bicycles, etc.) adoption increases, they pose a 

threat to the reliability and robustness of existing grid 

infrastructure. The Smart Grid concept has been proposed, 

as a means to mitigate if not alleviate these potential 

challenges [4], which will emerge. Tertiary sector 

buildings offer a perfect paradigm, in that they are 

normally used during the day (when solar energy is 

available), and its occupants who own personal 

transportation units would have them on or close to the 

site. Thus, it is possible to use e-mobility solutions 

(Electric Vehicles) as an effective means of indirect 

flexibility. In reality, this is difficult to achieve since in 

many energy systems (buildings included) humans are 

expected to interact with the said system as such [5], 

humans are thus an (often overlooked [6]) important 

parameter to consider for all phases of a building’s life 

cycle (conception, design, and operation). 

In this article, we propose a Linear Programming (LP) 

approach for sizing stationary battery storage systems 

(direct flexibilities) taking into account an optimal 

behavior from EV users (indirect flexibility) in a tertiary 

sector building set-up (the Predis-MHI platform of 

G2ELab). 

DIRECT AND INDIRECT FLEXIBILITIES IN 

LITERATURE 

Flexibility is a key concept for achieving energy transition 

goals. This has become particularly feasible and necessary 

owing to the increased adoption and integration of 

Distributed Energy Resources (DERs). The French 

Agency for Environment and Energy Management 

(Agence de l'Environnement et de la Maîtrise de l'Energie 

– ADEME) has proposed a plan for 100% Renewable 

Energy penetration in France by 2050 and estimates that 

buildings would be capable of offering flexibility services 

of approximately up to 18% of the peak demand (100 GW) 

[7]. At the scale of the building, and given the increasing 

growth of prosumers (DERs) in the energy sector, 

flexibility is key in maximizing Self-Consumption (SC).  

 

In this paper, we propose to classify Flexibility into two 

distinct groups, direct and indirect flexibility. Direct 

flexibility can be defined as devices within the global 

energy system whose actions can be fully 

automated/controlled using software or a control signal 

and can significantly affect the overall performance of the 

global energy system (e.g. heat pumps, batteries, etc.). 

mailto:firstname.lastname@grenoble-inp.fr
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Conversely, indirect flexibility is defined as actors or sub-

systems in the global system that cannot be controlled 

directly with a control signal but whose actions directly 

influence the performance of the energy system, mainly 

referring to the human in the loop [8]. 

Hodencq et al. [9] proposed an approach for sizing PV 

systems that takes into account the Global Warming 

Potential (GWP) of the components and the operational 

carbon impact, positive feedback (reduced demand with 

time) and the degradation of the individual components of 

the PV system with self-sufficiency as a constraint (i.e. the 

energy system must achieve the defined SC). The results 

showed that small PV systems are effective at reducing the 

carbon intensity of a building's energy system whilst 

systems designed to achieve higher self-sufficiency tend to 

increase the carbon footprint of the said building. The 

optimal level of self-production to reap maximum benefit 

from the addition of a solar PV system is, however, 

dependent on many factors, which include the energy mix 

of the grid electricity, and the demand profile.  

Current approaches for sizing storage systems both for 

residential and public buildings do not take into account 

indirect flexibility. Tostado-Veliz et al [10] proposed a 

MILP strategy for sizing solar PV systems taking into 

account grid failures and demand response (using direct 

flexibilities) with the objective function being to reduce 

the system cost. Previous works have focused on sizing 

taking into account financial costs [11], and environmental 

impacts [12],[9], however, similar to other building-

related models the human in the loop has been ignored in 

these solutions. Taking into account the indirect flexibility 

is bound to yield a smaller system size and financial 

commitment reducing the building’s carbon impact. 

USE CASE: THE PREDIS–MHI PLATFORM 

 
Figure 1 Predis-MHI electricity system (represented using 

OMEGAlpes graphical representation [13]) 

This article considers the Predis-MHI platform (a living 

lab), which is a platform of the Grenoble Electrical 

Engineering Laboratory (G2ELab) dedicated to the study 

of smart, highly energy-efficient buildings and occupant 

behavior. The platform is a 600m² multi-floor space 

composed of lecture rooms, a demonstration room, a 

student’s foyer, and offices housed in the Grenoble 

Energy-Education and Research (GreEn-ER) building 

[14]. The energy system of the platform is composed of a 

22 kWp solar PV system, 50kWh lithium-ion battery, 

lighting, Heating, Ventilation and Air-Conditioning 

(HVAC), electrical outlets, and 4 EVs charging stations (2 

-14 kW chargers and 2 – 44 kW added in August 2021). 

Figure 1 shows the energy system of the platform. 

Data Management 

To allow for further improvements of the proposed model, 

this article follows the Open and Reproducible Use Cases 

for Energy (ORUCE) principles [15]. Thus, the data, 

associated code and notebooks are available online and can 

be modified and applied to different use cases and 

scenarios. 

Data Analysis 

 
Figure 2 Annual hourly charger utilization vs PV production 

Figure 2 shows the charging patterns of the occupants of 

the building compared to the average annual solar PV 

production. It can be deduced from Figure 2 that the 

behavior of EV owners concerning the charging of their 

EVs is less than ideal with 9 and 10 AM being the favored 

time (occupants are plugging and charging their vehicles 

when they arrive). Ultimately, Figure 2 shows that there 

exists some degree of indirect flexibility that can be used 

to improve the SC rate. 

 
Figure 3 Annual hourly demand and PV production  

 Additionally, comparing the annual average demand of 

the Predis-MHI platform (without EV charging) to the 

average annual PV production, see Figure 3, we show that 

there exists a significant potential to increase the SC of the 

platform using the indirect flexibility (EV charging). The 

natural SC (SC of a building without any technical 
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interventions such as batteries or load shifting [16]) of the 

entire platform was estimated to be 46.69% for the period 

of study used in this article (01/01/2021 – 31/12/2021). 

LP FORMULATION 

The optimal sizing of direct flexibilities implies that both 

the long-term and short-term constraints of the system 

need to be accounted for. The addition of indirect 

flexibilities further implies that mid-term constraints have 

to be introduced into the optimization. In the case of the 

proposed optimization, the mid-term constraint was to 

ensure that the energy consumed within a defined period 

(1 day for the study) is exactly met by the charging 

schedule proposed by the optimizer whilst respecting the 

operating hours of the building (8:00 – 20:00). For this LP 

optimization, the objective function was defined as: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =  𝑚𝑖𝑛[𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑏𝑎𝑡𝑡𝑒𝑟𝑦] 1 

To ensure that the battery state of charge (SOC) stays 

within defined operational bounds (20% - 100% 

considered for the study): 

SOCMin × 𝐶𝑎𝑝𝑏𝑎𝑡  ≤ E𝑏𝑎𝑡(pd, t) ≤ 𝑆𝑂𝐶𝑀𝑎𝑥  × 𝐶𝑎𝑝𝑏𝑎𝑡  2 

Where SOCMin × 𝐶𝑎𝑝𝑏𝑎𝑡   and 𝑆𝑂𝐶𝑀𝑎𝑥  × 𝐶𝑎𝑝𝑏𝑎𝑡  refers to 

the minimum and maximum allowed battery energy 

respectively and E𝑏𝑎𝑡(pd, t) is the electric charge in the 

battery for the period pd (day) at time step t, expressed as: 

E𝑏𝑎𝑡(𝑝𝑑, 𝑡) =  E𝑏𝑎𝑡(𝑝𝑑, 𝑡 − 1) × [1 − ∆𝑠𝑑] +

 [𝑃𝑏𝑎𝑡(𝑝𝑑, 𝑡) ×   𝜂𝑏𝑎𝑡 × 𝑡𝑠] 3
 

Where 𝑃𝑏𝑎𝑡(𝑝𝑑, 𝑡) is the charge/discharge power of the 

battery for period p at time t, ∆𝒔𝒅 is the self-discharge rate 

of the battery and 𝜂𝑏𝑎𝑡 is the battery efficiency. 

Additionally, to ensure continuity between the various 

periods, the battery’s SOC at the end of each period was 

defined as: 

Ebat(p, T + 1) =  Ebat(p, T) × [1 − ∆sd] +
[Pbat(p, T) × ηbat  × ts] 4

 

Where 𝑇 is the last time step in the set {0,1,2 … 𝑇}, and the 

final battery energy is constrained as defined in equation 

(2). Thus, the starting battery energy for the various 

periods was defined as: 

 

E𝑏𝑎𝑡(pd, t) = {
𝐸𝑏𝑎𝑡(𝑝𝑑, 𝑇), 𝑖𝑓 𝑝𝑑 = 0 𝑎𝑛𝑑 𝑡 = 0

E𝑏𝑎𝑡(𝑝𝑑 − 1, 𝑇 + 1), 𝑖𝑓 𝑝𝑑 > 0 𝑎𝑛𝑑 𝑡 = 0
 5 

Where E𝑏𝑎𝑡(pd, t) is the final energy at the end of the 

simulation, i.e. the optimizer determines the ideal SOC to 

initialize the battery. This condition is especially important 

as the SC increases and the required battery capacity 

increases in response (at higher SC, the initial battery SOC 

impacts the dimensioning of the battery). Further, to 

ensure that the battery charging and discharging power 

stayed within defined safe operating bounds: 

𝑅𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ×
𝐶𝑎𝑝𝑏𝑎𝑡

𝑡𝑠
 ≤ P𝑏𝑎𝑡(pd, t) ≤ 𝑅𝑐ℎ𝑎𝑟𝑔𝑒  ×

𝐶𝑎𝑝𝑏𝑎𝑡

𝑡𝑠
 6 

Where 𝑅𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  and 𝑅𝑐ℎ𝑎𝑟𝑔𝑒  are factors that represent the 

proportion of the nominal capacity that can be charged or 

discharged from the battery at any given time step. The 

charging of EVs was defined mathematically as  

𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
(𝑝𝑑) =  ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑋(𝑝𝑑, 𝑡) × 𝑡𝑠

𝑇

𝑡
 7 

Where 𝐸𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
(𝑝𝑑) is the energy originally 

consumed by charger X (X a set of charger IDs [1, 2, 3, 4]) 

during period pd for the optimization horizon and 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑋(𝑝𝑑, 𝑡) is the power of charger X for period pd at 

time t. Additionally, to respect the time constraints 

imposed by the operating hours of the building: 

∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑥
(𝑝, 𝑡)

𝑋

𝑥
 × 𝑡𝑠 = 0, 𝑖𝑓 𝑡 < 𝑇𝑜𝑝𝑒𝑛  𝑜𝑟   𝑡 > 𝑇𝑐𝑙𝑜𝑠𝑒 8 

Where 𝑇𝑜𝑝𝑒𝑛 and 𝑇𝑐𝑙𝑜𝑠𝑒  refer to the opening and closing 

times of the GreEN-ER building respectively. Equation 9 

below prevents mitigates the use of the grid for charging 

the battery. 

𝑃𝑖𝑚𝑝𝑜𝑟𝑡(𝑝𝑑, 𝑡) ≤ 𝑃𝑙𝑜𝑎𝑑  (𝑝𝑑, 𝑡) +  ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑥
(𝑝𝑑, 𝑡)

𝑋

𝑥
 9 

Where 𝑃𝑖𝑚𝑝𝑜𝑟𝑡(𝑝, 𝑡) and 𝑃𝑙𝑜𝑎𝑑  (𝑝𝑑, 𝑡) are the grid import 

power and demand power of the platform for period pd at 

time t respectively. The grid import and export are further 

constrained by ensuring that the SC for the evaluation 

period is equal to the defined rate, and is expressed as [17]: 

∑ ∑ 𝑃𝑙𝑜𝑎𝑑(𝑝𝑑, 𝑡) − 𝑃𝑖𝑚𝑝𝑜𝑟𝑡
𝑇
𝑡 (𝑝𝑑, 𝑡)𝑃𝐷

𝑝𝑑

∑ ∑ 𝑃𝑝𝑣(𝑝, 𝑡)𝑇
𝑡

𝑃𝐷
𝑝𝑑

= 𝑅𝑠𝑐 10 

Where 𝑅𝑠𝑐, is an input to the optimization, and acts as a 

constraint for the LP problem (i.e. it is the desired SC rate 

for which the direct flexibility should be dimensioned).In 

addition, the power balance is ensured by: 

𝑃𝑃𝑉(𝑝𝑑, 𝑡) −  𝑃𝑏𝑎𝑡(𝑝𝑑, 𝑡) + 𝑃𝑔𝑟𝑖𝑑(𝑝𝑑, 𝑡) + 𝑃𝑡𝑜𝑡(𝑝𝑑, 𝑡) = 0 11 

Given: 

𝑃𝑡𝑜𝑡(𝑝𝑑, 𝑡) = [𝑃𝑙𝑜𝑎𝑑(𝑝𝑑, 𝑡) +  ∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒𝑟𝑥
(𝑝𝑑, 𝑡)

𝑋

𝑥
]  12 

𝑃𝑔𝑟𝑖𝑑 =  𝑃𝑖𝑚𝑝𝑜𝑟𝑡(𝑝𝑑, 𝑡) + 𝑃𝑒𝑥𝑝𝑜𝑟𝑡(𝑝𝑑, 𝑡) 13 

RESULTS 

Using the optimization problem as defined above (solved 

using Gurobi [18]), a parametric study was conducted to 

determine the effect of indirect flexibility (the human 

actors, EV users in this case that do plug-in their vehicles 
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at the right moment) on the sizing of battery storage. 

Figure 4 shows the optimal battery size for a defined 

annual SC rate with and without the indirect flexibility and 

the percentage reduction in the required storage capacity 

with the direct flexibility only approach as reference. 

From figure 4, it can be observed that an SC rate of 54% 

can be attained with no need for battery storage, however, 

in the case of the direct flexibility only scenario, a 

6.00kWh battery is required to achieve the same 54% SC 

rate. Thus, it can be deduced that there exists a potential of 

increasing the SC rate by approximately 8% (with 

reference to the natural SC) using only the indirect 

flexibility. 

 
Figure 4 Comparison of battery sizing considering only 

direct flexibility and both direct and indirect flexibility 

Figure 4 also shows the potential savings in terms of both 

financial and environmental impact (relative to the direct 

only approach), with the reduction in required battery 

capacity to achieve an SC rate of 70% being approximately 

30.20%. 

 
Figure 5 Comparison of charging frequency for direct only 
and direct & indirect strategies (SC =70%) 

For the platform, it was found that the optimal SC with 

respect to the results in figure 4 (i.e. the SC for which the 

gain of using indirect flexibility is maximized) was 

approximately 70%. Considering this SC rate, figure 5 

shows a comparison of the hourly charging frequency for 

the reference case, the direct only, and direct and indirect 

flexibilities using the battery capacities determined for an 

SC rate of 70%. From figure 5, by using the indirect 

flexibility, we were able not only to achieve a lower rate 

of SC but also to maximize the use of the indirect 

flexibility (i.e. more charging occurring at peak sun hours).  

To assess the potential effort required to move from the 

sub-optimal (reference case) to the optimal case (direct 

only and direct and indirect approaches), an evaluation 

indicator is proposed such that: 

𝑒𝑓𝑓𝑜𝑟𝑡 =  
∑ |𝑓𝑟𝑒𝑞𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡) − 𝑓𝑟𝑒𝑞𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡)|𝑡

∑ 𝑓𝑟𝑒𝑞𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡)𝑡

 14 

 

Where 𝑓𝑟𝑒𝑞𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡) and 𝑓𝑟𝑒𝑞𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡) are the 

hourly charging frequency (i.e. number of times a vehicle 

was charging for said hour during the evaluation period) 

of charging in the optimal and reference cases respectively. 

Where a value of zero implies zero to minimal effort would 

be required, whilst a value of one would imply the greatest 

level of effort would be required to reach the optimal case. 

Thus, the effort required to reach the direct only and direct 

and indirect optimals were calculated to be 0.51 and 0.52 

respectively, indicating that a lower level of effort is 

required from EV users to reach the direct only scenario 

optimal relative to the effort level required to attain the 

direct & indirect scenario optimals. 

 
Figure 6 Comparison of monthly SC rates for different 

battery capacities 

Additionally, the growth of the battery capacity with 

increasing SC was observed to be linear in both cases until 

approximately 76%, beyond which the battery capacity 

required grows exponentially and consequently diminishes 

the gain of using the indirect flexibility. We evaluate the 

impact of the battery on the monthly SC rate of the 

platform. From Figure 6, which shows the monthly SC 

rates for different battery capacities (using both the direct 

and indirect flexibilities), it can be seen that the impact of 

the significantly larger battery is greatest during the spring 

and autumn seasons when PV production is relatively high 

(more than in winter but lower than in summer). For the 

summer periods, however, the significantly larger battery 

capacity has little to no impact on the SC rates, indicating 

that, the production is in excess of the load and the 

batteries are underutilized for these months. 

CONCLUSION 

The indirect flexibility potential of a building (and in 

extension its occupants’ behaviors) is an important 

parameter that should be taken into account for the 

dimensioning of energy storage systems (both for tertiary 

sector and residential buildings). Whilst it is difficult to 

ensure optimal behavior from occupants, methods and 

tools exist and are constantly under development to 
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influence occupant behaviors towards an optimal point. 

The results of this study indicate that indirect flexibility 

alone can improve a building's SC, however, by taking into 

account the indirect flexibility available, it is possible to 

achieve the same SC rates as a sizing, which only takes 

into account the direct flexibility using a significantly 

smaller battery capacity. Indirect flexibilities are a key 

aspect of the energy system of a building and are 

indispensable for achieving the energy transition and 

climate mitigation goals. 

 

Our work did not take into consideration the long-term 

effects of behavioral change of occupants (i.e. reduced 

demand due to increased energy awareness) or the growing 

adoption of EVs for private transportation needs. 

Additionally, we assumed optimal behavior from the EV 

users in this sizing approach, which in reality might be 

difficult to achieve. Further work is required on 

mechanisms and tools to influence human actors towards 

a globally optimum behavior. Energy communities, 

nudging and the use of feedback indicators present a 

suitable use case for such a study.  

SUPPLEMENTARY MATERIALS 

A Gitlab repository including the code and data sources is 

available: https://gricad-gitlab.univ-grenoble-

alpes.fr/NanaKofi/battery_sizing  
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