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Abstract 
Motivation: The automatic mining for bibliography exploitation in given contexts is a challenge ac-
cording to the increasing number of scientific publications and new concepts. Several indexing sys-
tems were developed for biomedical literature. However, such systems have failed to produce con-
textualised research of genes and proteins and automatically group texts according to shared con-
cepts. In this paper, we present OntoContext, a contextualization system crossing the use of bio-
medical ontologies to annotate texts containing terms related to cell populations, anatomical locations 
and diseases and to extract gene, RNA or protein names in these contexts. 
Results: OntoContext, a new python package contains two modules. The “annot” module for “anno-
tation” function, is based on combination of morphosyntactic labelling and exact matching and on 
dictionaries derived from the Cell Ontology, the UBERON Ontology (anatomical context), the Human 
Disease Ontology and geniatagger, (which contains particular tags for gene-related names). The 
“annot” output is used as input for the second module “crisscross” generating lists of gene-related 
names obtained by crossing annotations from the three mentioned ontologies. OntoContext showed 
better performances than NCBO Annotator after evaluation on two text corpuses. OntoContext is 
freely available in the pypi. 
Availability: https://pypi.python.org/pypi/OntoContext and 
https://github.com/walidbedhiafi/OntoContext1. 
Contact: adrien.six@sorbonne-universite.fr 
 

 
 

1 Introduction  
Information from the scientific literature in the biomedical domain can be used to contextualize gene expres-

sion and protein involvement in various biological situations. The number of available biomedical texts is 

huge and constantly increasing. For example, “PubMed comprises more than 26 million citations for biomedi-

cal literature from MEDLINE, life science journals and online books. Citations may include links to full-text 

contents from PubMed Central and publisher web sites”(Dan Corlan, 2012). There is therefore a growing in-

terest for scientists to extract automatically relevant information from these texts. Several informatics tools 

have been developed for gene interaction (Mallory et al., 2016), gene-disease (An et al., 2016), disease-drug 

(Bravo et al., 2015) extraction from scientific and medical texts. Several community challenges for text-
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mining in biology have been organized to cross-evaluate these tools (Krallinger et al., 2008; Ananiadou et al., 

2015; Huang and Lu, 2016). 

The annotation of biological entities in texts has emerged over the 1990s (Ananiadou et al., 2006). Biological 

advances, especially in genetics and molecular biology, have greatly contributed to increase publications and 

biological databases (Kersey et al., 2015). This has encouraged the emergence of new biology and\or com-

puter science research fields including biotext mining (Ananiadou et al., 2006). In particular, algorithms were 

developed to respond to the needs for protein and gene names unambiguous identification (Denys et al., 1998) 

and protein function annotation (Andrade and Valencia, 1998). In the 2000s, approaches of exact matching 

were used for biotext annotation, benefiting from the stable development of databases serving to construct 

dictionaries. An original method for text alignment with dictionaries of protein and gene names was developed 

using “BLAST” (Krauthammer et al., 2000). These techniques have the disadvantage to be slow and to con-

sume large computing capacity, especially with large dictionaries. However, they ensure good performance. 

Later, annotation techniques were improved by integrating machine learning and classification algorithms to 

increase the performance of exact matching (Tsuruoka et al., 2005). The integration of rule-based machine 

learning and classification approaches for the production of hybrid tools has helped to address new issues. 

This led to identify new biological concepts from the literature (Kim et al., 2015), extraction of protein inter-

actions (Huang et al., 2004), identification of disease and gene relationships (Bravo et al., 2015; Tiffin et al., 

2005; Kaur et al., 2014), or drug interactions (Iyer et al., 2014). These approaches highly depend on the train-

ing corpus (Jonnalagadda et al., 2012) and therefore are difficult to generalize. 

In parallel, efforts have been provided for homogenization and standardization of “biological” languages. Sev-

eral international initiatives, such as the Unified Medical Language System (UMLS), HUGO (Povey et al., 

2001), Gene Ontology (Ashburner et al., 2000) and the OBO (Open Biomedical Ontologies) initiative (Smith 

et al., 2007), helped changing the paradigm of biotext mining. These initiatives have enabled the emergence of 

terminology shared by the whole community and used as stable dictionaries, recently extended to concept 

synonyms. Consequently, several annotation tools were developed relying on such standard concept dictionar-

ies. The OBO annotator (Groza et al., 2015) is an annotation tool developed on the basis of the “Human Phe-

notype Ontology” in order to annotate similar characters between patients in different textual sources. The 

National Center of Biomedical Ontology Annotator (NCBO Annotator) tool uses multiple sources (ontologies, 

terminologies and databases) for biotext annotation (Jonquet et al., 2009). NCBO Annotator, based on a learn-

ing and exact matching algorithm “Mgrep”, and trained on limited sources and ontologies, shows average 

performances and is known as a reference for biotext annotation (Shah et al., 2009). 

In this paper, we present OntoContext, a new python Package for biotext annotation using Ontologies to de-

fine Context. OntoContext was developed to automatically identify genes and gene products involved in a 

particular context: for example, cell population in a given anatomical localisation related to a physio-

pathological state. To this end, we chose to annotate texts for concepts derived from ontologies. The described 
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annotation method is based on natural processing language (NLP) from already structured or semi-structured 

information sources. First, ontologies are used as structured sources of information to construct specific mor-

phosyntactic label dictionaries of each domain. Second, texts are morphosyntactically labelled and screened 

for ontology concepts stored in these dictionaries using label exact matching. Third, texts are scanned to iden-

tify and extract names of genes and gene products using the geniatagger.0.1 package (Tsuruoka et al., 2005). 

Fourth, texts are grouped according to a set of shared concepts across the three used ontologies. Fifth, the 

names of genes and gene products are extracted according to the defined context. Evaluation of two reference 

corpuses shows that OntoContext performs better that NCBO Annotator. 

2 Material & Methods 

2.1. Morphosyntactic labelling 
OntoContext relies on the Part Of Speech Tagging morphosyntactic labelling technique (Baud et al., 1998; 

Brown, 2010) to identify targets in the literature. This technique allows transforming an explicit text in its 

syntactic representation. We define the morphosyntactic structure for each term, using the NLTK (Natural 

Language ToolKit) python package (Bird et al., 2009).  

Ontologies, databases and construction of dictionaries 

According to the context of our research, the OntoContext workflow relies on dictionaries (detailed in Sup-

plementary Table S1) derived from three ontologies: the Cell Ontology for the cellular context (Bard et al., 

2005), the UBERON Ontology for the anatomical context (Mungall et al., 2012), and the Human Disease On-

tology for the pathological context (Kibbe et al., 2014). We used the available versions of these ontologies 

downloaded on 13/04/2015. We also used additional dictionaries, derived from previous or reduced versions 

of the ontologies. For each ontology, we build: 

1. a synonym table associating all concepts in the ontology to their synonyms and plural form 

2. a term-label table (called “ontology-derived dictionary”) containing all concepts, synonyms and plural 

form associated to their respective morphosyntactic label  

3. a table containing parent concepts and their derived-children. 

 

Note that dictionaries built here are not extended to term-derived adjectives. We also use non-hierarchically 

organized dictionaries derived from the corpus annotations BioText and CRAFT 1.0, containing only terms 

and their morphosyntactic label. All these table are grouped into the concept.db database, built using the 

SQLite database management system (Kreibich, 2010). 

2.2. Text annotation 
Our annotation method is based on the following steps as schematized on Figure 1: We use the NLTK mod-

ules to parse and label terms derived from ontologies (Figure 1A) and text sentences (Figure 1B). The imple-
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mented method takes text files as Input. After parsing and labelling sentences (step1), OntoContext looks for 

labels also found in the selected dictionary (step2). From these labels, OntoContext identify terms that match 

with the term-label table (step3, step4). This process is iterated for each candidate term (step5). For gene name 

retrieving, we use the geniatagger.0.1 package (Tsuruoka et al., 2005). The selected annotations are stored in a 

new table. These steps are coded into the “Annotation” function in OntoContext. 

2.3. Text contextualization and Gene/RNA/Protein name retrieval 
After text annotation and matched concept identification with the dictionaries, children and synonyms are 

retrieved from each ontology. Concepts found at least once among the annotated texts are listed and offered 

for multiple selections. This step is guided by the indication of the concept frequency in the annotated texts 

(defined as the number of texts where the concept and its children are cited). Finally, we recover a list of gene-

related names from this group of contextualized texts by querying the “result” table. The user is provided with 

the OntoContext graphical module “crisscross” developed using the Tkinter Package (Lundh, 1999), to visual-

ize and select terms of interest in order to contextualize texts across ontologies. 

 

 

Fig. 1. Principle of the OntoContext annotation algorithm. (A) Concepts with their synonyms are extracted from ontologies and plural forms are added to build a dictionary. These 

terms are labelled morphosyntactically using the NLTK package. This step generates the term-label table. An example of this table is shown with a term and a label column. (B) 1/ Texts 

of interest are parsed and labelled using the NLTK package. 2-3/ Matching labels with the term-label table are identified (in blue or light grey). 4/ The corresponding expressions are 

retrieved (in blue or light grey). 5/ These retrieved expressions are used to query the ontology-derived dictionary (term-label table) by exact term matching. 6/ Only expressions matching 

with the term-label table are kept for the text annotations (in green or light grey). Barred terms (or in red) are not considered as annotations. “DT”, determiner; “JJ”, adjective; “NNP”, 

singular proper nouns; “NNS”, plural noun; “VBP”, verb in the present tense; “NN”, common singular noun; “WDT”, wh-determiner. 
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2.4. Validation methodology 
To evaluate OntoContext, we have selected two published text corpuses and have confronted OntoContex

annotation performances against manually annotated texts used as reference (Supplementary Table S1). The

CRAFT 1.0 Corpus annotated by experts for cell population concepts is a set of 67 full texts (Bada et al.

2012). The manual annotations are based on the 2012 Cell Ontology. The BioText corpus annotated by experts

for pathological concepts includes 141 abstracts (Rosario and Hearst, 2004). We did not validate OntoContex

for anatomical concepts in the absence of a reference corpus.  

For each comparison, three performance criteria were calculated:  

Accuracy (A=TP/(TP+FP))   (1) 

Recall (R=TP/(TP+FN))   (2) 

F-Measure (F-M= 2*A*R/(A+R)) (3) 

with TP = True Positives, FP = False Positives, FN = False Negatives. 

We also designed a validation protocol based on these measures to compare the OntoContext performances

against NCBO Annotator (Jonquet et al., 2009) (Figure 2).  

Fig. 2. OntoContext validation tests and comparison with NCBO Annotator. The annotation of concepts such as “cell populations” or “diseases” is tested in various correspondin

corpuses. Dictionaries derived from manual annotations of this corpus or from ontologies (Supplementary Table S1) are used in the validation process. Either the evaluation of corpu

annotation is done with two tests, on the entire corpus or on a random sample of 75% of articles, repeated 99 times (x99). The performance comparison allows crossing the annotatio

results with those performed manually by expert or automatically by NCBO Annotator and OntoContext. The corresponding measures of the global Accuracy, Recall and F-Measu

compare annotation sources and the method to obtain these annotations. The performance results are reported in Tables 1 and 2. 
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2.5. Implementation and availability 
OntoContext was implemented in Python 2.7 (Lutz, 2013), a language chosen for its object-oriented ability 

that allows encapsulating and reusing methods and other libraries. The package and all its dependencies are 

available at the github (https://github.com/walidbedhiafi/OntoContext1) and pypi 

(https://pypi.org/project/OntoContext) repositories.  

3 Results 
OntoContext allows automatic annotation and contextualisation of biomedical texts in order to recover gene, 

RNA and protein names (abbreviated as gene-related names below). OntoContext is designed as a two-module 

package: The “annot” module contains the “annotation” function, based on the combination of the morphosyn-

tactic labelling and the exact matching between target texts and ontology-derived dictionaries. The combina-

tion of these methods is faster than exact matching alone (Supplementary Note S1). The presented algorithms 

and the complexity calculation demonstrate how the “annot” module can be faster than classical exact match-

ing algorithms.  

The “annot” module takes successively as input the path to the folder containing the texts to annotate, the path 

to the geniatagger file (Tsuruoka et al., 2005) and Concept.db database, containing the Ontology-derived dic-

tionaries provided by OntoContext. The user provides a name for the output table where the annotation results 

will be stored. These results consist in a list of concepts found in the annotated texts and their assignment to a 

given category (cell population, human disease, anatomical localization, gene-related names. Each row con-

tains a concept, the related category and the text Id.  

The second module named “crisscross” uses the previous “annot” output as input. “crisscross” contains five 

main interrelated function and steps, and a friendly interface:  

(1) Option step: The user can choose to display the annotation sorted either by alphabetic order or by cita-
tion frequency. 

(2) Extension step: The interface displays all terms found in the texts (“annot” output) along with their child 
terms obtained by automatic extension, classified into three lists, according to their assignment to a 
given ontology.  

(3) Selection step: The user can select sorted terms sorted either by alphabetical order or by frequency. 
(4) Contextualization step: A context of study is defined by three terms belonging to different ontologies. 

Contextualized texts sharing the same context of study are grouped (Supplementary Figure S1).   
(5) Gene-related name extraction: the gene-related names are extracted from the grouped texts obtained in 

contextualization step. Three lists are generated, at the levels of DNA (gene names), RNA (RNA tran-
script names) and proteins. 
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3.1. Evaluation of OntoContext performances 
In order to evaluate OntoContext package, we selected two published corpuses: The CRAFT Corpus1.0 for 

cell population concepts and the BioText corpus for the disease concepts. Three performance criteria (Accu-

racy, Recall and F-Measure) were systematically calculated and compared to those obtained using NCBO 

Annotator (Jonquet et al., 2009) (Figure 3).  

3.1.1. OntoContext annotation of the Craft 1.0 corpus 
For the CRAFT 1.0 corpus (Bada et al., 2012), we evaluated the performance of OntoContext using three dif-

ferent dictionaries: a reference dictionary based on the manual annotation of CRAFT 1.0 corpus (CRAFT-

derived dictionary), a dictionary derived from the 2012 Cell Ontology and a dictionary derived from the 2015 

Cell Ontology (Supplementary Table S1). Results are presented in Table 1 and Supplementary Excel file S1.  

The Accuracy values using the CRAFT-derived and 2012 Cell Ontology-derived dictionaries are the same 

(94%). Accuracy decreases to 78% when using the 2015 dictionary, indicating lower specificity with more 

false positives. This can be explained by the Craft expert annotators using the 2012 ontology, that did not in-

clude terms that were later added and therefore found in the enriched 2015 Cell Ontology-derived dictionary. 

The Recall measure is higher for 2015 Cell ontology with an 18-point increase between 2012 and 2015 Cell 

Fig. 3. Comparing OntoContext and NCBO Annotator performances. A k-fold derived validation test for the OntoContext vs. NCBO Annotator tool performance comparison using 

the 2015 Cell Ontology-derived dictionary. We considered the obtained NCBO Annotator and OntoContext annotations for 35 of the 67 articles of the Craft corpus, and for each valida-

tion round, we drew 75% (27) of these 35 articles and assessed performances. Each pair of  blue or light grey (OntoContext) and orange or dark grey (NCBO Annotator) points represents 

one of the 99 measures of Accuracy (A), Recall (B) and F-Measure (C) in percentage. Results are sorted by increasing OntoContext performance values. The performances of both tools 

are represented on the same experience. The table summarizes the mean values, with the standard deviations (SD). The confidence interval was calculated using the 95% quantile. The 

correlation test is Pearson correlation between the OntoContext values and the NCBO annotator values. The p-value was calculated based on paired t-test. The results of NCBO annotator 

are presented above the results of OntoContext in the table. 
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Ontology-derived dictionaries, but lower when using the CRAFT-derived dictionary. 

Looking deeper in the results (Supplementary Excel file S1), some weaknesses in the OntoContext annotation 

are detected: since the ontology-derived concept dictionaries contain nouns but not derived adjectives, the 

latter are ignored (e.g. Cell / Cellular, Neuron / Neuronal…), at variance to manual extracted dictionary 

(CRAFT-derived dictionary). Another weakness consists in citation of concepts by the manual annotators in 

two parts of a sentence with other unrelated words in-between such as “CELLS IN […] MESENCHYMAL 

REGION”. When we ignore such interrupted concepts and recalculate the performances, Recall and F-

Measure values slightly improve: For the manual CRAFT-derived dictionary, F-Measure increases from 91% 

to 94%, from 73% to 76% for the 2012 Cell Ontology-derived dictionary, and from 68% to 70% for the 2015 

Cell-derived dictionary (not shown). 

We then compared the OntoContext and NCBO Annotator performance using 35 out of 67 texts (50%) among 

the CRAFT.1.0 Corpus. NCBO Annotator is more specific than OntoContext (Accuracy of 82% vs 79%) but 

less sensitive, more terms being recognized by OntoContext (Recall of 23% vs 59%) (Supplementary Excel 

file S2). We performed a 99-round validation by taking randomly at each round a subset of 27 texts among the 

35 texts (75%), annotating each subset by OntoContext and NCBO Annotator and measuring the annotation 

performances (Figure 3). OntoContext shows significantly higher F-Measures than Annotator (p-

value<0.001). OntoContext systematically outperforms NCBO Annotator for Recall, the Accuracy values 

being closer.  

 
 
 
 
Table 1.  OntoContext annotation performance of the CRAFT.1.0 corpus* 

Performance CRAFT 
2012 Cell 
Ontology 

2015 Cell 
Ontology 

Accuracy 94% 94% 78% 

Recall 89% 60% 60% 

F-Measure 91% 73% 68% 

*All 67 texts from the Craft 1.0 corpus have been annotated with OntoContext against three dictionaries. OntoContext annotation performance was evaluated compared to the 
CRAFT 1.0 expert manual annotations used as reference (see Supplementary Excel file S1 for detailed results). Figure 2 provides a schematized description of the evaluation 
workflow.  

3.1.2. OntoContext annotation of the BioText corpus 
In order to evaluate OntoContext for disease annotations, we used the BioText Medical corpus (141 abstracts) 

(Rosario and Hearst, 2004) and assessed its performances using two dictionaries: the BioText-derived diction-

ary established in 2004 by experts and used as reference for annotation and the 2015 Human Disease-derived 

dictionary (Supplementary Table S1). The BioText-derived dictionary not being generated from an ontology 

and thus not organized hierarchically, the extension step of the “crisscross” module cannot be performed. On-

toContext applied to the BioText-derived dictionary reveals that some annotations include two disease con-
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cepts: for example, “PROSTATE CANCER” is a disease but the included term “CANCER” is also a disease. 

Therefore, OntoContext will annotate this term twice, as “CANCER” and “PROSTATE CANCER”. This 

explains, in part, that Accuracy is not optimum though the dictionary used to annotate the BioText Medical 

corpus, derived from this corpus.  

Results for assessment of the OntoContext annotations of this corpus according to both dictionaries are pre-

sented in Table 2. Again, performances depend on the dictionary used. With the 2015 Human Disease-derived 

dictionary, we lose 33 points of Accuracy and 63 points of Recall as compared to the BioText-derived diction-

ary. This causes a 52-point loss for the F-Measure. This is likely due to significant differences with the Bio-

Text-derived dictionary content that was originally used to annotate manually the BioText corpus in 2004. 

We then compared OntoContext to NCBO Annotator performances taking into account the 100 first texts 

among 141 texts of the BioText corpus along with the 2015 Human Disease-derived dictionary, despite of the 

relative weak performances obtained with this dictionary. Indeed, we were limited in our choice by the fact 

that NCBO annotator uses the 2015 Human Disease Ontology. In supplementary Excel file S4, we present the 

comparative annotation performances of these tools. 

OntoContext recognizes more concepts (102) than NCBO Annotator (77 concepts) and, OntoContext is more 

specific than the NCBO Annotator (Accuracy of 60% vs 57%) and more sensitive, less false negative terms 

for OntoContext (Recall of 30% vs 21%) (Supplementary Excel file S4).  

 

We then performed a 99-round validation by taking randomly at each round a subset of 75 texts among the 

100 texts already analysed and measuring the annotation performances using OntoContext and NCBO annota-

tor. OntoContext has significantly higher overall performances for all criteria considered than NCBO Annota-

tor (p-value<0.001) and systematically outperforms NCBO Annotator for Recall and F-Measure. For Accu-

racy, values are close with OntoContext being better in 79 validation rounds out of 99 (Supplementary Figure 

S2). 

Table 2.  OntoContext annotation performance of the BioText corpus* 

Performance BioText 2015 Human Disease ontology 

Accuracy 88% 55% 

Recall 93% 30% 

F-Measure 91% 39% 

*All 141 texts from the BioText corpus have been annotated with OntoContext against two dictionaries. OntoContext annotation performance was evaluated against BioText 
manual annotations as reference (see Supplementary Excel file S3 for detailed results). Figure 2 provides a schematized description of the evaluation workflow. 

3.2. Real Case study  
In order to further validate our method, we applied OntoContext to a corpus of abstracts generated from Pub-

Med in order to identify genes, RNA and proteins associated with a specific context. We queried PubMed with 
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“(aging OR longevity) AND immune system”, restricted to MeSH terms and filtered for abstracts since 1980. 

This query was launched on August 1st, 2016 and retrieved 9,930 abstracts composed by 142,613 sentences 

representing 2 642,035 words. Abstracts were downloaded and annotated using the OntoContext “annot” 

module with the 2015 Cell-derived dictionary, 2015 Human Disease-derived dictionary and the 2015 

UBERON-derived dictionary along with the geniatagger.1.0 package. The results are summarized in Figure 

4A. OntoContext detected 34,350 cell population concepts, 17,260 anatomical concepts and 81,160 patholo-

gies, and 3,063 gene-related names. Intriguingly, no gene-related names were retrieved for more than 7,000 

abstracts. Looking closer at the annotations, we found that concepts such as “CD4-POSITIVE, CD25-

POSITIVE, ALPHA-BETA REGULATORY T CELL” are only annotated as cell populations even though 

they contain molecular markers (“CD4” and “CD25”) that should also be recognized as gene-related names. 

This is due to geniatagger parsing all the “CD4-POSITIVE” or “CD25-POSITIVE” as a whole word. We thus 

performed a second round of annotation after removing all the “+” and “-“characters. This improved slightly 

the gene-extraction performance with more than 100 new texts being annotated with gene-related names, for a 

total of 3,988 gene-related names (Figure 4B).  

 
 

4 Discussion 
In this paper, we present OntoContext, a python package developed for the automatic annotation of biomedi-

cal texts according to ontology-derived dictionaries describing a biomedical context such as cell population, 

Fig. 4. Cumulative distribution of the number of OntoContext-identified concept category terms per text analysed in a 9,930 corpus of PubMed abstracts. Cumulative distribu-

tion are expressed as log10 of the number of abstracts including terms related to cell populations, anatomical localisations, diseases and gene-related names for (A) a first round of 

standard OntoContext annotation results and (B) a second round of gene annotation removing the “+” and “-“ signs (see Results for details). The 9,930 PubMed abstract corpus was 

obtained by a query on the “immune system” and “aging” MeSH terms. 
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anatomical location and diseases, in addition to protein, RNA or gene name information. Although, special-

ized ontologies and databases are available, little interrelations between them in terms of biological meaning is 

provided. Our aim was to sort texts based first on a PubMed search with MeSH terms, then their contexts of 

study derived from ontology concept labelling and to retrieve gene-related names cited in these contexts.  

The two modules “annot” and “crisscross” developed here allow the annotation of a text corpus against a con-

cept database and the intersection between texts annotated by these concepts, respectively. These two modules 

can be used separately or successively. Noteworthy, “crisscross” depends on the output of “annot”, the per-

formance of which is crucial for the global performance of OntoContext. For that reason, we focused our per-

formance assessment on “annot”. With our original objective in mind, we needed an organized and controlled 

vocabulary and thus chose to build dictionaries derived from ontologies. Ontologies represent standard and 

controlled vocabularies shared by the scientific community and hierarchically organized, hence allowing clus-

tering. For gene name recognition, we selected the already available geniatagger.0.1 package (Tsuruoka et al., 

2005). The exact matching method has the advantage to easily annotate with controlled vocabulary. By im-

plementing an exact matching algorithm based on the morphosyntactic labelling of text and dictionary terms, 

we have here overcome the relative slowness of this method (Navarro and Fredriksson, 2004), and OntoCon-

text appears faster than a classic exact matching algorithm, as demonstrated in Supplementary Note S1. 

For the morphosyntactic labelling, we used the NLTK python package (Bird et al., 2009) included into the 

“Annotation” function to label the dictionaries terms and texts. These labels may differ between the database 

and the sentences depending on several criteria such as the uppercase and the lowercase writing and the plural 

forms. For that reason, a pre-treatment step of data consisting in adding plural, synonyms, considering lower 

and uppercase improves OntoContext that has better performances as compared to NCBO annotator (Jonquet 

et al., 2009). However, both tools are still unable to recognize adjectives, contrarily to experts.  

The most important performance criteria seem related to the date at which the dictionary used for annotation 

relatively to the text corpus is generated. Indeed, new concepts are created along with the evolution of knowl-

edge, leading to changes in vocabularies and creating difficulties for annotation. These difficulties are not 

related to the method but rather to the quality of the vocabulary used comparatively to the reference. Indeed, 

we observed variations in OntoContext annotation results when we used different dictionaries to analyse the 

same text corpus.  

For the evaluation of an annotation method, it is important to use the same dictionary as a reference. We in-

deed assessed OntoContext using CRAFT-derived dictionary to annotate CRAFT.1.0 corpus (Bada et al., 

2012) and obtained more than 90% Accuracy. This result indicates good performance of our “annot” module 

compared to other methods, similar with that reported by Kim et al. (Kim et al., 2015), when geniatagger ac-

curacy is about 54% for cell population identification (Tsuruoka et al., 2005). We have to notice that previous 

tools did not use the same corpus for evaluation as OntoContext. These tools being developed on a training 

dataset, their performances decrease when corpuses are changed. For OntoContext, we have developed a 
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method that overcomes these drawbacks since it is based on exact matching and morphosyntactic labelling, 

using ontology-derived dictionaries.  

For gene-related name annotation, many databases were developed but they are species dependent: the “gene 

name database” concerns human (Povey et al., 2001), the “mouse genome informatics database” concerns 

mouse (Bult et al., 2016) and the “WormBase” concerns nematode (Harris et al., 2004). Other limits may exist 

such as for the Protein Ontology that contains only coding gene names (Natale et al., 2014). The inclusion in 

the “annot” module of the geniatagger package (Tsuruoka et al., 2005) overcomes these limits allowing to 

annotate genes, RNA and protein names from any species with good performances. 

As a whole, OntoContext performance is influenced essentially by the quality and date of the dictionaries. 

Using newest version of ontologies is a guarantee for better annotation results, whatever the text corpus con-

sidered for annotation.  

In its present stage of development, the OntoContext package can be used for different purposes. Here we 

present an example of annotation of an abstract corpus from PubMed. We used PubMed abstracts and not full 

texts here because they are freely available and easily extractable, although we realize that using abstracts only 

imposes a limitation on the number of identifiable gene-related names. OntoContext can also be applied to 

annotate information from clinical texts or from specialized databases (transcriptomic, protein, genomic…) in 

order to generate new knowledge and life process modelling. This new tool needs further evaluation for dif-

ferent use and improvement for better performance such as the speed and accuracy of the annotation method. 
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