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Abstract—Nowadays, data are generated and accessed from all
over the world. Applications and companies store these data on
geo-distributed cloud providers that have to be profitable while
reducing their environmental impact. As Cloud providers aim to
satisfy their service level objectives in terms of availability and
response time, they often rely on data replication. In this paper,
we propose a dynamic data replication strategy (DE2ARS) that
adapts the number of replicas according to the workload and
addresses energy consumption and expenditure issues. It follows
an initial placement and is triggered by a Control Chart. We
first compare different parameter choices in order to provide
better analysis for the proposed strategy. We compare DE2ARS
with strategies from the literature. Results highlight the fact that
DE2ARS reaches its goal to reduce both energy consumption and
expenditure while having good performance in a strong workload
context.

Index Terms—Cloud, Data replication, Provider expenditure,
Energy consumption, SLA violation

I. INTRODUCTION

Since the spread of information technologies, companies
and laboratory provide and request data from all over the
world and some items are highly requested. This implies some
availability and performance issues that can be addressed by
replicating data, which aims to satisfy these issues. Other
objectives can also be achieved such as reducing energy
consumption or reducing expenditure [1].

This paper focuses data replication in Cloud systems, char-
acterized by elasticity, that adapts resources automatically and
allows the use of a Pay-As-You-Go economic model, where
tenants pay what they consume. A Service Level Agreement
(SLA), signed by both tenant and provider, specifies prices to
rent resources, Service Level Objectives (SLO) the provider
has to achieve, and penalties it must pay otherwise.

Reducing provider’s environmental impact is getting more
important and can be seen through the reduction of energy
consumption [2]. Thus, multiple techniques and technologies
have been developed, like sleep state and consolidation.

In this paper, we propose a dynamic data replication strat-
egy, DE2ARS (Dynamic Energy and Expenditure Aware data
Replication Strategy), which occurs following an initial place-
ment [3]. DE2ARS aims to reduce both energy consumption
and expenditure while improving performance for the tenant.
This strategy is triggered with a control chart [4] which detects
a workload evolution based on SLO violations. According to
this workload evolution detected, one or several replicas is/are
created or deleted, and decisions consider expenditure and

energy consumption issues. Replication leverages on energy
saving technologies like PowerSleep. For identifying data item
to replicate, we use the Pareto principle supposing that 80
percent of violations come from 20 percent of data stored. We
compared DE2ARS with strategies from the literature. And
it achieves its objective to reduce both energy consumption
and expenditure while improving performance. Note that we
consider read-only data items that will not be updated.

The rest of this paper is organized as follows: we begin in
Section II by a state of the art of data replication strategies
that takes into account energy consumption and expenditure.
Section III describes the proposed strategy. In Section IV, we
validate the proposed strategy.Finally, we conclude and draw
some lines for future works in Section V.

II. STATE OF THE ART

We focus on data replication strategies that take into account
energy consumption, expenditure, or both.

In terms of reducing energy consumption, [5] proposed
MORM, a static data replication that answers to availability,
service time, load balancing, energy consumption and latency
issues where each objective is weighted. Boru et al. [6]
proposed a strategy triggered by a threshold on the number of
accesses and considers a hierarchical architecture, where data
are replicated in lower level to reduce energy and bandwidth
consumption. [7] used two Least Recently Used lists that per-
mits to classify data item according to their heat (popularity).
Then this strategy stores hot data items in hot nodes (energy
consuming) and cold ones in cold nodes (reducing their power
consumption).

On the side of taking expenditure into account, replication
in PEPR [8] is triggered by an SLO violation, i.e. when
the response time of a task is higher than a threshold, and
replicates only if the provider is still profitable. [9] calculates
2 scores at each time frame: (i) an availability score, based
on a file availability probability, and (ii) a replication factor,
based on access frequency. As the proposed strategy considers
a hierarchical architecture, it leverages on heterogeneity to
create or remove replicas in order to reduce expenditure. [10]
use an Auto-Regressive Integrated Moving Average to predict
the number of accesses for a short period of time and then
process a replication algorithm in order to minimize the global
cost by minimizing the cost in each region.



Only few strategies consider both energy consumption and
expenditure as objectives. In [11], authors propose a static data
replication strategy which models reads and writes energy con-
sumption and expenditure where each objective is weighted.
The static data replication strategy proposed by [3], called
E2ARS, replicates in a 2 steps decision process. The first step
leverages on heterogeneity to reduce both energy consumption
and expenditure while the second step uses sleep states to
reduce power consumption of unused nodes.

Compared to the literature, our strategy, Dynamic Energy
and Expenditure Aware data Replication Strategy (DE2ARS),
addresses the reduction of both energy consumption and ex-
penditure through a dynamic data replication strategy triggered
by control charts. To the best of our knowledge, this is the first
time that control charts are used in a data replication context.

III. DYNAMIC DATA REPLICATION STRATEGY

We consider the following process of executing a query: A
node receives a task, needed data items are transferred to the
executing node. At the end of this process the provider verifies
if there is an SLO violation according to the response time.

DE2ARS, which occurs after an initial static placement [3],
aims to answer to an increasing and decreasing workload. To
do so, we focus on the proportion of SLO violations in a
sample.

In our context, this metric is expressed by a response time
that is higher than a threshold, i.e., an SLO. We adapt here
the SLO violations cost, from Google’s SLOs1. If a node is
unavailable more than 5% of the renting time, they refund
100% of the rent. So, if more than 5% of tasks have a response
time higher than the SLO then, we refund 100% of the tasks
price. To avoid reaching this proportion of violations, we use
Control Charts [4].

A. Triggering the replication

1) Introducing Control Charts: Control Charts are tools
from Statistical Process Control, a branch of Quality Manage-
ment. They are based on probability laws where parameters
are known or estimated. It permits to know the probability
of an event and then take action when issues occur. Control
charts are mostly used in computer science to monitor data
quality [12] or to manage a process variability [13].

Control charts are defined by a target, limits around the
target and a set of rules that trigger the control chart. Authors
that introduced and described control charts [4], [14], used 3σ
limits in a Normal Distribution.

In our case, an event corresponds to the proportion of SLO
violations in a sample. This event is considered following
a Binomial distribution, as each SLO violation follows a
Bernoulli distribution, with a probability p of successes (i.e.
probability for a task to generate an SLO violation), and a
sample size n. Considering an event that follows a Binomial
law, implies the use of a so-called p-chart.

As it was described before, we aim to consider an Upper
Control Limit (UCL) that has to be lower than 5%. We have

1https://cloud.google.com/compute/sla (03/07/2022)

to consider a p ∈ [0, 5%[ with p+ 3σ
n < 5%, then we choose

to use p = 2.5%. Having a low value of p implies that n has
to be high enough in order to have a more precise estimation.

To answer this kind of issues, authors of [15], compared
multiple rules, and we use the following one:

n ∗ p ∗ (1− p) > 9 ⇔ n >
9

0.025 ∗ 0.975
⇔ n > 369.2 (1)

Based on this rule, we choose a sample size parameter n =
370. Setting parameters p and n permits to set control limits
of the control chart as follows:

CL = p± 3 ∗
√

p(1− p)

n
(2)

Here Upper Control Limit equals 4.93%, and Lower Limit
Control equals 0.07%. They correspond to 3σ limits. Between
them, 3 zones are set at each side of the target, to apply
rules: 0-1σ, 1-2σ and 2-3σ. Rules are introduced by [14] and
then extended by [16]. We focus here on rules that detects a
deviation from the target:

R1 - 1 point outside 3σ limits
R2 - 9 points in a row in the same side of the target
R3 - 6 points in a row steadily increasing of decreasing
R4 - 2 out of 3 points being beyond 2σ in the same side of

the target
R5 - 4 out of 5 points being beyond 1σ in the same side of

the target
2) Detecting Workload Evolution: As it was described

before, control charts are triggered by rules applied to samples.
Each rule permits to detect a deviation from the mean,
thus multiple rules can be triggered detecting contradictory
evolution. To avoid this issue, we give a score to the event,
which start at 0. Then, if a triggered rule highlights a workload
increasing, it adds +1 to the score. At the opposite, if this
highlights a workload decrease, it decreases the score by 1.

For the rules R1, R2, R4, R5, a proportion that is higher than
the target, correspond to an increase and vice versa. And for
the rule R3, if proportions are increasing, it means a workload
increase, and vice versa.

At the end of the control chart evaluation, if the score is
positive, the strategy will create new replicas. If the score
is negative, the strategy will delete replicas. Otherwise, the
number of replicas is not changed.

3) Information Retrieval: During the lifetime of the system,
the strategy gathers 2 kinds of information from tasks. First,
each task that breaks the SLO is assigned the value of 1, or
0 otherwise, in the sample given to the control chart. Then, if
a task breaks the SLO, we gather information about on which
node the task was processed and which data items was needed.

B. Notation

Before describing replicas creation and removal, we intro-
duce the following notations:

Let F be a set of items stored on a set of nodes N.
Each item fi ∈ F, 1 ≤ i ≤ z has a size s(fi) (in MB).
Each node nj ∈ N, 1 ≤ j ≤ m with a storage capac-

ity cpj (in MB). Nodes have a static power consumption

https://cloud.google.com/compute/sla


Powstatic(nj) (in Watt), that depends on the server compo-
nents. Similarly, each node has a storage cost Coststorage(nj)
(in $/MB per second), that mostly depends on the region,
hardware and so on.

ϕ is a matrix of size (z, m) which represents the placement
of data items on nodes: ϕ(fi, nj) is equal to 1 when fi is
stored on nj and 0 otherwise.

difftime(fi, nj) (in seconds) corresponds to the duration
between the latest query of fi on nj and the time when the
score is calculated.

propEC which is the weight given for the energy consump-
tion part. Its values goes from 0 for not considering energy
consumption to 1 for only considering energy consumption.

C. Creating Replicas

When the number of violations is getting high, it means that
the system is being overloaded. Replicating data may balance
workload among multiple nodes and avoid bottleneck.

Replication is done in two steps: Plan and Replicate.
1) Replication Plan: At first, the strategy plans which data

item will be replicated and on which node.
a) Which items: Based on the Pareto Principle, we sort

data items according to their number of violations, and select
data items that accumulate 80% of violations, supposing that
they come from 20% of data items.

b) Which data center: Based on the same principle, for
each data item, the strategy sorts regions according to their
number of violations, then selects regions that correspond to
80% of the data item violations. This is repeated for data center
for each chosen regions for each item, where data centers of a
region are sorted according to their number of violations, and
selected to reach 80% of SLO violations of the region.

c) Which node: When choosing on which node to store
the replica, a trade-off has to be considered between (i)
storing the replica on a new node to balance the workload but
increasing its energy consumption, or (ii) storing the replica
on a node that already stores data to keep a low number of
activated nodes with a possibility to create a bottleneck.

To handle this trade-off, we consider a score corresponding
to the transfer time (seconds) per Megabytes (MB) between
two nodes nj and nj′ for a data item fi. Here, nj corresponds
to a possible node on which the strategy will replicate, and
nj′ the closest node that stores a replica of fi.

If this score goes above a threshold for a node, we consider
this node as a bottleneck. This threshold can be set by
an administrator in order to apply a policy more or less
consuming in terms of energy consumption.

DE2ARS considers at first nodes that stores items, and if
any of them is not considered as a bottleneck, it selects the
one with the lowest score. If all of them are considered as
bottleneck, it will wakes up and chooses a new node if this is
possible, or DE2ARS chooses the node with the lowest score if
they are all already up. These choices are under the constraint
of available storage, that has to be higher than the item size.

2) Replicating: The main idea of these two steps, is to
avoid huge overhead by transferring data only for replication.

When data centers receive the replication plan for their
nodes, they check within current tasks which data items are
used, and if they have to be replicated according to the
replication plan. If this is the case, it transfers the item to the
chosen node. If some items are not replicated, DE2ARS checks
new coming tasks and when one requires data items that have
to be replicated, then it takes advantage of the transfer to
compute the task and replicate at the same time.

D. Removing Replicas

Elasticity implies a replica management that can adapt to
an increasing workload by replicating, but also when the
workload decreases by removing replicas. It has to be noted
that, dynamic data replication in DE2ARS follows a static data
replication. For the sake of simplicity, during the removing
process, we do not remove replicas created during this initial
placement. We suppose here that other events might be more
efficient to reconsider this initial placement.

1) Choosing the number of removal: During our research,
we considered multiple possibilities when removing replicas.

First, we considered removing one replica at a time, which
should avoid under-provisioning, but this might be too slow
to put enough nodes in sleep state in order to reduce energy
consumption. At the opposite, we tried to remove all created
replicas during the dynamic replication, creating a cycle of
replication/removal, as workload might stay high. One last
possibility, is to remove a proportion of replicas, in order to
make it faster to delete replicas without implying a cycle of
creation and removal.

2) Choosing replicas to remove: Finally, we addressed the
way of choosing replicas to remove through a removal score,
based on energy consumption and expenditure to store each
replica. Then replicas are sorted according to this score, and
top ones will be removed according to the number of removal.
To compute this score, we introduce the following notations.

a) Energy consumption: The energy consumption score
of a replica fi stored on a node nj is calculated as follow:

ECscore(fi, nj) = ϕ(fi, nj) ∗ Powstatic(nj)∗ (3)

difftime(fi, nj) ∗
s(fi)∑

f ′
iinF

ϕ(f ′
i , nj) ∗ s(f ′

i)

b) Expenditure: The expenditure score of a replica on a
node is calculated as follow:

EXscore(fi, nj) =ϕ(fi, nj) ∗ s(fi)∗ (4)
Coststorage(nj) ∗ difftime(fi, nj)

c) Removal score: In order to compare those scores,
they are normalized. It means that scores are reduced by their
mean and divided by their standard deviation of their category.
This permits to keep the distribution of results and highlights
scores that are particularly high or low. The normalized score



is written:NormAC(fi, nj), AC ∈ {EC,EX}. The removal
score is then calculated as follows:

DelScore(fi, nj) =NormEC ∗ propEC+ (5)
NormEX ∗ (1− propEC)

With this score, the administrator has the possibility to
balance between energy consumption and expenditure, then
replicas with highest removal scores are immediately deleted.

IV. EVALUATION

A. Experimental environment

1) Strategies parameters: DE2ARS uses [3] as an initial
placement in our evaluations. In this evaluation section, all
experiments associated with DE2ARS uses a value of propEC
of 0.5. We highlight different policies proposed by DE2ARS
as different parameters have been set.

a) Bandwidth Threshold: In section III-C1, we choose
to set the threshold to consider a node as a bottleneck or not
and we wanted to highlight its impact. To do so, we used a
VLow and Low values of 0.0001 and 0.001 s/Mo respectively,
a threshold of 0.005 s/Mo, called Mid. And High and VHigh
values of 0.01 s/Mo and 0.1 s/Mo respectively.

b) Other strategies: We compare our strategy with other
data replication strategies from the literature (see Section II)
and a control strategy used as a baseline. As a control strategy,
we used a static strategy that creates 3 replicas and places them
randomly, called 3Rand. From the literature, we compare our
strategy with 2 static replication strategies: MORM [5] and
E2ARS [3]. We also compare our strategy with dynamic data
replication strategies: PEPR [8] which takes provider’s profit
into account (with an income of 0.0081$ per task), and Boru
[6] which considers energy and bandwidth consumption.

2) Simulation Parameters: In order to compare those strate-
gies, we implemented them on CloudSim [17] extended by
[8] to implement an economic model and a large scale
architecture. We added to this extension an estimation of en-
ergy consumption and a heterogeneity of components, power
consumption and costs. We also implemented the Sleep State
technique [18], [19] which permits to set nodes in sleep state
to reduce their energy consumption. The use of this technique
implies an implementation of a task scheduler that takes this
technique into account.

a) Task Scheduler: We implemented a naive task sched-
uler that knows the state of all tasks processed in its data
center. It places tasks on awakened nodes and places a task
on a sleeping node only if the response time to process this
task is higher than the SLO on running nodes. Then an empty
node that is idle for 15 will be turned back in sleep state.

b) Provider: We consider a Cloud provider with a large
scale architecture divided as follows. There are 4 regions with
5 data centers per region and 64 nodes inside each data center.
Each region is associated with a profile in a cyclic manner.
We consider an SLO of having a response time lower than 15
seconds.

c) Components and Energy parameters: To simulate a
real architecture, we have used components from Grid5000
[20]. This testbed is geographically distributed and com-
ponents of each nodes are available here2. We consider 3
different profiles, associated with 3 different grid5000 cluster:
1) Paranoı̈a cluster in Rennes, 2) Gros cluster in Nancy, 3)
Dahu cluster in Grenoble.

d) Prices: Prices are derived from Google Cloud3, where
prices depend on locations. Cost profiles correspond to regions
drawn amongst all available regions: (i) London, (ii) Taiwan,
(iii) Zurich et (iv) Hong Kong. However, to set an unique SLO
violation cost, we suppose a unique price per task.

e) Network: Network parameters comes from different
sources. Bandwidth parameters are based on [6] and latency
parameters from [6] and Wikipedia4 technical documents.

f) Workload: In our experiments, we consider having
256 items with a size between 200Mo and 8Go. We consider
2 different kinds of workload: i) Short term and ii) Long
term. The first experiment (XP1) is a 4 hours experiment with
150k tasks, with a workload based on [21] which shows that
when there is a post with a link to a Wikipedia article, the
number of accesses increases and the loss of interest reduces
at different speed. We suppose that the workload follows a
Gamma distribution, with α = 4 and β = 600. The second
experiment (XP2) is a 4 days experiment with 2 millions
tasks, with a workload based on [22] that shows a correlation
between Google queries and Wikipedia queries. We chose to
use the opening of Vaccination of COVID-19 to the public in
France in May 29th 2021, that permits to generate a peak in
terms of accesses.

To compare these policies and strategies, we used 4 metrics:
(i) the energy consumed (in MJ) by the Cloud at the end of the
experiment, (ii) the total cost for the provider (in $), (iii) the
number of created replicas, (iv) the proportion of violations.

A summary of simulation parameter are provided in table
I. A Github repository is available5 to replicate the work and
explore different experiments and parameters.

B. Results

1) Comparison between bandwidth threshold: We first
compare the number of replicas created and the number of
violations, summarized in the first part of the table II. In
XP1, we can see that VLow and Low have higher SLO
violations, thus a higher number of replicas created compared
to High and VHigh. This can be explained by the fact that
when the workload increases, the number of items that are
being transferred on the data center network increases. In this
context, waking up a node to store a data item on it, implies
to transfer this item, increasing the bandwidth consumption,
and response time, implying more violations and replicas and
so on.

2https://www.grid5000.fr/w/Hardware
3https://cloud.google.com/ (02/28/2020)
4https://wikitech.wikimedia.org/wiki/Network design (08/28/2020)
5https://github.com/MorganSeguela/cloud-2022-XPS

https://www.grid5000.fr/w/Hardware
https://cloud.google.com/
https://wikitech.wikimedia.org/wiki/Network_design
https://github.com/MorganSeguela/cloud-2022-XPS


Parameters Values Parameters Values
Number of files 256 File size [0.2, 4, 8] GB

Number of region per Cloud 4 Number of DCs per region 5
Number of nodes per DC 64 Response time SLO < 15s

Components Profile [Paranoı̈a, Gros Prices Profile [London, Taiwan
each region Dahu, Paranoı̈a] each region Zurich, Hong Kong]

TABLE I
SIMULATION PARAMETERS

Number of Replicas SLO violations
× 1000 in permille

Strategy XP1 XP2 XP1 XP2
VLow 5.54 (0.2) 2.12 (0.1) 41.2‰ (2‰) 1.66‰ (0.2‰)

Low 5.51 (0.2) 2.1 (0.1) 40.9‰ (3‰) 1.71‰ (0.1‰)
Mid 5.55 (0.2) 2.07 (0.1) 41.4‰ (3‰) 1.66‰ (0.2‰)

High 5.47 (0.2) 2.05 (0.1) 40.4‰ (3‰) 1.84‰ (0.2‰)
VHigh 5.43 (0.3) 2.12 (0.1) 40.5‰ (3‰) 1.7‰ (0.2‰)
3Rand 0.51 (0) 0.51 (0) 632‰ (10‰) 230‰ (19‰)

MORM 38.3 (38) 29.9 (10) 0‰ (0‰) 0‰ (0‰)
E2ARS 0.89 (0.1) 0.92 (0.1) 584‰ (25‰) 167‰ (35‰)

Boru – – 905‰ (4‰) 363‰ (6‰)
PEPR – – 589‰ (37‰) 44‰ (6‰)

DE2ARS – – 56.6‰ (2.8‰) 19.5‰ (1.3‰)

TABLE II
RESULTS IN TERMS OF NUMBER OF REPLICAS AND PROPORTION OF SLO

VIOLATIONS FOR EACH POLICY AND STRATEGY IN EACH EXPERIMENT
MEAN (STANDARD-DEVIATION)

Energy (MJ) Expenditure (k$)
Strategy XP1 XP2 XP1 XP2

VLow 218.2 (2.9) 4588 (84.2) 4.23 (0.17) 56.96 (4.23)
Low 214.8 (3.6) 4255 (65.3) 4.12 (0.25) 56.53 (4.03)
Mid 209.7 (3.9) 4159 (52.9) 4.23 (0.23) 56.59 (4.31)

High 202.9 (4) 4128 (70.3) 4.27 (0.23) 59.76 (5.24)
VHigh 186.5 (3.6) 3833 (28) 4.24 (0.27) 56.49 (4.88)
3Rand 594 (22.3) 7006 (63.8) 18.96 (0.62) 259.5 (6.5)

MORM 501 (18.2) 11570 (5) 10.25 (9.68) 14.8 (3.1)
E2ARS 233 (38) 3770 (2.2) 13.8 (1.8) 200.5 (22.4)

Boru 347 (0.3) 3877 (1.2) 4.48 (0.02) 53.2 (0.1)
PEPR 552 (59.1) 4768 (0.3) 22.9 (1.08) 155.6 (5.4)

DE2ARS 204 (4.2) 3959 (15.7) 5.9 (0.28) 145.8 (9.8)
TABLE III

RESULTS IN TERMS OF ENERGY CONSUMPTION AND EXPENDITURE FOR
EACH POLICY AND STRATEGY IN EACH EXPERIMENT

MEAN (STANDARD-DEVIATION)

As it was foreseeable, in the first part of table III, the energy
consumption decreases as the threshold increases due to fewer
nodes that are woken up reducing the power needed. This
reduction is about 14.5% between VHigh and VLow in XP1
and 16.5% in XP2. In this table, no trend can be highlighted
in terms of expenditure, unless the fact that High threshold
slightly increase expenditure. In the following evaluations, we
considered the Mid value of the threshold to avoid bottleneck.

2) Comparison between different strategies: In this section,
we are evaluating the whole data replication strategy, DE2ARS,
considering a bandwidth threshold of 0.005 s/MB (Mid) and
a 10% replicas removal. The last part of table II corresponds
to the number of replicas created by static data replication
strategy, and SLO violations of all compared strategies. Then,
results in terms of expenditure and energy consumption are
provided in the last part of table III.

a) Comparing replication and violations: A first inter-
esting strategy is MORM which creates an average of more
than 29,000 replicas implying mostly no violation, making it
the strategy that as the lowest number of violations. The other
static strategy E2ARS, creates 70% more replicas than 3Rand

Fig. 1. Tasks distribution and Number of replicas over time for each
strategy of the first experiment (XP1)

Fig. 2. Tasks distribution and Number of replicas over time for each
strategy of the second experiment (XP2)

but slightly reduces the number of violations.
On figure 1 and figure 2, it can be seen that Boru adapts

its number of replicas according to the workload when it
increases, as it does not have any replica removal mechanism.
At the end of each experiment, it has the most number of
replicas, compared to other dynamic strategy, yet it also has the
highest number of violations. It is explained by its hierarchical
architecture that creates bottlenecks.

PEPR is the second strategy in terms of number of violation
in XP1, with an important reduction of SLO violations in
XP2 compared to 3Rand. However, in terms of replication,
PEPR stops replicating even if the number of violations keeps
increasing, due to the fact that when the expenditure is higher
than revenue, PEPR stops replicating.

The proposed DE2ARS strategy creates and removes repli-
cas according to the workload. Furthermore, it can be seen that
this strategy is the second lowest in terms of SLO violations
with a proportion of 5.66% and 1.95% for the first and second
experiment respectively.

b) Comparing energy consumption and expenditure:
MORM reduces expenditure by 46% compared to 3Rand with
a high replicating cost, but lower cost in long term experiment
as no data transfer are needed. As it has the highest number
of replicas, it is also the most energy consuming strategy.



E2ARS is able to reduce its energy consumption by 61%
(XP1) and 47.2% (XP2) and its expenditure by 27.5% (XP1)
and 22.7% (XP2) compared to 3Rand. It succeeds to reduce
them, by replicating region-wide, while consolidating data on
a few number of nodes.

Boru et al. is the cheapest strategy, and also reduces its
energy consumption by 42% (XP1) and 44% (XP2) compared
to 3Rand. These results can be explained by the fact that only
a few number of nodes can store data, and replication are done
inside each region at first, reducing transfer cost.

PEPR permits to reduce its energy consumption by 7%
(XP1) and 32% (XP2) compared to 3Rand, as it leverages on
the task scheduler to replicates as closely as possible to node
that broke the SLO. However, it increases its expenditure in
XP1 and reduces it by 40% in XP2 compared to 3Rand, as it
has a very low number of replicas in XP1.

Finally, the proposed strategy DE2ARS reduces its expendi-
ture by 69% and 44% compared to 3Rand on XP1 and XP2
respectively, while also reducing its energy consumption by
66% on XP1 and 43% on XP2 compared to 3Rand. In this
context, DE2ARS outperforms other strategies by achieving
its objective to reduce both the energy consumption and the
expenditure while keeping a low proportion of violations.

V. CONCLUSION

We proposed DE2ARS (Dynamic Energy and Expenditure
Aware data Replication Strategy) that follows an initial place-
ment. it aims to reduce both the energy consumption and
expenditure while taking into account workload variations.
replication is triggered by a control chart, a tools from
Statistical Process Control, that permits to adapt the number
of replicas to the workload with low computing power. The
proposed strategy can be tuned in different ways, and removal
can be tuned to focus more on reducing storage energy
consumption or reducing storage expenditure.

We compared our strategy with a control strategy that
creates and places 2 replicas randomly (3Rand). DE2ARS
was also compared with other strategies from the literature,
where some of them takes into account energy consumption
(MORM, Boru et al.) and expenditure (PEPR). Results show
that DE2ARS achieves its goal to adapt its number of replicas
according to the workload. It also reaches its objective of
reducing both energy consumption and expenditure while re-
ducing the number of violations in a strong workload context.

One limitation of our work is that all nodes and data items
are static although the proposed strategy is dynamic. As a
future work, we aim to consider the addition or removal of
data items and/or nodes. Further, we plan to implement the
proposed DE2ARS on a real cloud environment.
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