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Macroscopic and microscopic properties of dense granular layers flowing down inclined planes
are obtained from Discrete-Element-Method simulations for both frictionless and frictional grains.
Three fundamental observations for dense granular flows are recovered, namely the occurrence of a
critical stress, the Bagnold velocity profile, as well as well-defined friction and dilatancy laws. The
microscopic aspects of the grain motion highlight the formation of transient clusters. From this
microscopic picture, we derive a theoretical scaling model without any empirical input that explains
quantitatively the fundamental laws of dense granular flows in incline plane and shear geometries.
The adequacy between the model and the observed results suggests that granular flows can be
viewed as flows from thermal fluids of hard spheres.

Despite several decades of intense research, the mech-
anisms underlying dense granular flows remain largely
misunderstood. A universal framework allowing one to
describe the numerous configurations and observations
studied in the laboratory is still lacking [1]. Most models
remain semi-empirical and are not supported by strong
microscopic justifications [2–5]. The global flow prop-
erties are usually described using the popular µ(I) rhe-
ology. This approach consists in two empirical relations
between the macroscopic friction coefficient µ (defined as
the ratio between the shear stress and the pressure) or
the volume fraction φ on one hand, and the inertial num-
ber I = γ̇d

√
ρp/P on the other hand, involving the shear

rate γ̇, the grain size d, the mass density ρp ∼ m/d3 of the
grains, their individual mass m, and the pressure P [2, 6].
Essentially, in this Amontons-Coulomb-like description,
a granular layer starts to flow when the applied shear
stress overcomes a critical frictional stress µcP . Never-
theless, this description fails to properly rationalize some
important observable features, such as the presence of a
metastable region [7, 8] and the layer-thickness depen-
dence of the angle at which the flow stops [9–12]. These
last decades, it has been shown that nonlocal/cooperative
effects are mandatory to properly describe dense granular
flows [13–20].

In this Letter, using a combination of Discrete-
Element-Method (DEM) simulations and a model based
on microscopic arguments, we address the rheology of
dense granular matter from the canonical setting of a
layer flowing down an inclined plane. Therein, the in-
clination angle θ and the layer thickness H are the
two external control parameters. Previous experimen-
tal and numerical studies have shown that the local av-
erage velocity profile of a thick granular layer flowing
over an inclined plane exhibits a so-called Bagnold pro-
file [1, 21, 22], i.e. 〈v(z, t)−v(0, t)〉 ∼ H3/2− (H− z)3/2,
where v(z, t) is the local velocity field along the flow di-
rection, at normal coordinate z and time t. Besides, it

has been suggested that nonlocal cooperative effects are
essential to describe the layer-thickness dependance of
the stop angle [19, 20], i.e. the smallest angle for which
a stationary flow is observed. We will see here that the
mechanical noise related to grain-grain collisions deter-
mines an effective temperature. This concept coupled to
the formation of clusters appears to be a fundamental
issue to derive a model for granular flow based on the
hard sphere fluid limit. The proposed model is able to
predict the size of dynamic clusters, the Bagnold veloc-
ity profile as well as the two empirical relations, µ(I) and
φ(I), commonly used to fit experimental and numerical
data [2, 6].

The numerical simulations were performed with the
software LIGGGHTS [23]. The system consists in a
layer of identical grains, with diameter d = 1 mm, mass
m = 4

3πρpd
3/8 and elastic modulus, E = 1MPa, placed

on an inclined plane with an inclination angle θ (see
Fig. 1a). We focus here on thick-enough layers, in order
to avoid the thickness dependence of the stop angle ob-
served for thin layers [9–12]. The mechanical properties
of the simulated grains are set to be exactly the same
as in our previous study [20], and correspond to glass
beads [9]. In particular, the microscopic coefficients µs

and µr of sliding and rolling frictions are set to 0.5 and
0.01, respectively. In addition, frictionless grains (i.e.,
µs=µr=0) are also simulated. The influence of the mi-
croscopic friction has also been studied, see SI [24]. The
substrate is made of immobile grains to mimic the glued
grains in inclined-plane experiments. We impose periodic
boundary conditions in the x and y directions to get rid
of side-wall effects [25]. The size of the base has been
carefully chosen in order to be large enough to avoid au-
tocorrelations due to periodicity. We stress that similar
set-ups have already been reported [7, 21, 22].

Before the inclination of the plane, the layer has an ini-
tial vertical thickness Hi ranging between 10 d and 60 d,
with a base of 20 d × 20 d in the horizontal plane. The
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FIG. 1. a) Typical snapshot of a DEM simulation, with ini-
tial layer thickness Hi = 30 d and inclination angle θ = 24◦.
The color code indicates the velocity v(z, t). b) Macro-
scopic friction coefficient µ as a function of inertial number
I = γ̇d

√
ρp/P for frictionless (diamonds) and frictional (cir-

cles) grains, as well as various inclination angles θ, initial layer
thicknesses Hi, and various setup configurations [1, 13, 22, 28–
30]. c) Difference µ − µc in friction coefficient as a function
of inertial number I, where µc = µ(I → 0), for the same data
as in the previous panel. The solid and dashed lines corre-
spond to fit with µ − µc ∼ Iγ , the values of γ are provided
in legend. d) Ratio of volume fraction φ/φc as a function of
inertial number I for frictionless (diamonds, φc ' 0.64) and
frictional (circles, φc ' 0.6) grains. Data from [22, 28] are
added for comparison. The solid and dashed lines correspond
to fit with φ/φc = 1 − aIα, the values of α are provided in
legend.

plane is subsequently inclined briefly at 30◦ to initiate the
flow. Subsequently, the inclination is fixed at the desired
angle θ, ranging between 20◦ and 40◦. For each value of
Hi and θ, the actual layer thickness H along z, and the
mean volume fraction φ of the whole layer (averaged over
at least 10 time steps in the steady state) are measured.
The average local velocity profiles 〈v(z, t)〉 and the iner-
tial number I are also computed. As a remark, we have
the relation γ̇(z) = d〈v(z, t)〉/dz. The averages 〈〉 are
performed over time and realizations, at fixed z.

In agreement with previous works [1, 7, 21, 22], we ob-
serve that: i) there is a critical stress to induce flow for
dense granular layers, corresponding to a macroscopic
friction coefficient 0.2 ≤ µc ≤ 0.4 for frictional grains,
and 0.1 for frictionless grains (Fig. 1b); ii) the local aver-
age velocity profile is well described by a Bagnold profile
(see Fig. S2a in SI [24]); iii) the volume fraction φ (see

Fig. S2b in [24]) and the inertial number I (see Fig. S2c
in SI [24]) remain mostly constant throughout the layer,
for all the studied inclination angles. As proposed in sev-
eral studies [6, 26, 27], dimensional analysis shows that
only one dimensionless parameter is required to describe
granular flows, i.e., the inertial number I (besides the
microscopic friction coefficient). The flow properties are
characterized through the frictional, µ = µ(I), and the
dilatancy, φ = φ(I) laws. The macroscopic friction co-
efficient µ is determined by the shear to normal stress
ratio [2, 6, 27]. For the inclined-plane geometry consid-
ered here, both the macroscopic friction coefficient and
the pressure are prescribed through the inclination θ of
the plane and the height H of the flowing layer [27]. In a
continuum-limit approximation, the effective friction co-
efficient for this setup is thus fixed to a constant value,
µ = tan(θ) ' θ for the range of inclination angles of in-
terest. From dimensional analysis and since µ does not
depend on z/d, we can conclude that I and φ are constant
throughout the layer and fully determined by the incli-
nation angle θ and the microscopic friction coefficient.

As previously shown, Fig. 1c confirms that µ(I) is well
described by µ−µc ∼ Iγ , with γ = 0.40±0.01 for friction-
less grains [13, 28]. For frictional grains, γ = 0.95± 0.01
for moderate inclination angles (I <∼ 0.1) in agreement
with previous observations [1, 22, 29, 30]. It should
be noted that for large inclination angles, we observe a
change of the exponent that becomes close to the value
of frictionless systems γ = 0.4. The exponent for fric-
tional grains does not depend on the (finite) values of
the microscopic friction coefficients (see Fig. S1a in [24]),
thus indicating the singularity of the frictionless limit.
In contrast, µc depends on the microscopic friction co-
efficients, but even for frictionless assemblies a non-zero
value close to 0.1 is observed [12, 24, 28]. The exact ori-
gin of this residual macroscopic friction remains unclear,
but should be related to the steric contraints associated
with granular topography [31].

The dilatancy laws obtained from the DEM simula-
tions are shown in Fig. 1d and compared to data from
the literature [27, 32, 33]. For all these combined data,
the evolution of the packing fraction with I can be em-
pirically described by the relation φc − φ ∼ Iα, where
φc = φ(I → 0) is the volume fraction at kinetic arrest,
and with α = 0.89±0.1 and 0.73±0.34, for frictional and
frictionless grains, respectively. Note that for friction-
less grains, another functional form was proposed [28]:
1/φ − 1/φc ∼ I0.4 but remains valid only for very small
inertial numbers, i.e. I <∼ 10−2.

Hereafter, we investigate the microscopic origin of
these laws. As proposed by several authors, the veloc-
ity fluctuations and the diffusion coefficient of the grains
are strong indicators of their dynamics [34, 35]. A dense
granular flow is characterized by rapid collisions involving
sudden changes of the velocity direction and renewal of
the contact network. Assuming that all these events oc-
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FIG. 2. a) Thickness-averaged standard deviation δv of the
velocity field normalized by a typical shear velocity γ̇d, as
a function of the inertial number I, for frictionless (dia-
monds) and frictional (circles) grains. Results from previ-
ous works [27, 28, 34] are also shown for comparison. The
dashed line correspond to fit with δv/γ̇ ∼ I−β , the value of
β is provided in legend (the fit is limited to small I’s values,
I < 0.05). The solid line is a guide for the eyes and corre-
sponds to a(1 + b/I0.52) with a=0.25 and b=1.5. b) Local
variance δv2(z) = 〈|v(z, t) − 〈v(z, t)〉|2〉 of the velocity field
v(z, t), as a function of rescaled normal coordinate z/d, for a
layer of frictional grains initially characterized by Hi = 60 d
and various inclination angles θ as indicated. An affine solid
line is added as a guide for the eye. c) Thickness-averaged
diffusion coefficient Dz along z as a function of the thickness-
averaged standard deviation δv of the velocity field for fic-
tional grains. The solid line indicates a fitted expression as
provided in the legend. d) Correlation time τ of the thickness-
averaged velocity fluctuations (see Fig. S3b in SI [24]) as a
function the inertial number I. The black solid line corre-
sponds to 0.26 d/(lcγ̇), with lc/d = a(1+b/I0.52) with a=0.25
and b=1.5 found in panel a.

cur at high frequency compared to the evolution of mean-
field quantities, they can be described through a granular
temperature [26]. A reasonable assumption is to consider
that this temperature is related to the local velocity fluc-
tuations, through the proportionality relation kBT (z) ∼
mδv2(z), with δv2(z) = 〈|v(z, t) − 〈v(z, t)〉|2〉 the local
variance of the velocity field v(z, t) along the flow direc-
tion. Figure 2b shows the evolution of the dimensionless

standard deviation δv/(dγ̇), where A = 1
H

∫H
0

dz A(z)
represents the thickness average of A(z), as a function of
the inertial number, for frictional and frictionless grains.
We stress that the dimensionless standard deviation is
independent of z due to the Bagnold profile satisfied by
〈v(z, t)〉 (see Fig. S2a in SI [24]) and the affine spatial be-
haviour of the variance observed in Fig. 2a. Interestingly,
no matter the frictional nature of the grains, all the data

reported here and in the literature collapse onto a single
master curve showing a decrease of the relative velocity
fluctuations with increasing inertial number. For small
I values (I < 0.07), the dimensionless standard devia-
tion decreases as I−0.52±0.01, while it seems to saturate
to a constant value at large I [34]. Interpolating the two
asymptotic behaviours through a simple crossover form,
one gets δv/(dγ̇) = a(1 + b/I0.52), that fits well the data
with a = 0.25 and b = 1.5 (see black line in Fig. 2a).

Let us now investigate the impact of the effective ther-
mal energy on the grain dynamics. As shown by the
time evolution of their thickness-averaged mean-square
displacement along z (see Fig. S3a in SI [24]), the grains
globally diffuse perpendicularly to the flow direction, at
long time with an associated thickness-averaged diffu-
sion coefficient Dz increasing with the inclination angle
θ. Furthermore, as shown in Fig. 2c, Dz increases lin-
early with the thickness-averaged standard deviation δv
of the velocity field. This linear relation can be under-
stood from the thickness-averaged Kubo relation:

Dz =

∫
dt 〈w(z, t)w(z, 0)〉 ∼ τ(z)δv2(z) ∼ d δv , (1)

with w(z, t) the velocity field along z, at position z and
time t, and where we assumed isotropic local velocity cor-
relations of amplitude δv2(z) decaying in an exponential
fashion over a local characteristic time τ(z) ∼ d/δv(z).
In addition, given the affine trends in Fig. 2b, one can
show that τ ∼ d/δv. The thickness-averaged temporal
correlations functions 〈w(z, t)w(z, 0)〉 of the velocity field
along z, as calculated from the DEM trajectories (see
Fig. S3b in SI [24]), appear to decay faster with in-
creasing θ. Neglecting long-time power-law tails, we can
show that the exponential-decay time of 〈w(z, t)w(z, 0)〉
is well approximated by ∼ τ . Besides, the velocity cor-
relations suggest the existence of dynamic clusters that
persist over the correlation time. We thus hypothesize
the existence of a characteristic, mesoscopic and a pri-
ori z-dependent size lc(z) over which dynamic clusters
persist during the time τ(z). This is reminiscent of the
vortices discussed by Kharel and Rognon [34]. As pro-
posed by DeGiuli et al., these clusters produce an am-
plification of the velocity fluctuations that is estimated
through a “lever” effect [36, 37]. Specifically, one has
lc(z) ∼ d/[τ(z)γ̇(z)], and, with the definition τ ∼ d/δv,
one gets δv(z)/[dγ̇(z)] ∼ lc(z)/d where the amplification
factor appears clearly. Interestingly, since the left-hand
side of the latter relation is independent of z, as dis-
cussed above, one gets that the dynamic-cluster size lc
is in fact independent of z for the inclined-plane con-
figuration. Figure 2d shows τ , as estimated from the
thickness-averaged temporal correlations functions (see
Fig. S3b in SI [24]), as a function of I. The data are
in agreement with the relation τ ∼ d/[lcγ̇] with the lc
derived from the crossover expression between the two
asymptotic regimes of Fig. 2a. Since the expression for lc
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is independent of the frictional nature of the grains, this
agreement suggests that the size of the dynamic clusters
is mainly determined by the collisions between grains,
but not by the microscopic friction between them. Fur-
thermore, from Fig. 2a this dynamic-cluster size is ex-
pected to diverge at kinetic arrest – which is reminiscent
of the hypothetical cooperative length associated with
the glass and jamming transitions. It should however be
noted that some influence of the microscopic friction coef-
ficient has been observed by DeGiuli and Wyart [36, 37],
but for very small I values that are well below the range
accessed here.

In the following, we aim deriving the macroscopic
rheological laws from the microscopic fluctuations and
correlations. From dimensional analysis, we have re-
called that a single parameter determines the flow prop-
erties. In the inclined-plane geometry, all dimension-
less parameters are uniquely determined by the incli-
nation angle θ ' µ. Therefore, the dimensionless ratio
Pd3/(kBT ) should be constant in the layer for inclined-
plane experiments. In a continuous mean-field approx-
imation, the pressure field is hydrostatic, i.e. P (z) =
φρpg(H − z) cos θ ' φρpg(H − z). It thus follows that
the effective temperature must vary with the depth ac-
cording to T (z) ∝ (H − z). As observed in Fig. 2b,
apart from slight boundary deviations, the affine relation
δv2(z) ∝ (H − z) is satisfied for all the tested inclination
angles θ, which supports the definition of the effective
temperature through kBT (z) ∼ mδv2(z). Interestingly,
the effective temperature and the associated mechanical
noise are maximal near the substrate and vanish at the
free interface. This suggests that the collisions between
mobile grains and the glued ones at the substrate is the
source of temperature in the system. Furthermore, using
the definition of the inertial number, the pressure can be
written as P (z) ∼ mγ̇(z)2/(dI2). Combining this rela-
tion with δv(z) ∼ lcγ̇(z), and the definition of the effec-
tive temperature, one gets Pd3/(kBT ) ∼ d2/(l2cI

2). The
cluster size can be derived from free volume and clus-
ter fractal shape arguments. Indeed, the required free
volume to allow the motion of a grain implies the col-
lective motion of Nc grains forming a dynamic cluster.
The number of grains involved scale as Nc ∼ 1/(φc − φ).
Assuming chain-like clusters with random walk-like ge-
ometry [38, 39], their size should be given by lc ∝ Nν

c

with ν ' 0.5 − 0.6. The size of the cluster then scales
with the packing fraction as lc ∼ d/(φc − φ)ν . Insert-
ing this relation in the expression for the pressure yields
Pd3/(kBT ) ∼ (φc − φ)2ν/I2. By identifying the lat-
ter relation with the equation of state (EOS) for hard-
sphere fluids near the jamming transition [40, 41], i.e.
Pd3/(kBT ) = φJ/(φJ − φ), one gets the dilatancy law:

(φc − φ) ∼ I2/(2ν+1) . (2)

with 0.91 ≤ 2/(2ν+1) ≤ 1, provided that we assume that
φJ = φc. These dependencies in inertial numbers are

in agreement with the observations. For the dilatancy
law, Fig. 1d shows that the exponent α = 2/(2ν + 1)
is equal to 0.89 ± 0.10 for frictional and 0.73 ± 0.34 for
frictionless grains. The large uncertainty observed for
frictionless data is related to the lack of values at large I.
For the cluster size, the theory predicts a law lc ∼ d/Iβ

with β = 2ν/(2ν + 1). As shown in Fig. 2a, we observe
β = 0.52± 0.01 in very good agreement with the predic-
tion for this exponent, i.e. 0.5 ≤ β ≤ 0.54. The universal
agreement for both frictionless and frictional grains can
be related to the evolution of the cluster size with inertial
number, and reflects once again the dominance of colli-
sions over friction in the dynamics. The validity of the
hard-sphere-fluid EOS is probably limited to moderate
inertial numbers, i.e. I <∼ 0.5, where the granular system
can be considered as a fluid and where the mechanical
noise ensures that no long-range correlations develop.

Let us finally propose a microscopic picture for the
µ(I) rheological law. To do so, we consider the steady-
state balance of driving and dissipated powers for a test
grain located in a slab of thickness d at height z. First,
to estimate the driving contribution, we consider that
the grain experiences the sum of gravitational and fric-
tion forces projected in the flow direction, and that θ
and θc are small, leading to an effective driving force
∼ ρpφg(H−z)d2(θ−θc). Since the grain moves over a dis-
tance d within a time γ̇(z)−1, the net local driving power
is Ẇd(z) ∼ ρpφg(H − z)d3(θ − θc)γ̇(z). Secondly, we as-
sume that the energy is mainly dissipated through the
collisions with other grains, characterized by the char-
acteristic decay time τ(z) ∼ d/[lcγ̇(z)]. The local power
dissipated by collisions can thus be estimated by Ẇc(z) ∼
mδv2(z)/τ(z). Balancing Ẇd(z) with Ẇc(z), and recall-
ing that δv ∼ γ̇lc leads to γ̇2 ∼ gdφ(H − z)(θ − θc)/l 3c .
At small angles, and thus small I, Fig. 2a shows that
the cluster size is adequately described by the relation:
lc ∼ d I−β . Inserting this expression in the previous one,
together with the definition of I, yields the general rela-
tion:

γ̇ ∼
[
gφ(H − z)

d2

]1/2
(θ − θc)1/(2−3β) . (3)

First, this expression is compatible with the z-
dependency of the Bagnold velocity profile, 〈v(z, t) −
v(0, t)〉 ∝ H3/2 − (H − z)3/2. Secondly, recalling that
µ ' θ, as well as the definition of I, Eq. (3) yields the
friction law µ− µc ∼ I2−3β . Considering the theoretical
range of β values, 0.5 ≤ β ≤ 0.54, we obtain a prediction
for the exponent, i.e. 0.38 ≤ (2 − 3β) ≤ 0.5, in close
agreement with the law µ− µc ∼ I0.40±0.01 observed for
frictionless grains shown in Fig. 1c.

We emphasize that the proposed model, based on a
fractal dimension for the chain-like clusters related to a
simple random walk, is able to properly predict three
different laws based on the measurements of velocity
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fluctuations (δv/γ̇ ∼ lc ∼ dI−0.52), packing fractions
(φc − φ ∼ I0.9) and flow velocity (µ− µc ∼ I0.4).

One may naively expect Eq. (3) to also hold for fric-
tional systems, since the velocity fluctuations and cluster
size behave similarly with the inertial number for both
frictional and frictionless systems. However, it can not
explain the µ − µc ∼ I relation observed for frictional
grains in Fig. 1c. This disagreement is in fact not sur-
prising. In the derivation of Eq. (3), it is assumed that
all the energy dissipation arises from collisions between
grains. This is a very reasonable assumption for fric-
tionless systems, but an additional source of dissipation
is expected from the mobilization of frictional contacts.
Unfortunately, including frictional dissipation in a theo-
retical model for dense granular flows remains a highly
debated issue [29, 36, 37]. Nevertheless, interestingly,
Fig. 1c shows that for large-enough inertial numbers, the
data obtained for frictional systems collapse onto the law
of frictionless systems. This observation suggests that, in
the limit of large I, the energy dissipation is universal and
of collisional origin.

In summary, from numerical simulations and inspec-
tion of the literature data, we show that the dilatancy
law is identical for frictionless and frictional assemblies.
This law can be further rationalized from a comparison
between: i) the equation of state constructed from the
hydrostatic pressure, an effective granular temperature
related to velocity fluctuations, as well as the inertial
number; and ii) the equation of state of hard-sphere flu-
ids near the jamming transition. In contrast, the macro-
scopic friction laws are observed to differ for frictionless
and frictional assemblies. In the former case, we can ra-
tionalize the observations from a power balance at the
grain level, involving gravity, effective friction, and col-
lisions. We recover as well the Bagnold profile for the
local average velocity field. The derivation of a macro-
scopic friction law for frictional assemblies remains an
open question and should involve an additional dissipa-
tion term related to the formation of frictional contacts.
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