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Handling informative dropout in
longitudinal analysis of health-related
quality of life: application of three
approaches to data from the esophageal
cancer clinical trial PRODIGE 5/ACCORD 17
B. Cuer1,2,3* , C. Mollevi1,2,3, A. Anota2,4,5, E. Charton2,4,5, B. Juzyna6, T. Conroy7,8 and C. Touraine1,2

Abstract

Background: Health-related quality of life (HRQoL) has become a major endpoint to assess the clinical benefit of
new therapeutic strategies in oncology clinical trials. Typically, HRQoL outcomes are analyzed using linear mixed
models (LMMs). However, longitudinal analysis of HRQoL in the presence of missing data remains complex and
unstandardized. Our objective was to compare the modeling alternatives that account for informative dropout.

Methods: We investigated three alternative methods—the selection model (SM), pattern-mixture model (PMM),
and shared-parameters model (SPM)—in relation to the LMM. We first compared them on the basis of
methodological arguments highlighting their advantages and drawbacks. Then, we applied them to data from a
randomized clinical trial that included 267 patients with advanced esophageal cancer for the analysis of four HRQoL
dimensions evaluated using the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30
questionnaire.

Results: We highlighted differences in terms of outputs, interpretation, and underlying modeling assumptions; this
methodological comparison could guide the choice of method according to the context. In the application, none of
the four models detected a significant difference between the two treatment arms. The estimated effect of time on
HRQoL varied according to the method: for all analyzed dimensions, the PMM estimated an effect that contrasted with
those estimated by the SM and SPM; the LMM estimated effects were confirmed by the SM (on two of four HRQoL
dimensions) and SPM (on three of four HRQoL dimensions).

Conclusions: The PMM, SM, or SPM should be used to confirm or invalidate the results of LMM analysis when
informative dropout is suspected. Of these three alternative methods, the SPM appears to be the most interesting from
both theoretical and practical viewpoints.
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Background
Health-related quality of life (HRQoL) is often a second-
ary endpoint in cancer clinical trials. It is also increas-
ingly being used as a primary or co-primary endpoint
[1]. HRQoL is assessed at different time points through-
out the care process (at baseline, during treatment, and
during follow-up) by self-administered questionnaires
composed of items assessing different HRQoL dimen-
sions. The HRQoL outcome to be analyzed consists of
longitudinal dimension-specific score data. However, the
rate of completed questionnaires generally decreases
over time and, in addition, some items may be missing
among available questionnaires. This leads to missing
data that are said to be monotone if the score is not
available from a certain time point until the end of the
study, and intermittent otherwise. The nature of the
missing data mechanism depends on how the missing-
ness is related to the HRQoL outcome.
Missing data are classified as missing completely at

random (MCAR) if missingness is independent of the
(observed or unobserved) HRQoL outcome or depends
only on observed characteristics, as missing at random
(MAR) if missingness additionally depends on the ob-
served HRQoL outcome, and as missing not at random
(MNAR) if missingness is dependent of the unobserved
HRQoL outcome [2, 3]. The terms informative or non-
ignorable are also used to refer to MNAR data. In the
presence of incomplete longitudinal outcome data, the
strategy of analysis should be adapted to the nature of
the missing data mechanism in order to avoid biased or
inaccurate results. In most studies, the missing data
mechanism is not characterized, so methods used to
analyze longitudinal HRQoL data in randomized clinical
trials [4] are potentially inadequate.
Linear mixed models (LMMs) are powerful and flex-

ible models for the analysis of repeated measures of a
continuous outcome. This class of model is classically
used to compare changes in HRQoL over time between
experimental and control arms in cancer clinical trials
[5, 6]. However, the occurrence of intermittent or mono-
tone missing data could compromise the longitudinal
analysis of HRQoL data, leading to a loss of statistical
power at best, and, at worse, biased estimates; for in-
stance, in palliative or advanced disease situations, where
missing data could be related to the health status of pa-
tients too ill to complete their HRQoL questionnaires [7,
8]. Likelihood-based methods that use all the observed

information (as in LMMs) are valid when the missing
data are MAR [9]. However, in the presence of inform-
ative missing data (i.e., MNAR), the two processes that
are the longitudinal HRQoL outcome and the missing
data mechanism have to be jointly modeled to prevent a
biased estimation [10, 11].
Since the end of the 1980s, different models have been

proposed for the joint distribution of the longitudinal
outcome and the missingness process. More attention
has been devoted to monotone missing data, corre-
sponding to dropout, which is more likely to be inform-
ative and generally easier to handle. Pattern-mixture
models (PMMs) and selection models (SMs) are based
on the two possible decompositions of the joint distribu-
tion [12, 13]. In recent years, the joint models or shared-
parameter models (SPMs), where the association be-
tween the two processes is captured by shared parame-
ters, have received much attention [14, 15]. In clinical
trials, SPMs are mostly used to jointly analyze a longitu-
dinal outcome and overall survival. They can also be
used to take into account and study the relationship be-
tween a longitudinal HRQoL outcome and time-to-
dropout [16].
There are relatively few publications that compare these

three approaches from a perspective of their practical ap-
plication to clinical trial data [17–19]. This is needed to
further our understanding of their use and interpretation;
the insufficient knowledge about these models could ex-
plain why they are rarely used in clinical trials.
The objectives of this paper were to compare the

PMM, the SM, and the SPM with each other and then
to compare these models with the LMM, for the analysis
of an HRQoL outcome in the presence of informative
dropout. First, we compare the models from a methodo-
logical point of view, highlighting the advantages and
drawbacks of each one. Then, we illustrate and interro-
gate them in the longitudinal analysis of four HRQoL di-
mensions in patients with advanced esophageal cancer
from the PRODIGE 5/ACCORD 17 clinical trial.

Methods
We highlighted the differences between the PMM, SM,
and SPM in handling informative dropout when analyz-
ing a longitudinal HRQoL outcome and interpreted their
results in relation to those from the LMM. For this pur-
pose, we first made a methodological comparison of the
four models by highlighted their differences in terms of
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underlying modelling assumptions and interpretation.
The advantages and drawbacks of each of model are
then illustrated through an analysis of data from the
PRODIGE 5/ACCORD 17 clinical trial (NCT00861094).

Illustrative clinical trial
Study design
In the PRODIGE 5/ACCORD 17 clinical trial, 267 patients
with advanced esophageal cancer were randomly assigned
to either an experimental arm (N = 134) receiving a FOL-
FOX (fluorouracil plus leucovorin and oxaliplatin) regi-
men or a control arm (N = 133) receiving a fluorouracil
and cisplatin regimen as part of chemoradiotherapy treat-
ment. The primary endpoint was progression-free survival
and one of the secondary endpoints was HRQoL. The
statistical analysis of the primary endpoint revealed no sig-
nificant difference between the two treatment arms. More
details concerning inclusion and exclusion criteria, study
design, protocol treatment, HRQoL assessment, and com-
pliance have been previously published [20, 21].

HRQoL assessment
HRQoL was prospectively assessed using the European
Organisation for Research and Treatment of Cancer
(EORTC) Quality of Life Questionnaire Core 30 (QLQ-
C30, version 3.0) [22] at baseline, during treatment
(months 1.25 and 3), at month 4, and after treatment
during follow-up (at months 6, 12, 24, and 36). This self-
administered questionnaire contains 30 items evaluating
five functional scales, nine symptomatic scales/items,
and one global health status/HRQoL scale. Standardized
scores from 0 to 100 can be calculated for each scale ac-
cording to the scoring procedure recommended by the
EORTC [23]. A high score for the functional and global
health status scales corresponds to good functional cap-
acities and reflects a high level of HRQoL, whereas a
high score for the symptom scales corresponds to a high
level of symptoms and reflects a poor HRQoL. Four di-
mensions were pre-specified in the protocol as targeted
dimensions: global health status/HRQoL (QL scale),
physical functioning (PF scale), pain (PA scale), and fa-
tigue (FA scale). In what follows, we will consider only
these four dimensions (or scales).

Statistical analysis
All analyses were performed in the evaluable intent-to-
treat population: a patient was considered as evaluable
for a given scale when the score was available at least
once during the study, whatever the corresponding
measurement time. We used the four models described
below in Eqs. (1), (3), (5) and (8) to analyze the longitu-
dinal HRQoL score data conditionally to baseline covari-
ates in the presence of potentially informative monotone
missing data (dropout).

We first used the LMM that is valid under the MAR
assumption. We then modeled the joint distribution of
the longitudinal outcome and the dropout process using
three models that are valid under the MNAR assump-
tion: the SM and the PMM, which are based on the two
existing and converse factorizations of the joint distribu-
tion, and the SPM, where the longitudinal outcome and
the time-to-dropout are linked through a function of the
random effects. In these three models, we used the
LMM presented below as the sub-model for the HRQoL
score.

Linear mixed model (LMM)
We modeled the HRQoL score trajectories by a random
coefficients LMM. The HRQoL score for patient i at
time tj of the j-th planned visit was expressed as follows:

Y i t j
� � ¼ β0 þ β1t j þ β2 armi � t j

� �þ b0i
þ b1it j þ εi t j

� � ð1Þ

where armi is the arm indicator variable for patient i (0:
control, 1: experimental), β0 is the intercept, β1 the slope
in the control arm, and β2 the interaction effect corre-
sponding to the difference between the slopes in the ex-
perimental and control arms. With this parametrization,
the quantity β1 + β2 represents the slope in the experi-
mental arm. The random intercept b0i and the random
slope b1i take into account the repeated measurements
on the same patient and correspond to the individual de-
viations from the fixed intercept and slope, respectively.
They are assumed to be normally distributed with a
mean of 0 and a 2 × 2 unconstrained covariance matrix
to estimate. The error term denoted by εi(tj) is also as-
sumed to be normally distributed with a mean of 0 and
a variance to estimate.
In what follows, Yi, Xi, and Di denote respectively the

vector of longitudinal HRQoL scores, the vector of co-
variates, and the dropout variable for patient i.

Selection model (SM)
The SM is based on the decomposition of the joint dis-
tribution into the marginal distribution of the HRQoL
score and the conditional distribution of the dropout
variable given the HRQoL score:

f Y i;Di∣Xið Þ ¼ f Y i∣Xið Þ � f Di∣Y i;Xið Þ ð2Þ
where the dropout variable Di corresponds to the visit at
which the last available HRQoL assessment took place,
i.e., before patient i dropout. In cases of no dropout, Di =
J, where J is the number of planned visits. We modeled
the HRQoL score using the LMM in Eq. (1). We mod-
eled the conditional probability of dropout at each visit
j = 1, …, J by the logistic regression proposed by Diggle
and Kenward [24]:
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logit P Di ¼ j∣Di≥ j;Y i t j
� �

;Y i t jþ1
� �� �� �

¼ ψ0 þ ψ1Y i t j
� �þ ψ2Y i t jþ1

� � ð3Þ

The dropout probability is allowed to depend on the
last (observed) HRQoL score Yi(tj) and the current (un-
observed) HRQoL score Yi(tj + 1). A non-zero parameter
ψ1 would be in favor of the MAR assumption and a
non-zero parameter ψ2 in favor of the MNAR assump-
tion (informative dropout). If only the ψ0 parameter is
non-zero, the dropout can be considered to be inde-
pendent of the HRQoL score (MCAR assumption).

Pattern-mixture model (PMM)
The PMM is based on the other possible decomposition
of the joint distribution, that is, the decomposition into
the marginal distribution of the dropout variable and the
conditional distribution of the HRQoL score given the
dropout variable:

f Y i;Di j Xið Þ ¼ f Di j Xið Þ � f Y i∣Di;Xið Þ ð4Þ

where the dropout variable corresponds to the pattern
of missing data: Di = k, k = 1, …, K, where K is the num-
ber of possible patterns. In the simplest case, the variable
is defined as a dropout indicator (K = 2); in the most
complex case, the variable is defined as the number of
dropout possibilities: Di = k, k = 1, …, J, where J is the
number of planned visits. In our application, we classi-
fied a patient as belonging to a certain pattern when
she/he dropped out within a specific time interval cover-
ing one or several visits.
In the PMM, a multinomial distribution is assumed

for the dropout probability, meaning that the probability
of belonging to pattern k is simply estimated by the pro-
portion πk of patients belonging to pattern k.
We modeled the conditional HRQoL score trajectory

using an LMM similar to the LMM in Eq. (1) in each
pattern k:

Y ik t j
� � ¼ βk0 þ βk1t j þ βk2 armik � t j

� �þ b0ik
þ b1ik t j þ εik t j

� � ð5Þ

Note that in the PMM approach, the fixed effects dif-
fer according to the dropout pattern. The following for-
mula allows estimates to be obtained for the marginal
distribution of the HRQoL score (irrespective of the
pattern):

βl ¼
XK
k¼1

βkl πk ; l ¼ 0; 1; 2 ð6Þ

It corresponds to a weighted sum of the pattern-
specific parameters. Confidence intervals can then be
calculated using the delta method [25].

Shared-parameter model (SPM)
The SPM captures the association between the time-to-
dropout and the longitudinal HRQoL outcome through
shared parameters that include the random effects bi, so that
the HRQoL score and the dropout variable are supposed to
be conditionally independent given the random effects:

f ðY i;DijXiÞ ¼
Z

f ðY i;DijXiÞdbi

¼
Z

f ðY ijbi;XiÞ � f ðDijbi;XiÞ � f ðbiÞdbi
ð7Þ

where the dropout variable Di corresponds to a time-to-
dropout variable. In our application, dropout is not related
to an event occurring at any time but corresponds to non-
response after a certain visit. Thus, we defined Di as the
delay between inclusion and the last visit in which HRQoL
assessment occurred. We modeled the HRQoL score
using the LMM in Eq. (1). We modeled the risk of drop-
out at time tj using a Cox-type survival model.
In the SPM, the association between the HRQoL score

and dropout is modeled by including a function of the
variables and parameters from the model for Yi as a
time-dependent variable in the survival model. We used
the current value parametrization, which means that the
time-dependent variable corresponded to the true
current HRQoL score value: Y ⋆

i ðt jÞ ¼ Y iðt jÞ − εiðt jÞ: More
precisely, we used the following model for Di:

λi t j∣armi
� � ¼ λ0 tð Þ exp γarmi þ αY ⋆

i t j
� �� � ð8Þ

where λ0 is the baseline hazard function, γ denotes the
arm effect on the instantaneous risk of dropout, and α is
the parameter that quantifies the association between
risk of dropout and true current HRQoL score.

Statistical software
We fitted the four models to the PRODIGE 5/ACCORD
17 data using the R software (code available on request).
For LMM estimation, we used the restricted maximum
likelihood method (REML) from the R package nlme
[26]. The SM was not available in standard statistical
software and required sophisticated programming: the
Diggle and Kenward model involved marginalization
over the unobserved outcomes and the computation of
the likelihood required evaluation of integrals approxi-
mated by the Romberg numerical algorithm. We imple-
mented a maximum likelihood function procedure based
on a Newton-type algorithm. To apply the PMM re-
quired that we apply an LMM with indicator variables
for the pattern. We then combined the PMM estimates
following Eq. (6) to obtain marginal estimates and im-
plemented a delta method to obtain their confidence
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intervals. For the SPM, we used the R package JM [27]
by assuming a piecewise-constant function for the base-
line hazard λ0 with seven intervals for the baseline (six
internal knots placed at months 1.25, 3, 4, 6, 12, and 24)
and the pseudo-adaptive Gauss-Hermite method with
nine quadrature points to approximate the integrals over
the random effects.

Results
Methodological comparison
Table 1 compares the four approaches (LMM, SM,
PMM, and SPM) from a methodological point of view.
In cases of non-informative dropout (MAR assump-

tion), the likelihood-based LMM that uses all observed
data provides valid results; in cases of informative drop-
out (MNAR assumption), the risk of dropout needs to
be modeled using one of the three other approaches.
The SM explains the probability of dropout by a logis-

tic regression; the PMM estimates the probability of be-
longing to a certain pattern of dropout with a
multinomial distribution; the SPM uses a survival model
for the time-to-dropout. The SM and PMM suppose
that dropout occurs at the discrete assessment times of
the HRQoL. By contrast, the SPM treats the time vari-
able as continuous, making it possible to take into ac-
count the fact that the dropout could arise at any time
during the study.
The fixed parameters β0, β1, and β2 characterizing the

mean HRQoL score trajectories are directly estimated
using the LMM, SM, and SPM, or obtained indirectly by
extrapolation using the PMM. More precisely, the PMM
estimates the HRQoL score trajectory parameters at the
level of each pattern k; afterwards, marginal estimates
can be calculated as weighted averages using the propor-
tion πk of patients in each dropout pattern. Note that
this calculation implicitly extrapolates the HRQoL score
trajectories beyond the dropout. Thus, all models can be
used to graphically represent the mean HRQoL score
over time according to treatment arm, directly (LMM,
SM, SPM) or indirectly (PMM). The PMM provides
complementary graphs specific to the dropout pattern,
which can be useful to understand and visualize how the
risk of dropout is linked to the HRQoL. The SPM allows
a graphical representation of the risk of dropout over
time. The informative nature of the dropout can also be
tested using additional parameters of the SM or SPM:
the ψ2 coefficient in the logistic regression of the SM in-
dicates how the probability of the HRQoL score to be
missing at a certain time depends on the missing value
at this time, while the α coefficient in the Cox regression
of the SPM indicates how the instantaneous risk of
dropout at any time is associated with the current
HRQoL score.

Nevertheless, the models used to study the evolution
of HRQoL scores in the presence of informative dropout
require additional assumptions that are untestable on
the basis of the observed data. We have already men-
tioned extrapolating the HRQoL trajectories beyond the
dropout in the PMM. The SM is based on the assump-
tion of a normal distribution of the complete (i.e., ob-
served and unobserved) HRQoL score variable. The
SPM assumes independence between the longitudinal
outcome and dropout process conditionally to the ran-
dom effects.
The estimates of each model can be obtained using

usual statistical software (including R, SAS, and Stata).
Specific software has already been developed for LMM
and SPM. However, applying the SM and the PMM re-
quires a programming effort. In particular, applying the
SM requires implementation and maximization of the
likelihood function.

Application on data from the PRODIGE 5/ACCORD 17
clinical trial
Monotone missing data in HRQoL outcomes
At each scheduled visit, there were missing HRQoL
score data. From the 267 patients of the intent-to-treat
population (experimental arm: N = 134; control arm:
N = 133), the remaining evaluable patients, i.e., with at
least one available HRQoL score, were 252 for scale QL
(experimental arm: N = 130; control arm: N = 122), and
254 for scales PF, PA and FA (experimental arm: N =
131; control arm: N = 123). In fact, the proportion of
available scores for scales QL, PF, PA, and FA decreased
over time, mostly because of monotone missing data
that can be attributed to dropouts (see Fig. 1). For ex-
ample, for the QL scale, 16/130 patients (12%) in the ex-
perimental arm and 17/122 patients (14%) in the
standard arm dropped out after the baseline visit (V0,
baseline); at the last scheduled visit (V7, month 36), 125/
130 patients (96%) in the experimental arm and 115/122
patients (94%) in the standard arm had dropped out (i.e.,
only 5/130 (4%) and 7/122 (6%) patients completed the
questionnaire or the items associated with the QL scale
until V7). The distribution of the dropouts seemed
homogeneous in both treatment arms, regardless of the
dimension. The compliance in completing the entire
questionnaire was high at baseline (89 and 90% in ex-
perimental and standard regimen arms, respectively),
then reduced during treatment and follow-up. Some
missing items led to a lower compliance for dimension
QL than for the others (for example, at baseline: 83% for
QL vs. 89% for PF and 88% for PA and FA in the experi-
mental regimen arm, and 86% for QL vs. 90% for PF, PA
and FA in the standard regimen arm) (see Supplemen-
tary Figure 1).
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Definition of the patterns for the PMM approach
We defined four patterns of dropout with well balanced
effectives and a reasonable number of patients by pat-
tern as well as clinically pertinent (see Fig. 1).
The first pattern grouped the patients who dropped

out before visit V3 (last HRQoL measurement at V0, V1,
or V2), that is, during or just after the period of radio-
chemotherapy and chemotherapy treatment. The pa-
tients who dropped out between V3 and V5 (last
measurement at V3 or V4) formed the second pattern,
and between V5 and V6 (last measurement at V5) the
third pattern. The last pattern grouped the patients who

dropped out between V6 and V7 (last measurement at
V6) and the patients who did not drop out. For the QL
dimension for example, the 252 evaluable patients were
distributed as follows: 89/252 (π1 = 35%), 70/252 (π2 =
28%), 58/252 (π3 = 23%), and 35/252 (π4 = 14%) in the
four respective patterns (for the other dimensions, see
Fig. 1).
The results of the longitudinal analysis of the QL, PF,

PA, and FA scales of the EORTC QLQ-C30 using the
four previously described approaches are summarized in
Table 2 (estimates, 95% confidence intervals, and associ-
ated p-values of the Wald test) and graphically

Table 1 Methodological comparison of the four models used for analysis of longitudinal HRQoL score data

LMM SM PMM SPM

MODELING

Validity of
the model

Under MAR
assumption

Under MNAR
assumption

Under MNAR assumption Under MNAR assumption

Model for
the HRQoL
outcome Y

LMM LMM LMM by pattern LMM

Model for
the dropout
variable

– Logistic
Dropout at specific
time (discrete)

Multinomial
Dropout at specific time (discrete)

Survival model
Dropout at any time (continuous)

Graphical
outputs

Mean HRQoL
score over time
according to
treatment arm

Mean HRQoL score
over time according to
treatment arm

(Mean HRQoL score over time according to
treatment arm)
Mean HRQoL score over time according to
treatment arm for each dropout pattern

Mean HRQoL score over time
according to treatment arm
Hazard function of dropout
according to treatment arm

ESTIMATIONS AND INTERPRETATION

Main
estimated
parameters

Fixed effects (β0,
β1, and β2)

Fixed effects (β0, β1,
and β2)
Logistic regression
coefficients (ψ0, ψ1, and
ψ2)

(Fixed effects overall patterns (β0, β1, and β2))
Fixed effects in each pattern k (βk0, β

k
1, and βk2)

Proportion in each pattern (πk)

Fixed effects (β0, β1, and β2)
Association parameter (α)
Effect of arm on instantaneous risk
of dropout (γ)

Interpretation
Improvement/
deterioration of
the HRQoL

Improvement/
deterioration of the
HRQoL
Testing MNAR
assumption:
a non-null ψ2 when
probability of dropout
is associated with un-
observed Y

(Improvement/deterioration of the HRQoL)
Improvement/deterioration of the HRQoL in
each dropout pattern

Improvement/deterioration of the
HRQoL
Risk of dropout over time
Testing MNAR assumption: a non-
null α when instantaneous risk of
dropout is associated with current
value of Y

Underlying
assumptions

– Normality of the
complete (observed
and unobserved) Y

Extrapolation of the conditional distribution of
Y (given the dropout pattern) beyond the
dropout to obtain estimations for the marginal
distribution of Y

Conditional independence of Y and
T given the random effects
Normality assumption of the
random effects distribution

Key
limitations

Do not account
for informative
dropout

Dropout in discrete
time
Not directly available in
classical statistical
software

Dropout in discrete time
Do not directly provide marginal estimates

Computationally challenging to
approximate integrals over random
effects

Main
software

R (nlme)
SAS (PROC
MIXED)
Stata (mixed)

S plus (OSWALD, pcmid
function but not
currently available)
Implemented with R in
our application
(sophisticated
programming)

Implemented with R in our application (easy
programming)

R (JM, JMBayes)
SAS (%JM)
Stata (stjm)

Legend: LMM Linear Mixed Model, SM Selection Model, PMM Pattern-Mixture Model, SPM Shared-Parameter Model, MCAR Missing Completely At Random; MAR
Missing At Random, MNAR Missing Not At Random, HRQoL Health-Related Quality of Life
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represented in Fig. 2 (estimated slope β̂1 and interaction

β̂2 parameters).
No significant treatment-by-time interaction effect β2

was exhibited by the LMM. This was also the case for the
SM, PMM, and SPM that had taken into account the
dropout. Thus, none of the models suggested a significant
effect of the treatment on the score evolution of the QL,
PF, PA, and FA scales. The interaction parameters for the

LMM (QL: β̂2 ¼ − 0:130; PF: β̂2 ¼ − 0:112; PA: β̂2 ¼ 0:2

76; and FA: β̂2 ¼ 0:275) were very close to those for the
SM and SPM for all four dimensions. The interaction esti-
mates from the PMM differed greatly from those of the

other methods (QL: β̂2 ¼ 0:464 ; PF: β̂2 ¼ 0:300 ; PA:

β̂2 ¼ − 0:501; and FA: β̂2 ¼ − 0:098) but also showed a
greater uncertainty (larger confidence intervals).
The LMM showed a significant time effect for three of

the four dimensions. More precisely, this model showed

an increase in scale QL (β̂1 ¼ 0:513; p < 0:001) and a de-

crease in scales PA ( β̂1 ¼ − 0:472; p ¼ 0:008 ) and FA

( β̂1 ¼ − 0:514; p ¼ 0:003 ), reflecting a better level of
HRQoL.
The SM confirmed or contradicted these results, de-

pending on whether an association with the probability of
dropout was detected or not. The SM and LMM esti-
mated similar effects of time in the QL and in the PA scale
where the dropout seemed to be ignorable (non-signifi-
cant ψ̂2 ). However, there were unclear results with
optimization difficulties: for scale QL, a numerical issue
when inverting the Hessian matrix made it impossible to

estimate the standard errors of β̂1, and therefore its confi-

dence interval and associated p-value were not available;
in view of the results for the PA scale, we could question
whether or not the algorithm converged to a local mini-
mum. When the SM detected an informative dropout (PF:
ψ̂2 ¼ 0:107; p < 0:001 and FA: ψ̂2 ¼ − 0:097; p < 0:00
1), the estimated effect of time was larger than that esti-
mated by the LMM, with a substantial increase in PF (SM:

β̂1 ¼ 1:434; p < 0:001 vs. LMM: β̂1 ¼ − 0:164; p ¼ 0:266)

and decrease in FA (SM: β̂1 ¼ − 2:484; p < 0:001 vs.

LMM: β̂1 ¼ − 0:514; p ¼ 0:003). However, the values of
ψ̂2 were counterintuitive, suggesting that the probability
of dropout increased with an unobserved score value that
corresponded to a higher level of HRQoL.
The marginal effect of time derived from the PMM es-

timates was ambiguous for all dimensions. For scales QL
and PA, the direction of the time effect (i.e., the sign of

β̂1 ) was reversed and no longer significant compared to
the LMM. For the PF and FA scales, the HRQoL deteri-
oration was aggravated compared to the LMM, with a

significant increase in PF (PMM: β̂1 ¼ − 2:652; p < 0:00

1 vs. LMM: β̂1 ¼ − 0:164; p ¼ 0:266 ) and FA (PMM:

β̂1 ¼ 3:157; p < 0:001 vs. LMM: β̂1 ¼ − 0:514; p ¼ 0:003),
corresponding exactly with the same dimensions for
which the SM had detected informative dropout.
We observed that the estimated effect of time in the

first pattern differed greatly from those in all other pat-
terns (see also Fig. 3, which depicts the score trajectories
by pattern).
The estimates in this pattern with a maximum of three

repeated measures showed poor functional capacities

Fig. 1 Patients who dropped out after visits V0 to V6, or did not drop out (V7). Legend: Ratio calculated by treatment arm in evaluable patients for
each of the four dimensions of EORTC QLQ-C30 (QL, global health status; PF, physical functioning; PA, pain; and FA, fatigue) during radiochemotherapy
(RT), chemotherapy (CT), and follow-up visits (V)
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(QL: β̂
1
1 ¼ − 2:611; p ¼ 0:086 and PF: β̂

1
1 ¼ − 6:526;

p < 0:001) and high levels of symptoms (PA: β̂
1
1 ¼ 4:582;

p ¼ 0:027 and FA: β̂
1
1 ¼ 8:574; p < 0:001). The estimates

in this pattern were so important that they highly influ-
enced the marginal estimates which could explain the dif-
ference in comparison with the other models.
As for the treatment-by-time interaction effect, we also

observed that the 95% confidence intervals for the time
effect were much larger than those seen in the other
three models, reflecting more uncertainty.
For scales QL and PA, the estimated effect of time in

the SPM was similar to that in the LMM. No association
was detected between the risk of dropout and the current
HRQoL score value, which confirmed the results of a
non-informative dropout already identified by the SM. In
contrast with the SM, the SPM also did not detect an as-
sociation between the risk of dropout and the score in the
FA scale, and the estimated time effect was similar to the
LMM estimate. In fact, the SPM only detected a signifi-
cant association between the risk of dropout and the score
in the PF scale (also found by the SM) ( α̂ ¼ − 0:015;

p ¼ 0:006). In particular, a decrease of 10 points in the PF
score corresponded to a risk of dropout multiplied by 1.16
(95% confidence interval: [1.00, 1.35]). The estimation of

the time effect was impacted (SPM: β̂1 ¼ − 0:394; p ¼ 0:0

78 vs. LMM: β̂1 ¼ − 0:164; p ¼ 0:266). Finally, the SPM
allowed a more detailed analysis of the dropout process.
The baseline hazard function was high at the beginning of
the study and then decreased over time for the four scales

(see the ξ̂1;…; ξ̂7 estimates). Besides this, the arm effect γ
in the survival model was always non-significant, which
suggests that there was no difference in the risk of drop-
out between the treatment arms.
Finally, Fig. 4 depicts how the differences between the

models impacted the estimated HRQoL score trajectories.
The trajectories predicted by the PMM differed from

the other models, showing poor functional capacities
(QL and PF) and high levels of symptoms (PA and FA).
The trajectories predicted by the SM contrasted with
those of the PMM, particularly for scales PF and FA.
Globally, the trajectories predicted by the SPM were
consistent with those of the LMM.

Fig. 2 Estimated parameters and 95% confidence intervals. Legend: Time effect β1 (slope in the control arm) and interaction effect β2 (slope
difference between the experimental and control arm) for the four dimensions of the EORTC QLQ-C30 (QL, PF, PA, and FA) according to the
LMM, PMM, SM, SPM

Fig. 3 Predicted HRQoL score trajectories of the pattern-mixture model. Legend: Predictions over time by treatment arm regimen for the four
dimensions of EORTC QLQ-C30 (QL, PF, PA, and FA). The linear trajectories are shown in pattern 1 (last measurement at visits V0 = 0, V1 = 1.25, or
V2 = 3months), pattern 2 (last measurement at visits V3 = 4 or V4 = 6months), pattern 3 (last measurement at visits V5 = 12months), pattern 4
(last measurement at visits V6 = 24 or V7 = 36months, i.e., no dropout) and the overall patterns (marginal HRQoL scores). The solid line refers to
the control fluorouracil-cisplatin regimen and the dashed line refers the experimental FOLFOX regimen
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Discussion
Three approaches exist to model the joint distribution of
a longitudinal outcome, such as a longitudinal score, and
a dropout process: the SM, the PMM, and the SPM. In
this article, we have compared them; firstly, from a
methodological point of view, and secondly, when ap-
plied to data from the randomized clinical trial PRO-
DIGE 5/ACCORD 17, which included 267 patients with
advanced esophageal cancer. We have also compared
the results of the three models with those obtained with
the LMM.
All three approaches have different advantages and

could be complementary. They also have different draw-
backs and require assumptions that are untestable since
they are based on unobserved data.
The PMM makes it possible to describe and study the

HRQoL trajectories in each dropout pattern. In the ap-
plication, the PMM revealed that the earlier the patients
dropped out, the stronger their HRQoL deterioration.
Besides this, by highlighting the different evolutions of
HRQoL scores according to the dropout pattern, one
can presume that the dropout process is informative.
However, the PMM does not directly provide marginal
estimates that would allow conclusions to be made for
the whole population unless assumptions are made
about the evolution of HRQoL trajectories after dropout.
In our application we considered a simple PMM model
with a linear HRQoL trajectory within each dropout pat-
tern and a first pattern grouping patients with 1, 2 and 3
observations. It resulted in a direct and easy-to-
implement formulation of the marginal estimates and
implied that the HRQoL score evolution after dropout
was extrapolated as an extension of the linear trajector-
ies. This gave results that contradicted those obtained
with the other models (the LMM, SM, and SPM) and
with larger confidence intervals. Indeed, the first pat-
terns including patients with few repeated measurements
and a strong HRQoL deterioration highly influenced the

marginal estimates. Note that in a more complex model,
making identifying assumptions would be necessary [28];
a common strategy consists in using identifying restric-
tions [29]. Although unverifiable, the assumptions neces-
sary to achieve identifiability in the PMMs and obtain
marginal estimates have the advantage of being explicit.
The SM and SPM are interesting approaches because

they can test the mechanism of missing data through in-
terpretable parameters obtained from the logistic regres-
sion (SM) or the Cox model (SPM). In the application,
when the dropout was detected as non-informative by
the SM or the SPM the results for the trajectories of
HRQoL were similar to those of the LMM and led to
the same conclusions. Both models detected an inform-
ative dropout in the PF dimension but only the SM de-
tected an informative dropout in the FA dimension. The
SPM results were consistent with the LMM results and
had a coherent interpretation. In contrast, the SM re-
sults revealed that the probability of dropout increased
with an unobserved score value corresponding to a
higher level of HRQoL. It is possible that these unex-
pected results are the consequence of the strong as-
sumption of a normal distribution of the complete
(observed and unobserved) HRQoL score values. Indeed,
it has been shown that the SM is particularly sensitive to
this unverifiable assumption [24, 30].
The SPM makes also modeling assumptions. In par-

ticular, it relies on the conditional independence be-
tween the longitudinal outcome and dropout process
given the random effects. The random effects are also
supposed to be normally distributed. Rizopoulos et al.
showed that estimation of the parameters and standard
errors could be sensible to misspecification of the ran-
dom effects distribution, especially when some patients
have very few measurements (early dropout) [31]. Note
that in this application, we considered that the risk of
dropout was associated with the HRQoL score through
its current value. Other association structures could be

Fig. 4 Predicted HRQoL score trajectories. Legend: Predictions for the four dimensions of the EORTC QLQ-C30 (QL, PF, PA, and FA) according to
the LMM, PMM, SM, and SPM. The solid line refers to the control fluorouracil-cisplatin regimen and the dashed line refers the experimental
FOLFOX regimen
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considered, including the current slope or the random
effects alone. The SPM alone is able to take into account
dropout by modeling time-to-event data. Thus, unlike
the PMM and the SM, the SPM treats the time-to-
dropout as continuous. In our application, we used
discrete dropout times corresponding to pre-specified
assessment times, but the SPM would allow researchers
to take into account dropouts corresponding to clinical
events such as death, which can occur at any time be-
tween the HRQoL assessment times. By contrast, the use
of the SPM was facilitated by the standard statistical
software [27, 32–34]. Moreover, the existing programs
allow for flexible models for the longitudinal outcome,
more complex models for the time-to-dropout, and dif-
ferent association structures to capture the association
between the longitudinal outcome and the time-to-
dropout.
In this article, we have analyzed HRQoL data from the

PRODIGE 5/ACCORD 17 clinical trial under three pos-
sible MNAR models accounting for informative dropout
and the MAR corresponding model. MNAR methods,
especially PMM, can also be used for sensitivity analysis
to assess the robustness of the results [35].
This work has some limitations. The main objective was to

compare MNAR models from a practical point of view but
this does not allow to clearly decide between one model or
the other. A simulation study would allow a comparison with
statistical criteria by example in case of misspecification or
by varying the proportion of missing data.
Longitudinal analysis of the HRQoL in the presence of

missing data remains complex and unstandardized. Re-
views and guidelines about reporting missing patient-
reported outcome data in clinical trials have been pub-
lished [36, 37]. It is recommended that the amount of
missing data in each arm is reported and that the statis-
tical methods used to handle missing data are explicitly
specified. Nevertheless, there is no consensus for analyz-
ing such data. Indeed, there is a lack of standardization
and a gap between the development of statistical
methods and their use in clinical trials [38, 39].

Conclusions
This article aims to facilitate the understanding and use
of such methods allowing analysis of longitudinal
HRQoL data that include missing data due to dropout.
Nevertheless, including in clinical trial protocol a plan to
collect the reasons for non-responses would help to bet-
ter characterize the missingness. Then, if informative
dropout is suspected, we recommend using models that
account for dropout, such as the SPM. In studies where
no information is available on the reasons for missing-
ness, the SPM can be used to confirm or invalidate the
results of LMMs.
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