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Invisible Humans in Human-aware Robot Navigation

Phani Teja Singamaneni', Anthony Favier':?, Rachid Alami®’

Abstract— Human-aware robot navigation addresses the nav-
igation of the robot in the presence of humans. Although sig-
nificant research exists for addressing the visible humans, there
is a need to address the humans that are not visible but can
emerge anytime into the scene. While addressing such ‘invisible
humans’, we have to make sure to avoid surprises or shocks for
humans and the erratic behavior of the robot planner. In this
work, we propose a novel approach to detect and integrate these
‘invisible humans’ into human-aware navigation planning. The
experiments and the results presented show the advantage of
the proposed idea.

I. INTRODUCTION

With the rapid advancement in human-aware or social
robot navigation, new frameworks [1], [2], [3], [4], [5] are
required to address a variety of social navigation scenarios.
However, most of these frameworks [6], [7] address only the
visible humans and do not take into account the possible
emergence of humans that are not visible currently. We
believe that such invisible humans should be considered
while developing a human-aware navigation framework to
avoid any erratic behaviors of the robot planner when a
human suddenly appears. Therefore in this work, we try to
address these invisible humans in human-aware navigation
planning.

There are not many works that address this problem in
the field of human-aware navigation. However, there are
some existing works in classical robot navigation that address
similar issues. Particularly, this work is inspired by the
pioneering work of M. Krishna concerning the ability of a
mobile robot, based on the model of its perception functions,
to assess from where in the close environment of the robot
a human can emerge and prepare to react to ensure no-
collision by adapting its path and velocity [8], [9], [10].
Some recent works like [11], [12] address the issues of robot
navigation in occluded or unknown regions with a limited
field of view. The work presented in [13] talks about the
adaptive speed control of the robot in unknown environments
and also talks about the occluded regions. The authors of [14]
propose a methodology to mitigate or avoid collisions while
navigating. In our case, we are trying to mitigate possible
future collisions with a human.

As it is evident that the unknown or occluded region
could cause issues with classical navigation, the same ap-
plies to social navigation. Hence, we propose the concept
of ‘invisible humans’ in human-aware navigation planning
through this paper. First, we briefly present a methodology
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to locate invisible humans while navigating a 2D map. Next,
we integrate these invisible humans into our human-aware
navigation framework, CoHAN [15], by introducing a new
human-aware constraint into our optimization scheme, and a
new modality to address the issues. The implementation and
code can be found at https://github.com/sphanit/
cohan_planner_multi/tree/model. Finally, we present
a detailed analysis through a set of experiments that highlight
the advantages of this idea.

The rest of the paper is organized as follows. Section II
presents the estimation of the invisible humans. Section III
shows how the invisible humans are integrated into CoHAN
and talks about the issues that arise. In Section IV, various
experiments to evaluate the proposed approach are presented,
followed by the real-world experiments in Section V. The
discussion on the limitations is presented in Section VI, and
the conclusions in Section VII.

II. LOCATING THE INVISIBLE HUMANS

The locations of the invisible humans are estimated using
an emulated laser scan on a 2D map. A custom laser scan
is attached to the robot’s base and it is continuously updated
as the robot moves on a given map. The entire system
is implemented in ROS [16] and requires the map that is
published by the ROS Navigation stack. In order to avoid
too many detections, we limit the invisible humans detection
to a radius of 5m in front of the robot. The process to locate
invisible humans is briefly explained below.

A. Building the contour

The custom laser scan sensor that is attached to the robot’s
base, scans the given 2D map to get the visible contour of
the map. An example laser contour built using this is shown
in Fig. 1 (a). Different parts of these contour lines are shown
in different colors for ease of explanation. The red and the
blue lines together constitute the regions on the real map
where the laser has hit a wall or an obstacle. The black lines
represent the laser data that did not hit anything and reached
the end of their range (in our case, range of the laser is
7m). Finally, the yellow lines are interpolated rays joining
large separations between consecutive laser values and play
a major role in our algorithm. The red circle and the arrow
represent the robot’s position and its direction.

B. Estimating Invisible Humans’ locations

The first part of the estimation is the detection of corners
of interest from the contour. To do this, all the pairs of
consecutive laser values (ranges) that are separated by more
than 0.5 m are determined. The threshold of 0.5 m is chosen
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Fig. 1: (a) Laser contour built by the custom laser sensor. The
red and blue lines are the actual walls or obstacles in the front
and back of the robot respectively. The black lines are the laser
range boundaries and the yellow lines are interpolated lines between
two gaps of laser data. The robot is shown as a red dot with an
arrow. The detected corners are shown in yellow, while the detected
invisible humans are shown in green. (b) The detected invisible
humans on the map for the situation shown in the contour. The red
circles shows the location and the blue arrow shows the assumed
orientation, which is always oriented towards the robot.

to filter out small gaps from where a human will not emerge.
Since the laser is attached to the base of the robot, the lower
value in each of the above laser value pairs corresponds to
a corner of interest, and the location where it hits the map
is determined to be the corner of interest. These are shown
as yellow circles in Fig. 1 (a).

Once these corners are detected, these are used as the
reference points to determine possible locations for invisible
humans. The built contour can be seen as an approximate
non-convex polygon, and the invisible humans can be seen
as circles that lie outside this polygon and near the corners
of interest. The initial guess for the centers of these circles is
determined by using the properties of the polygons and the
laser scan data from the custom laser. Finally, the locations
of the centers that avoid overlap with obstacles are estimated
using ray tracing. These centers are shown as green circles in
Fig. 1 (a). Finally, the corresponding locations of the invisible
humans are as shown in Fig. 1 (b).

III. INTEGRATION WITH A HUMAN-AWARE PLANNER

In the previous version of CoHAN, we address different
types of visible humans by introducing new modalities and
human-aware constraints [15]. In this work, we extend it
further to address the invisible humans. The locations of
the invisible humans are published on a ROS topic. COHAN
subscribes to this topic and adds a new constraint to its opti-
mization, specifically designed to address invisible humans.

A. Invisible Humans Constraint

The invisible humans constraint takes into account the
human reaction time, walking speed, and deceleration and
aims to make the robot cautious about the sudden human
emergence. The cost added by this constraint for the n' pose

of the robot’s trajectory is given as:
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where d is the distance between the invisible human and
the robot, V' is the average human walking speed, 1.3 m/s
[17], a is the deceleration of the human and At,, is the time
difference between the n™ pose and the starting pose of the
planned trajectory of the robot. The value of the deceleration,
a, can vary and can be up to a maximum of 2.94m/s?
(0.3 g) [18]. In this work we take a reaction time of 0.5s
as discussed in [18], [19]. Hence the constraint adds the
maximum possible cost until 0.5s. Then we assume that the
human will continuously decelerate to avoid collision with
the robot over time and eventually stops, which is reflected
in the upper part of Eq. (1). The time (At) and human
detections are reset after every control cycle.

1) Issue with the constraint: The main objective of the
constraint is to push the robot away from openings, anticipat-
ing the emergence of invisible humans. However, when the
robot needs to pass through this opening and if the passage
is narrow (door or narrow corridor), the constraint pushes the
robot back and makes it impossible to enter the passage. To
mitigate this, whenever such scenarios are detected, COHAN
switches to a new modality called Passing Through, which
turns off the invisible humans constraint and reduces the
maximum robot’s velocity until it passes through. Based on
the location of the invisible humans and the laser scan data,
we detect three kinds of scenarios in this work which are
shown in Fig. 2.
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Fig. 2: Different types of passages that are detected using invisible
humans. (a) Doorways, or openings and endings of the corridors
(b) a narrow passage with opening on one side and a wall on the
other side (c) a large pillar or obstacle where the robot cannot
see on either side. The green circles are the possible locations of

the invisible humans and the red triangle shows the robot pointed
towards the direction of its motion.

IV. EXPERIMENTS

The proposed idea, after being completely integrated
with CoHAN, is tested in several settings, and this section
shows some interesting scenarios and presents a detailed
analysis. We use ROS-melodic with Ubuntu 18.04, and all
the scenarios are simulated using MORSE [20] simulator.
The simulated human agents used in the experiments are
controlled using InHuS [21], an intelligent human simulator



developed in our lab. The PR2 robot in our lab is used for
real-world tests.

A. The effect of the Invisible Humans constraint

To show the effect of introducing the invisible humans
constraint into CoHAN, we present the robot with a door
crossing scenario as shown in Fig. 3. We test this scenario
without and with the invisible humans constraint and the
corresponding paths of the robot are presented in Fig. 4 (a)
and Fig. 4 (b) respectively. The paths are colored, and the
color moves from blue to red as the robot moves from start to
goal. It can be clearly seen from these paths that the inclusion
of the constraint made the robot more cautious as it takes
a larger turn and aligns its path earlier to pass through the
doorway. The corresponding speed plots are shown in Fig.
4 (c) and (d). From the plot in Fig. 4 (d), we can see that

Fig. 3: The robot passing through the door under the presence
of invisible humans. The translucent colored cylinders represent
the planned poses of the robot and different colors correspond to
different time instances. The height of each cylinder is proportional
to the speed at the planned pose of the trajectory. The red cylinders

are the estimated invisible humans.
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Fig. 4: Paths and speed profiles of the robot passing the door without
((a), (c)) and with ((b), (d)) the Invisible Humans constraint. The
color of the paths indicates the time and progress of the robot, from
blue to red (start to goal).

the robot slows down twice, once when the robot turns and
aligns with the door around 2.5s (red dot) and then again
before passing through the passage around 4s (blue dot).

The cautious behavior of the robot is reflected again in these
speed profiles.

B. Navigation in the presence of visible humans

The inclusion of the invisible humans into human-aware
navigation planning should not cause discomfort to the
visible humans that are moving around the robot. To show
that CoHAN finds a fine balance between the invisible and
visible humans, we present a corridor scenario with many
doors, as shown in Fig. 5. In this scenario, the robot
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Fig. 5: Corridor with many openings where the robot continuously
anticipates the emergence of humans. The robot tries to find a
balance between visible and invisible humans. The green circle is
the visible human interacting with the robot, while the red circles
are estimated invisible humans. The colored path with circles is the
planned trajectory of the robot.
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Fig. 6: Path and speed profile of the robot in the corridor scenario.
The color of the path indicates the time and progress of the robot,
from blue to red (start to goal).

anticipates that an invisible human might emerge at any time
and tries to move away from the openings. However, when it
sees a human passing through the corridor, it tries to provide
more space for the human by moving to one side. At the same
time, it faces the forces from the invisible humans and tries
to find a balance between these and the visible human. By
observing the path and speed profile of this scenario from
Fig. 6 (a) and (b), we can see that the robot moves away and
reduces its speed rapidly to accommodate the visible human.
Nonetheless, it does not move very close to the wall as it
anticipates a human emergence. We can, therefore, infer that



CoHAN tries to find a balance between visible and invisible
humans to mitigate such complex situations.

C. Sudden emergence of a human

This final scenario shows a situation where a human
emerges suddenly from an occluded region from where
the robot is already anticipating an invisible human. The
snapshots of this scenario before and after the emergence are
shown in Fig. 7. Before a human actually emerges from the
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Fig. 7: Sudden emergence scenario. (a) Shows the anticipated
invisible human in red and the real human in green. The robot
has not yet seen the human but due to the invisible human it starts
moving away from the corner. (b) The robot has seen the human
and adjusted its trajectory to provide more space to the human. It
moves away further and takes a larger turn. The colored path with
circles is the planned trajectory of the robot.

corridor, a possible position of the invisible human is already
estimated. As shown in Fig. 7 (a), it approximately overlaps
with the real human. The robot starts moving away slowly
because of this anticipation, and suddenly a real human
appears in front of it. The robot quickly adapts its trajectory
by moving away from the human and slowing down a little,
before continuing to its goal. From Fig. 8 (a), we can see the
discontinuity in the path when the human emerges. However,
the total change in path is not very drastic as the robot was
already anticipating a human. The speed profile in Fig. 8
(b) shows an oscillation that occurred when the robot moved
back suddenly and then slowed down until the human passed.
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Fig. 8: Path and speed profiles of the sudden emergence scenario.
The color of the path indicates the time and progress of the robot,
from blue to red (start to goal).

V. REAL-WORLD IMPLEMENTATION

The new CoHAN system is installed on the PR2 robot in
our lab and then tested in the doorway scenario discussed
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Fig. 9: Real world testing of the constraint

above. The real-world results match the results of the simu-
lation approximately both in the paths and the speed profiles.
These real-world results are shown in Fig. 9. The video
showing some more experiments and the tested scenarios
can be found at https://youtu.be/£8J50dg_Luw.

VI. DISCUSSION AND LIMITATIONS

The introduction of invisible humans (the unseen humans
who can emerge any time into the scene) into human-
aware navigation planning is relatively new and requires
further research. We present one possible approach to address
this issue. What is particularly interesting here is that our
approach is modeled as a situation assessment and prediction
ability to integrate into a mobile robot human-aware naviga-
tion. Having this, we will have a robot that can interact,
using several modalities, with humans present in its field
of view while making provisions to adapt to humans that
are not yet seen. One difficulty we faced was integrating all
these features without being “too conservative” and avoiding
another case of the “freezing” robot. However, there are
still some limitations to this approach. Since the approach
is based on a 2D map, we can have false detections in the
regions visible through the head of the robot but not through
the base. It can be mitigated by augmenting the current
approach with new sensor data and filtering further. The
second limitation is the imperfect detection of the invisible
humans, where sometimes, the detected human overlaps with
an obstacle. The presented algorithm needs to be refined
further, and the current work is just a preliminary step.

VII. CONCLUSION

We have introduced the idea of invisible humans into
human-aware navigation and presented a methodology to
estimate the locations of the invisible humans. The idea
was then integrated into our human-aware navigation planner
by defining a new constraint using these estimations. We
addressed the limitations of this constraint by defining a new
modality in our planning system. Finally, through a series of
simulated and real-world experiments, we have shown the
advantages of the proposed approach.
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