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THE MULTI-TYPE BISEXUAL GALTON-WATSON BRANCHING PROCESS

CORALIE FRITSCH1, DENIS VILLEMONAIS1, NICOLÁS ZALDUENDO1

Abstract. In this work we study the bisexual Galton-Watson process with a finite number of
types, where females and males mate according to a “mating function” and form couples of different
types. We assume that this function is superadditive, which in simple words implies that two groups
of females and males will form a larger number of couples together rather than separate. In the
absence of a linear reproduction operator which is the key to understand the behaviour of the model
in the asexual case, we build a concave reproduction operator and use a concave Perron-Frobenius
theory to ensure the existence of eigenelements. Using this tool, we find a necessary and sufficient
condition for almost sure extinction as well as a law of large numbers. Finally, we study the almost
sure long-time convergence of the rescaled process through the identification of a supermartingale,
and we give sufficient conditions to ensure a convergence in L1 to a non-degenerate limit.

1. Introduction

The single-type bisexual Galton-Watson branching process is a modification of the standard
Galton-Watson process. It assumes that there exist two disjoint classes (sexes), males and females
who together form mating units (or couples) which can accomplish reproduction. This process
was first introduced by Daley in [Dal68]: it consists of a population where, in every generation
n = 1, 2, 3, . . . , Fn females and Mn males form Zn = ξ(Fn,Mn) mating units, for ξ a suitable and
deterministic mating function. Each mating unit reproduces independently of the others and with
identical distribution giving birth to the new generation of males and females.

Example 1. Some examples of mating functions are
(1) ξ(x, y) = xmin{1, y} called the promiscuous mating model.
(2) ξ(x, y) = min{x, y} called the perfect fidelity mating model.
(3) ξ(x, y) = x, which corresponds to the classical Galton-Watson model.

Daley studied in [Dal68] the properties for the first two mating functions of the previous example.
Since Daley’s work, extinction conditions have been studied for models with a more general family
of superadditive mating functions (see for instance [Hul82], [Bru84], [DHT86]) and, in the last
decades, results on the limit behaviour of this kind of processes were obtained (see for example
[AR96], [AR02], [GM96], [GM97]). From these works, new models of two-sex populations have
been developed, such as processes in random or varying environment ([Ma06], [MM09], [MMR03]),
processes with immigration ([GMM00], [GM96], [MX06]), processes with mating function depending
on the number of couples ([MMR02], [MMR06], [XW05]) and more recently, processes with random
mating ([JMM17], [MM19]). The interested reader can also consult the surveys of Hull [Hul03],
Alsmeyer [Als02] and Molina [Mol10] for a wide description of the work accomplished on this family
of processes.

The asexual multi-type Galton-Watson branching process with a finite number of types (see
[Har63]) is a discrete time Markov Chain on Np, for p a fixed integer, and can be thought as a
system of particles where each particle is characterized by a type among p options. Each particle
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2 THE MULTI-TYPE BISEXUAL GALTON-WATSON BRANCHING PROCESS

reproduces independently and with an offspring distribution that depends only on its type, and if
we define Xi,j ∈ L1 the number of type j particles produced by a type i progenitor, then, under
some assumptions on the process, the greatest eigenvalue of the matrix Hi,j = E(Xi,j) determines
if the process will be eventually extinct with probability 1.

Our focus of study is the multi-type bisexual process with a finite number of types. Although
specific models were studied in the two-sex population literature (see [KK73], [Hul98]), no general
mathematical description for a superadditive multi-type model has yet been established. The aim
of this paper is to fill this gap.

We will consider a general model, which includes the natural extension of Daley’s bisexual model
to multi-type processes, where the vector of couples in the n−th generation is defined by

Zn = (Zn,1, . . . , Zn,p) = ξ((Fn,1, . . . , Fn,nf ), (Mn,1, . . . ,Mn,nm)), (1)

where ξ : Nnf × Nnm → Np is a positive function such that ξ(0, 0) = 0 and (Fn,1, . . . , Fn,nf )
and (Mn,1, . . . ,Mn,nm) are the vectors of females and males respectively with p, nf , nm ∈ N =
{0, 1, 2, . . . } the number of types of couples, females and males respectively. Each couple reproduces
independently from the others and produces females and males according to a distribution that
depends only on its type, such that

Fn+1,j =
p∑
i=1

Zn,i∑
k=1

X
(k,n+1)
i,j , for 1 ≤ j ≤ nf , Mn+1,j =

p∑
i=1

Zn,i∑
k=1

Y
(k,n+1)
i,j , for 1 ≤ j ≤ nm,

where, (X(k,n), Y (k,n))k,n∈N is a family of i.i.d. copies of ((Xi,j)1≤i≤p,1≤j≤nf , (Yi,j)1≤i≤p,1≤j≤nm)
where Xi,j represents the number of female offspring of type j produced by one couple of type i,
and similarly for the males and Yi,j . We recover Daley’s process by setting p = nf = nm = 1.

Since types may also encode gender, and to simplify our notation, we present in Section 2
our definitions and main results in a more general setup, since they hold true for asexual and
multi-sexual Galton-Watson processes (as they appear for instance for several plants species [BK04]
and [BLVD+11, BT12]). We present a law of large numbers (Theorem 1), necessary and sufficient
conditions for extinction (Theorem 3) as well as asymptotic behaviour of the process (Theorems 4
and 6). We compare our results with existing works at the end of Section 2. Section 3 is devoted
to the proof of Theorem 1. In Section 4, we turn our attention to some extra properties, such
as the eigenvalue problem for concave functions, which play a fundamental role in the study of
the extinction conditions, and prove Theorem 3. Section 5 is devoted to the proof of Theorem 4.
Finally, we identify and establish properties on a supermartingale and prove Theorem 6 in Section
6.

Notation: Unless otherwise stated, for z ∈ (R+)p, we denote by zi the i-th component of z. We set
S := {z ∈ (R+)p, |z| = 1} to be the unitary ball for the 1−norm on (R+)p, with |z| = z1 + · · ·+ zp,
and define S∗ as the elements on S with strictly positive components. All random variables and
random vectors are defined on the same probability space (Ω,F ,P), we denote E for the expectation
associated to P and we let L1 = L1(Ω,F ,P) be the set of integrable random variables defined on
this space.

2. Model description and main results

2.1. Model description. For p, q ∈ N∗ = {1, 2, . . . }, we consider the process (Zn)n∈N with values
in Np and the process (Wn)n∈N with values in Nq, where Zn and Wn represent the mating units
(of p different types) and the individuals population (where individuals are of q different types)
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respectively at the n-th generation. We assume that at each generation n ≥ 1, Zn is entirely
determined by Wn, through a mating function ξ : Nq → Np satisfying ξ(0) = 0, that is

Zn = (Zn,1, . . . , Zn,p) = ξ(Wn,1, . . . ,Wn,q),

where the individuals population Wn at the n-th generation is produced by the Zn−1 mating units
of the previous generation. Moreover, we assume that each mating unit reproduces independently
from the others and is such that

Wn,j =
p∑
i=1

Zn−1,i∑
k=1

V
(k,n)
i,j , for 1 ≤ j ≤ q,

with (V (k,n))k,n∈N a family of i.i.d. copies of V = (Vi,j)1≤i≤p;1≤j≤q, where V1,·, . . . , Vp,· are p
mutually independent random vectors with values in Nq. The random variable V (k,n)

i,j represents
the number of offspring of type j produced by the k-th mating unit of type i of the (n − 1)-th
generation. Note that the offspring V (k,n)

i,j1
and V

(k,n)
i,j2

of type j1 and j2 produced by the same
mating unit are not necessary independent.

Considering the empty sum as zero, (Zn)n∈N forms a discrete time Markov Chain on Np with
absorbing state 0. We define the probability of extinction with initial condition z ∈ Np as

qz = P(∃n ∈ N, Zn = 0|Z0 = z),

and declare that the process will be almost surely extinct if qz = 1 for all z ∈ Np.
Although our model is sufficiently general to describe multi-type multi-sexual Galton-Watson

branching process (see Example 2), keeping in mind our motivation for the definition of this process,
we call (Zn)n∈N the multi-type bisexual Galton-Watson branching process (from now on, multi-type
bGWbp).

Throughout the paper, we make the assumption that the mating function ξ of the process is
superadditive, that is,

ξ(x1 + x2) ≥ ξ(x1) + ξ(x2), ∀x1, x2 ∈ Nq. (2)
The intuition for this type of processes is that two populations form a bigger number of mating
units together rather than separate. The idea of a superadditive bisexual Galton-Watson process for
the single-type case was first introduced by Hull in [Hul82] and necessary and sufficient conditions
for certain extinction were given by Daley et al. in [DHT86].

Remark 1. It will be useful in the proof to observe that, if we consider two superadditive functions
ξ1, ξ2 such that ξ1(x) ≤ ξ2(x), ∀x ∈ Nq, then a multi-type bGWbp with mating function ξ1 is
stochastically dominated from above by a process with the same offspring distribution but with
mating function ξ2.

Example 2 (Multi-type bisexual Galton-Watson process). We recover the multi-type bGWbp
setup presented in the introduction if we set q = nf + nm and (Wn,1, . . . ,Wn,nf ) as the vector of
females and (Wn,nf+1, . . . ,Wn,nf+nm) as the vector of males of the n− th generation. We can also
extend this definition to a multi-sexual process by separating the set of possible types into a larger
number of sexes.

We assume that all the random variables (Vi,j)1≤i≤p,1≤j≤q are integrable and define the matrix
V ∈ Rp,q by

Vi,j = E(Vi,j), ∀ 1 ≤ i ≤ p, 1 ≤ j ≤ q.
We assume that, for all j ∈ {1, . . . , q},

∑p
i=1 Vi,j > 0.

We now define M : Rp+ −→ (R+ ∪ {+∞})p by

M(z) = lim
r→+∞

ξ(rzV)
r

= sup
r≥1

ξ(rzV)
r

, (3)
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where ξ is any superadditive extension of ξ to Rq+ (see Remark 2 below). The limit is well defined
and equal to the supremum according to Fekete’s Lemma.

As we will see, the convergence is in fact uniform on any compact subset of S where M is
continuous (see Proposition 11). In addition M is concave on Rp+ (see Proposition 10).

Remark 2. A superadditive function ξ on Nq can always be extended to a superadditive function
on Rq+ (for instance setting x ∈ Rq+ → ξ(bxc)) and it will appear that M does not depend on the
choice of this extension (see Proposition 11).

Remark 3. The functional M plays a similar role as the reproduction matrix in the classical
multi-type Galton-Watson case (see Example (3) below). However in our case, it is not necessarily
linear, but only concave. In order to analyse the function M and its iterates, we make use of
concave Perron-Frobenius theory and, more precisely, of the results developed by Krause [Kra94]
(see Section 4.1).

2.2. Main results. Our first main result is a law of large numbers which relates M with the
behaviour of Z in a large initial population setting and which is proved in Section 3.2. We set
Mn = M ◦ · · · ◦M composed n times with the convention that M0 is the identity function, and, for
all i ∈ {1, . . . , p}, Mi is the ith component of M.

Theorem 1 (Law of large numbers). Let (zm)m≥1 be a random sequence in Npand z∞ ∈ Rp+ \ {0}
a deterministic value such that zm ∼m→+∞ mz∞ almost surely. For all m ≥ 1, denote by (Zmn )n≥0
a multi-type bGWbp with common mating function and offspring distribution, but with initial
configuration Zm0 = zm. Define M as in (3) and assume it is finite over S. Then, for all n ≥ 0,

Zmn ∼m→+∞ mMn(z∞) almost surely.

If in addition (zm/m)m≥1 is independent of the random variables V (k,n)
i,j and uniformly integrable,

then Zmn /m converges to Mn(z∞) in L1.

As a consequence, considering for z ∈ Rp+ the sequence zm = bmzc for all m ∈ N, we have the
following corollary (the second equality is a classical consequence for superadditive sequences).

Corollary 2. We have for all z ∈ Rp+,

M(z) = lim
m→+∞

E(Z1 | Z0 = bmzc)
m

= sup
m≥1

E(Z1 | Z0 = bmzc)
m

.

The function M extends to the multi-type case the mean growth rate introduced in the single-type
case by Bruss in [Bru84] and used by Daley et al. in [DHT86] to study the extinction conditions
for the process. Note also that, in the situation where zm = bmzc, one can adapt the proof of
Klebaner [Kle93] to obtain convergence in law in Theorem 1, as detailed in [Ada16]. However,
almost sure and L1 convergence obtained in Theorem 1 are needed in the proofs of the following
results.

For the rest of the results of this section, we add the following transitivity and primitivity
assumptions for the process.

Assumption 1. We assume that:
(1) The process is transitive, which means that

P
(

lim
n→∞

|Zn| ∈ {0,+∞} | Z0 = z
)

= 1, ∀z ∈ Np.

(2) The process is primitive, that is, for all i ∈ {1, . . . , p}, there exist ni, ki ∈ N big enough
such that for all m ≥ ni,

E(Zm|Z0 = kiei) > 0
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where ei is the i−th canonical vector in Rp.

Assumption 1.1 is a classical transitivity condition. The following cases are some examples where
it holds.

(1) For all i ∈ {1, . . . , p}, P(W1 = 0|Z0 = ei) > 0.
(2) In the context of the bisexual setting, ∀i ∈ {1, . . . , p}, P(M1 = 0|Z0 = ei) > 0 and

ξ(x, 0) = 0, ∀x ∈ Rnf .
(3) ∃` ∈ {1, . . . , p}, P(|Z1| = 2|Z0 = e`) > 0 and the process is strongly primitive, that is

Assumption 1.2 is satisfied with ki = 1 for all i ∈ {1, . . . , p} (see Appendix A for details).
Note that the (not strong) primitivity of the process is not sufficient. In fact, choosing
q = p = 2 and

ξ(x, y) =
(⌊

y

2

⌋
, x

)
, V1 ∼

1
2 δ(2,0) + 1

2 δ(0,2), V2 ∼ δ(0,1).

leads to a (not strongly) primitive branching process, satisfying P(|Z1| = 2|Z0 = (1, 0)) =
1/2 > 0 and such that {(1, 0), (0, 2)} is a recurrent class.

The following result provides a necessary and sufficient condition for almost sure extinction. This
result is proved in Section 4.2.

Theorem 3 (Extinction criterion). Assume that Assumption 1 holds and that M is finite over S.
Then there exist a unique λ∗ > 0 and a unique z∗ ∈ S∗ such that M(z∗) = λ∗z∗, and we have

qz = 1,∀z ∈ Np ⇐⇒ λ∗ ≤ 1.

If λ∗ > 1 or if there exists z′ ∈ Np such that one of the components of M(z′) is not finite, then
there exists r > 0 such that, if |z| > r, then qz < 1.

Before turning to the next result, we point out that the last theorem encompasses the well known
extinction criteria for the classical multi-type Galton-Watson process and single-type bisexual
Galton-Watson process. Further examples are provided in Section 2.3.

Example 3 (Multi-type Galton-Watson process). The Galton-Watson case corresponds to the
case where p = q and the mating function is given by the identity function, ξ(x) = x, so that the
process forms a classical asexual multi-type Galton-Watson process. In this case it is easy to see
that M(z) = zV and hence M is a linear function and λ∗ is its greatest eigenvalue. We thus recover
the well known fact that λ∗ ≤ 1 is a necessary and sufficient condition for certain extinction.

Example 4 (Single-type bisexual Galton-Watson process). The single-type bisexual Galton-Watson
case corresponds to the case where p = 1 and q = 2. In this case it is easy to see that M(z) = rz

for some r ≥ 0, that z∗ = 1 and that λ∗ = r. We recover the fact that λ∗ ≤ 1 is a necessary and
sufficient condition for certain extinction (see [DHT86]).

In the following theorem, we deal with the long-time behaviour of the process. In particular we
prove that, on the non-extinction event {Zn 6= 0, ∀n ≥ 0}, the process will almost surely follow
the direction of the eigenvector z∗. The proof of this theorem is in Section 5. We emphasize that,
for this result, we do not assume any L logL type condition. As far as we know, this result is new
even in the p = 1 and q = 2 (single type) case.

In what follows, given x, y ∈ Rp, we denote

|x, y| := {z ∈ Rp, x ≤ z ≤ y}.

Theorem 4 (Long time behaviour). Assume that Assumption 1 holds and that M is finite over S.
Let λ∗ and z∗ given by Theorem 3 and assume that λ∗ > 1. Then there exists n0 ≥ 1 such that, for
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all ε ∈ (0, 1) and all η ∈ (0, 1), there exists r > 0 such that

P (Zn0 6= 0 and ∀n ≥ n0, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) ≥ 1− η, ∀|z| ≥ r.

In addition, on the non-extinction event {Zn 6= 0, ∀n ≥ 0}, and up to a P(· | Z0 = z)-negligible
event, for all k ≥ 0,

lim
n→+∞

Zn+k
|Zn|

= (λ∗)kz∗.

On the event of extinction, M(Zn) vanishes for n large enough almost surely, which entails that
Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| for all n large enough. For λ∗ > 1 (so that extinction is not
almost sure), this also holds true with probability one, as proved alongside Theorem 4. We thus
obtain

Corollary 5. Assume that Assumption 1 holds and that M is finite over S. Then, for all ε ∈ (0, 1)
and all z ∈ Np,

P (∃N ≥ 0 such that, ∀n ≥ N, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) = 1. (4)

Remark 4. As it will be clear from the proof, the value of n0 in Theorem 4 is in fact chosen
deterministically as the minimal n ∈ N such that Mn(z) > 0 for all z ∈ Np \ {0}, which exists
thanks to Proposition 14 below.

We now state a theorem related to the rescaled processes of mating units and children and we
prove that they both have a non-negative limit with the same direction as the vector z∗ given by
Theorem 3. We also show that the event of extinction coincides (almost surely) with the event
where this limit is equal to zero. This last part is well known in the classical branching case. As
far as we know, it is new even in the p = 1 and q = 2 (single type) bisexual branching case. This
theorem is proved in Section 6.

Theorem 6 (Asymptotic profile). Assume that Assumption 1 holds, that M is finite over S. Then,
for all z ∈ Np, there exists a real non-negative random variable C such that

Zn
(λ∗)n

P(·|Z0=z) a.s.−−−−−−−−−→
n→+∞

Cz∗ and Wn

(λ∗)n
P(·|Z0=z) a.s.−−−−−−−−−→

n→+∞

1
λ∗
Cz∗V, (5)

with λ∗ and z∗ given by Theorem 3.
Assume in addition that C is non-degenerate at 0, which means that P(C > 0 | Z0 = z) > 0 for

all z ∈ Np such that qz < 1. Then, for all z ∈ Np and up to a P(· | Z0 = z) negligible event,

{C = 0} = {∃n ∈ N, Zn = 0}.

Remark 5. We observe that the transitivity assumption implies that the condition P(C > 0 | Z0 =
z) > 0 for all z ∈ Np such that qz < 1 is actually true if and only if P(C > 0 | Z0 = z) > 0 for some
z ∈ Np.

A natural question that arises is to find conditions so that the previous convergence holds also in
L1 and the limit is non-degenerate at 0. The following proposition, proved in Section 6.3, deals
with this question, for which we consider the function P : Rp+ −→ Rp+ given by

∀z ∈ Rp+, P(z) = lim
n→+∞

|Mn(z)|
(λ∗)n , (6)

which is well defined, according to Theorem 17 in Section 4.1 below. The condition we present
is inspired by the work of González and Molina in the single-type case [GM96] and Klebaner’s
article [Kle85].
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Proposition 7. Assume that Assumption 1 holds, that M is finite over S and that λ∗ > 1. If
there exists a concave monotone increasing function U : R+ −→ R+, such that for all y ∈ R+,

sup
z∈Rp+:P(z)=y

E(|P(Z1)− P(M(bzc))| | Z0 = bzc) ≤ U(y), (7)

with y → U(y)/y non-increasing and
+∞∫
1

U(y)
y2 dy < +∞,

then the convergence in Theorem 6 is in L1 and the random variable C is non-degenerate at 0.

The existence of the function U in the previous theorem may be difficult to check. In the following
proposition we state sufficient conditions to ensure its existence, under a V log V condition and
extra assumptions on the functions P, ξ and M. The proof of this proposition is in Section 6.4.

Proposition 8. Assume that M is finite over S. In addition assume that both functions P and ξ
are Lipschitz, that E(Vi,j log Vi,j) < +∞ for all i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, and that there exists
α > 0 such that ∣∣∣∣ξ(zV)

|z|
− M(z)
|z|

∣∣∣∣ = O(|z|−α), ∀z ∈ Rp+ \ {0}.

Then, the condition (7) is satisfied.

Remark 6. Since originally ξ is only defined over Nq, the statement “ξ is a Lipschitz function” must
be interpreted as “there exists an extension of ξ from Nq to Rq+, that is Lipschitz”.

The previous conditions are not necessary conditions to ensure the existence of the function
U in (7). In fact, in Proposition 9, we state that in the model of Example 6 below, for which
there is no Lipschitz extension for ξ over all Rq+, the V log V condition is sufficient to ensure the L1

convergence to a non-degenerate random variable in (5).

2.3. Examples in the context of bGWbp. The following examples are in the context of the
multi-type bisexual Galton-Watson process. We recall that in this case q = nf + nm, where
nf , nm ∈ N∗ are respectively the number of types for females and males. In order to be consistent
with our notation, we write ξ((x1, . . . , xnf ), (y1, . . . , ynm)) = ξ(x1 . . . , xnf , y1, . . . ynm). In this
context, for i ∈ {1, . . . p} and j ∈ {1, . . . nf} we set Xi,j = Vi,j , and similarly, for j ∈ {1, . . . , nm},
Yi,j = Vi,nf+j . Finally, we define the matrices X ∈ Rp,nf and Y ∈ Rp,nm given by

Xi,j = E(Xi,j), Yi,j = E(Yi,j).

Example 5 (Perfect fidelity mating function). Consider the case where nf = nm = p and the
mating function ξ(x, y) = min{x, y} := (min{xi, yi})i≤p, which is a natural extension of the perfect
fidelity case presented by Daley ([Dal68]) to the multi-dimensional case. In this case, we have

min{kzX, kzY}
k

= min{zX, zY}, ∀k ≥ 1.

Hence the function M takes the form M(z) = min{zX, zY}. Let us discuss different particular
instances of this model.

• If X ≤ Y are aperiodic irreducible non-negative matrices, then M(z) = zX and so M is a
linear function and λ∗ is its greatest eigenvalue. In the super-critical case (i.e. λ∗ > 1), the
asymptotic profile of the types of the process in the non-extinction event is given by its
positive left eigenvector. We thus observe that, despite the interaction between males and
females, the extinction and growth characterization of the process is similar to the classical
Galton-Watson case.
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• The case X proportional with Y can be handled similarly: Let (Xi,j)1≤i≤p,1≤j≤p and
(Yi,j)1≤i≤p,1≤j≤p defined by

Xi,j =
Ui,j∑
`=1

εi,j,` and Yi,j =
Ui,j∑
i=`

(1− εi,j,`),

where (Ui,j)1≤i≤p,1≤j≤p is a random integrable array with mean U and (εi,j,`)1≤i≤p,1≤j≤p,`∈N
is an array of i.i.d. {0, 1} valued random variables independent from U . The variable Ui,j
describes the number of children of type j from a mating unit of type i and εi,j,` determines
if the `-th child is a female or a male. Note that in this example Xi,j and Yi,j are not
independent. Then, setting α = P(εi,j,` = 1), we have

X = αU and Y = (1− α)U.

As a consequence,

M(z) = min{α, 1− α} zU

and M is a linear function. Assume now that U is an aperiodic irreducible non-negative
matrix with greatest eigenvalue λU and positive left eigenvector zU. Then λ∗ = min{α, 1−
α}λU and, in the super-critical case, the asymptotic profile of the types of the process
(Zn)n∈N on the non-extinction event is given by z∗ = zU.
• Let us now consider a non-linear case. Assume that X = αIp + β1p and Y = α′Ip + β′1p,
where α, α′ ≥ 0 and β, β′ > 0 are constants, Ip is the identity matrix of size p× p and 1p is
the matrix of size p× p filled with ones. Then, for all i ∈ {1, . . . , p},

Mi(z) = min
{
αzi + β|z|, α′zi + β′|z|

}
.

Note that, for any permutation σ of {1, . . . , p}, we have

M(zσ(1), . . . , zσ(p)) = (Mσ(1)(z), . . . ,Mσ(p)(z)).

Hence z∗ is stable by permutation of its components, so that z∗ = (1/p, . . . , 1/p). We deduce
that

λ∗ = |M(z∗)| = pmin{α/p+ β, α′/p+ β′} = min{α+ βp, α′ + β′p}.

Remark 7. The previous example also covers a polygamous mating by one of the sexes, if we fix
d ∈ N and let ξ(x, y) = min{x, dy} = (min{xi, dyi})i≤p, as Daley did [Dal68] in the single-type
case. In this situation, we recover the same criterion.

Example 6 (Completely promiscuous mating function). The case studied by Karlin and Ka-
plan [KK73] corresponds to the case where the number of couples is equal to the number of females
present in every generation (in particular this implies that nf = p) given the condition that there
is at least one male of each type present in every generation. In other words, they consider the
mating function

ξ((x1, . . . , xp), (y1, . . . , ynm)) = (x1, . . . , xp)
nm∏
i=1

1{yi>0}.

The function M in this case corresponds to

M(z) = zX1{zY>0}.

We assume that X is aperiodic irreducible and that ∀j ≤ nm,∀i ≤ p : Yi,j > 0, (this last condition
ensures that Assumption 1 holds) then zY > 0 for all z ∈ Rp+ \ {0}. In particular M(z) = zX for
all z ∈ Rp+, which implies that the unique unitary positive eigenvector of M and its corresponding
eigenvalue are the ones of X given by the Perron-Frobenious Theorem. This result already appeared
in [KK73].
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In addition, Proposition 7 entails the following original convergence property, proved in Section 6.4.
In particular, this model satisfies the conditions of Theorem 6. As stated before, Example 6 does
not satisfy the assumptions of Proposition 8 since ξ : Nq → Np is not Lipschitz.

Proposition 9. Consider the model in Example 6 above. Assume in addition that E(Xi,j logXi,j)
is finite for all i, j ∈ {1, . . . p}. Then, the rescaled process Zn/(λ∗)n converges almost surely and in
L1 to a non-degenerate random vector, with the same direction as z∗.

3. Characterization of M and proof of Theorem 1

Let (Zn)n∈N be a multi-type bGWbp with superadditive mating function ξ and consider the
function M associated to this process given by (3). We start by stating and proving some properties
related to this function in Section 3.1 and prove Theorem 1 in Section 3.2.

3.1. Characterization of M. In this section we give some fundamental properties of the operator
M defined in Section 2, and relate it to the behaviour of the number of mating units in the
population. We start by proving that M is concave and positively homogeneous, then we prove that
it does not depend on the chosen extension for ξ to Rq and state first properties of this function.

Definition 1. A function F : Rp+ −→ Rp+ is said to be
(1) Concave if

F (αx+ (1− α)y) ≥ αF (x) + (1− α)F (y),
for all α ∈ [0, 1] and all x, y ∈ Rp+.

(2) Positively homogeneous if for all α > 0, F (αx) = αF (x) for all x ∈ Rp+.
(3) Primitive if there exists n0 ≥ 1 such that Fm(x) > 0 for all m ≥ n0 and x ∈ Rp+ \ {0}.

Proposition 10. The function M is positively homogeneous and concave.

Proof. Let α > 0, then

M(αz) = lim
k→+∞

ξ(αkzV)
k

= α lim
k→+∞

ξ(αkzV)
αk

= αM(z),

and so M is positively homogeneous. Using this and the fact that ξ (and hence M) is a superadditive
function, we deduce that M is a concave mapping. �

Proposition 11. For all z ∈ Rp+, we have

M(z) = lim
r→+∞

ξ(brzVc)
r

= sup
r≥1

ξ(brzVc)
r

. (8)

In addition, for any compact set K ⊂ S such that M is continuous on K, M is either bounded
on K or infinite on K. In the former case,

sup
z∈K

∣∣∣∣M(z)− ξ(rzV)
r

∣∣∣∣ −−−−→r→+∞
0, (9)

and, in the latter case,

inf
z∈K

ξ(rzV)
r

−−−−→
r→+∞

+∞. (10)

Proof. For the first assertion consider z ∈ Rp+, u ∈ {0, 1}p given by ui = 1{(zV)i 6=0} and let n ∈ N∗

be such that zV ≥ 1
nu. Then, for all r > 0,

ξ(b(r + n)zVc)
r + n

≥ ξ(brzV + uc)
r + n

≥ ξ(rzV)
r

r

r + n
.
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Taking the limit when r → +∞, we conclude that

M(z) ≤ lim
r→+∞

ξ(brzVc)
r

.

The reverse inequality is direct using the fact that ξ is non-decreasing in all its components, which
concludes the proof of the first equality in (8). The second equality is a consequence of Fekete’s
Lemma and the fact that r 7→ ξ(brzVc) is superadditive.

For the second part, let K be a compact subset of S such that M is continuous on K. Note that,
M being continuous, it is either bounded or equal to +∞ on K.

We first consider the case where M is bounded on K. Since M(z) ≥ ξ(rzV)
r for all z ∈ S and

r > 0, we only have to prove that

lim sup
r→+∞

sup
z∈K

(
M(z)− ξ(rzV)

r

)
≤ 0.

Assume the contrary. Then there exist ε > 0 and two sequences (zn)n∈N ∈ KN and (rn)n∈N ∈
(0,+∞)N such that rn ↗ +∞ and

ξ(rnznV)
rn

≤M(zn)− ε.

Since K is compact, there exists, up to a subsequence, z∞ ∈ K such that zn → z∞. In
particular, for all δ ∈ (0, 1), there exists nδ,ε such that, for all n ≥ nδ,ε, zn ≥ (1 − δ)z∞ and
M(zn) ≤M(z∞) + ε/2 and hence

ξ ((1− δ)rnz∞V)
rn

≤M(z∞)− ε/2.

By definition of M and Proposition 10, the left hand side converges to M((1 − δ)z∞) =
(1− δ)M(z∞) when n→ +∞, and hence

(1− δ)M(z∞) ≤M(z∞)− ε/2.

Since this is true for all δ > 0, ε > 0 and sinceM(z∞) < +∞ by assumption, this is a contradiction.
We thus proved (9).

The proof of (10) is similar. Assume that it does not hold true. Then there exist A > 0 and two
sequences (zn)n∈N ∈ KN and (rn)n∈N ∈ (0,+∞)N such that rn ↗ +∞ and

ξ(rnznV)
rn

≤ A.

This implies that, up to a subsequence, zn converges to z∞ ∈ K and that, for any δ ∈ (0, 1),

(1− δ)M(z∞) ≤ A.

But M is equal to +∞ on K and hence we obtained +∞ ≤ A, which is a contradiction. This
concludes the proof of Proposition 11. �

As a consequence of Proposition 11, we have the following result in the case where M is continuous.

Corollary 12. Assume M is finite and continuous over S. Then, we have∣∣∣∣M(z)
|z|

− ξ(zV)
|z|

∣∣∣∣ |z|→+∞−−−−−→ 0.

The following lemma, used in the proof of the forthcoming Proposition 14 and Proposition 15,
relates the iterations of M with the expectation of the process. It is proved in the Section 3.2,
after the proof of Theorem 1 and Corollary 2. Note that the proof of this lemma is based on
Corollary 2, however neither Theorem 1 nor Corollary 2 makes use of Lemma 13, Proposition 14 or
Proposition 15.
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Lemma 13. For all n ≥ 0 and all z ∈ Np, we have

Mn(z) ≥ E(Zn|Z0 = z), ∀n ∈ N.

The following result states that the primitivity of the bGWbp entails the primitivity of M.

Proposition 14. Assume that Assumption 1.2 holds, that is, (Zn)n∈N is primitive, then M is a
primitive function.

Proof. Since (Zn)n∈N is primitive, we can find N, k ∈ N big enough so that for all i ∈ {1, . . . , p} and
m ≥ N we have that E(Zm|Z0 = kei) > 0. Hence, for m ≥ N and z ∈ Np \ {0}, using Lemma 13
and the superadditivity of ξ and then of z 7→ E(Zm|Z0 = z),

kMm(z) = Mm(kz) ≥ E(Zm|Z0 = kz) ≥
p∑
i=1

ziE(Zm|Z0 = kei) > 0,

and so Mm(z) > 0, which concludes the proof. �

We finish this subsection by stating one last property on M.

Proposition 15. Assume that Assumption 1.2 holds. We have infz∈S |M(z)| > 0 and, for all
compact subset K ⊂ S∗ and for all i ∈ {1, . . . , p}, infz∈K Mi(z) > 0.

Proof. We start by proving the first assertion. Since M is primitive by Proposition 14, there exists
n0 ≥ 1 such that Mn0(ei) > 0 for all i ∈ {1, . . . , p}. In particular, M(ei) 6= 0 for all i ∈ {1, . . . , p}.
Using the concavity of M, we deduce that

inf
z∈S
|M(z)| ≥ inf

z∈S

∣∣∣∣∣
p∑
i=1

ziM(ei)
∣∣∣∣∣ ≥ min

i∈{1,...,p}
|M(ei)| > 0.

Let us now prove the second assertion. For z ∈ K, if Mi(z) = +∞, by Proposition 10, Mi(z′) = +∞
for all z′ ∈ K and the result follows directly. If Mi(z) < +∞, since Mi is concave, it is locally
Lipschitz on S∗ and hence z 7→Mi(z) is continuous on the compact set K. It is thus sufficient to
prove the result for any fixed z ∈ S∗. For this, we simply observe that, for any two z, z′ ∈ S∗, we
have, using the fact that z 7→Mi(z) is positively homogeneous and increasing,

Mi(z) ≥
minj∈{1,...,p} zj
maxj∈{1,...,p} z′j

Mi(z′).

Hence z 7→Mi(z) is either null or positive on S∗. Since M is primitive by Proposition 14, z 7→Mi(z)
is not null (take for instance z = Mn0(ei)), which concludes the proof. �

3.2. Proof of Theorem 1. We start with the following lemma, where we do not assume that M
is finite over S.

Lemma 16. Let (zk)k≥0 be a random sequence in Np such that zk ∼k→+∞ kz∞ ∈ Rp+ almost surely.
We have

1
k
ξ

( p∑
i=1

zk,i∑
m=1

V
(m)
i,·

)
−→M(z∞),

almost surely when k → +∞.

The proof of this lemma is inspired by [DHT86].

Proof. Since all the variables Vi,j are integrable, then thanks to the strong law of large numbers,
we have that for all i ≤ p, j ≤ q,

1
n

n∑
m=1

V
(m)
i,j

a.s.−−−−−→
n→+∞

Vi,j .
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Assume first that z∞,i > 0. In this case, since zk,i → +∞ almost surely we deduce that

1
zk,i

zk,i∑
m=1

V
(m)
i,j

a.s.−−−−→
k→+∞

Vi,j

and hence
1

kz∞,i

zk,i∑
m=1

V
(m)
i,j

a.s.−−−−→
k→+∞

Vi,j .

Fix 0 < ε < min
i,j/Vi,j 6=0

Vi,j . Hence, with probability one there exists k0 (random) such that if k ≥ k0,

then

kz∞,i(Vi,j − ε) ≤
zk,i∑
m=1

V
(m)
i,j ≤ kz∞,i(Vi,j + ε).

Assume now that z∞,i = 0. Then, almost surely, there exists k0 such that for all k ≥ k0, zk,i = 0,
so that the last inequality also holds true.

We consider again the general case z∞ ≥ 0. Summing on i we obtain that, almost surely, there
exists k0 such that, for all k ≥ k0 and all j ≤ q,

p∑
i=1

Vi,j 6=0

kz∞,i(Vi,j − ε) ≤
p∑
i=1

zk,i∑
m=1

V
(m)
i,j ≤

p∑
i=1

Vi,j 6=0

kz∞,i(Vi,j + ε),

where we used the fact that V (m)
i,j = 0 almost surely if Vi,j = 0.

Define the matrices Vε+ :=
(
(Vi,j + ε)1Vi,j 6=0

)
1≤i≤p,1≤j≤q

and Vε− :=
(
(Vi,j − ε)1Vi,j 6=0

)
1≤i≤p,1≤j≤q

.
Since the function ξ is superadditive, in particular it is non decreasing. Hence, we get

ξ(kz∞Vε−)
k

≤ 1
k
ξ

( p∑
i=1

zk,i∑
m=1

V
(m)
i,j

)
1≤j≤q

 ≤ ξ(kz∞Vε+)
k

. (11)

Let define
δ = ε

min
i,j/Vi,j 6=0

Vi,j
,

and note that δ < 1 thanks to our choice of ε.
Assume first that M(z∞) < +∞ and note that

lim sup
k→+∞

ξ(kz∞Vε+)
k

= lim sup
k→+∞

1
k
ξ


 p∑

i=1
Vi,j 6=0

kz∞,i

(
1 + ε

Vi,j

)
Vi,j


1≤j≤q


≤ lim

k→+∞

1
k
ξ

( p∑
i=1

kz∞,i(1 + δ)Vi,j

)
1≤j≤q


= (1 + δ)M(z∞),

and similarly, lim inf
k→+∞

ξ(kz∞Vε−)
k

≥ (1− δ)M(z∞).
Hence, taking k → +∞ in (11), we obtain

(1− δ)M(z∞) ≤ lim inf
k→+∞

1
k
ξ

( p∑
i=1

zk,i∑
m=1

V
(m)
i,j

)q
j=1

 ≤ (1 + δ)M(z∞)
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Finally, taking ε→ 0, then δ goes to 0 and we conclude the desired result when M(z∞) < +∞.

If M`(z∞) = +∞ for some ` ∈ {1, . . . , p}, the inequality lim inf
k→+∞

ξ`(kz∞Vε−)
k

≥ (1− δ)M`(z∞) still
holds and so the result follows in this case. �

We now proceed with the proof of Theorem 1.

Proof of Theorem 1. We first prove the almost sure convergence in Step 1, and then the L1

convergence in Step 2.

Step 1. Almost sure convergence. The result is trivial for n = 0. By Lemma 16, we have

Zm1
m

= 1
m
ξ

( p∑
i=1

zm,i∑
k=1

V
(1,k)
i,·

)
a.s.−−−−→

m→∞
M(z∞), (12)

If M`(z∞) > 0 for some ` ∈ {1, . . . , p}, then this proves that Zm1,` ∼m→+∞ mM`(z∞) almost surely.
If M`(z∞) = 0, then ξ`(kz∞V) vanishes for all k ≥ 1 and hence Z1,`1Z0≤Cz∞ = 0 almost surely for
all C > 0. Since zm ∼m→+∞ mz∞, we deduce that there exists a (random) m0 ≥ 1 such that, for
all m ≥ m0, Zm1,` = 0. Thus we proved that Zm1 ∼m→+∞ mM(z∞) almost surely, which proves the
result when n = 1.

Assume now that Zmn ∼m→+∞ mMn(z∞) a.s. for some n ≥ 1. Then the previous step with
zm = Zmn entails that

Zmn+1 ∼m→∞ mM(Mn(z∞)) = mMn+1(z∞) a.s.

This concludes the proof of the first assertion in Theorem 1.

Step 2. Convergence in L1. We prove now the L1-convergence. Denote 1q ∈ Nq, 1q = (1, . . . , 1), and
fix z0 ∈ Np such that z0V ≥ 1q. Consider the bGWbp with initial position Zm0 = zm, m ≥ 1, and
denote by Wm

1 the number of children in the first generation. We have Wm
1 ≤ |Wm

1 |1q ≤ |Wm
1 |z0V,

and so using the second equality in (3),

Zm1 = ξ(Wm
1 ) ≤ ξ (|Wm

1 |z0V) ≤M (|Wm
1 |z0) .

Using Proposition 10, we deduce that

Zm1 ≤ |Wm
1 |M(z0). (13)

By assumption, the random vector

U (m) := bzm/mc+ 1

is uniformly integrable, and we have zm ≤ mU (m) almost surely, so that

0 ≤ |Wm
1 | ≤

∣∣∣∣∣∣∣
p∑
i=1

mU
(m)
i∑

k=1
V

(k,1)
i,·

∣∣∣∣∣∣∣ . (14)

Since U (m) is independent from the other terms, we have

E


∣∣∣∣∣∣∣

1
m

q∑
j=1

p∑
i=1

mU
(m)
i∑

k=1

(
V

(k,1)
i,j − Vi,j

)∣∣∣∣∣∣∣


≤
∑

u∈(N\{0})p

q∑
j=1

p∑
i=1

1
mui

E
(∣∣∣∣∣

mui∑
k=1

(
V

(k,1)
i,j − Vi,j

)∣∣∣∣∣
)
|u|P

(
U (m) = u

)
. (15)
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Using the law of large numbers, we deduce that, for each i ∈ {1, · · · , p} and j ∈ {1, · · · , q},

1
m
E
(∣∣∣∣∣

m∑
k=1

(
V

(k,1)
i,j − Vi,j

)∣∣∣∣∣
)
−−−−−→
m→+∞

0.

In particular, this ensures that the family

fm := max
u∈(N\{0})p

q∑
j=1

p∑
i=1

1
mui

E
(∣∣∣∣∣

mui∑
k=1

(
V

(k,1)
i,j − Vi,j

)∣∣∣∣∣
)

converges to 0 when m→ +∞. In addition, for all A > 0,

∑
u∈(N\{0})p

q∑
j=1

p∑
i=1

1
mui

E
(∣∣∣∣∣

mui∑
k=1

(
V

(k,1)
i,j − Vi,j

)∣∣∣∣∣
)
|u|P

(
U (m) = u

)
≤

∑
u∈(N\{0})p
|u|≤A

fm|u|P
(
U (m) = u

)
+

∑
u∈(N\{0})p
|u|>A

max
n∈N

fn|u|P
(
U (m) = u

)

≤ fmA+ E
(∣∣∣U (m)

∣∣∣1|U(m)|>A

)
max
n∈N

fn.

Since the family (U (m))m≥0 is uniformly integrable and choosingA large enough, E
(∣∣∣U (m)

∣∣∣1|U(m)|>A

)
can be made arbitrarily small uniformly in m, and, for any fixed A, choosing m large enough, the
term fmA can be chosen arbitrarily small. Using (15), this implies that

E


∣∣∣∣∣∣∣

1
m

q∑
j=1

p∑
i=1

mU
(m)
i∑

k=1

(
V

(k,1)
i,j − Vi,j

)∣∣∣∣∣∣∣
 −−−−−→

m→+∞
0.

In particular, this shows that 1
m

∑q
j=1

∑p
i=1

∑mU
(m)
i

k=1 V
(k,1)
i,j converges in L1 and is thus uniformly

integrable. By inequalities (14) and (13), this entails that (Zm1 /m)m≥1 is uniformly integrable too.
Now, since we also proved that Zm1 /m converges almost surely to M(z∞), this implies that Zm1 /m
converges in L1 to M(z∞).

As above, the result for general n ≥ 1 derives by iteration, which concludes the proof of
Theorem 1. �

We now turn to the proof of Corollary 2.

Proof of Corollary 2. Theorem 1 yields Corollary 2 when M takes finite values. In the situation
where M is not finite valued, we consider the vector 1p = (1, . . . , 1) ∈ Np and introduce the
superadditive function

ξ̂(x) = |x|1p.

Then, for all α ∈ N, we define the superadditive mating function

ξ(α)(x) = min{ξ(x), αξ̂(x)} :=
(
min{ξ(x)i, αξ̂(x)i}

)
1≤i≤p

,

and we denote by M(α) the function associated if we consider ξ(α) as mating function with the same
offspring distribution as the original process. We can check that M(α)(z) = min{M(z), αξ̂(zV)}
and so we obtain that M(α)(z)↗M(z) as α→ +∞, for all z ∈ Rp+. Since clearly ξ(α) ↗ ξ, using
the Monotone Convergence Theorem, for all z ∈ Np and i ∈ {1, . . . , p},

E(α)(Z1|Z0 = z) −−−−−→
α→+∞

E(Z1|Z0 = z), (16)
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where E(α) is the probability law associated to the process with mating function ξ(α). In particular,
using Corollary 2 for the finite valued M(α), for all z ∈ Rp+,

M(z) = sup
α>0

M(α)(z) = sup
α>0

sup
m≥1

E(α)(Z1|Z0 = bmzc)
m

= sup
m≥1

sup
α>0

E(α)(Z1|Z0 = bmzc)
m

= sup
m≥1

E(Z1|Z0 = bmzc)
m

.

Since m 7→ E(Z1|Z0 = bmzc) defines a superadditive sequence, we deduce that

M(z) = lim
m≥1

E(Z1|Z0 = bmzc)
m

,

which concludes the proof of Corollary 2. �

Let us now prove Lemma 13, hence also concluding the proof of Propositions 14 and 15.

Proof of Lemma 13. Let z ∈ Np. For n = 1, we use Corollary 2 and obtain that

M(z) = lim
k→∞

E(Z1|Z0 = kz)
k

= sup
k∈N

E(Z1|Z0 = kz)
k

≥ E(Z1|Z0 = z).

Assume now that the inequality is true for some n ∈ N. Using the fact that M is increasing
(since it is superadditive), we obtain

Mn+1(z) ≥M(E(Zn|Z0 = z))
≥ E(M(Zn)|Z0 = z)

≥ E
(
E(Z1|Z0 = z′)|z′=Zn |Z0 = z

)
= E(Zn+1|Z0 = z),

where in the second step we have used Jensen’s inequality, since M is concave by Proposition 10,
and the last inequality is due to the Markov property. The proof is then complete. �

4. Existence of the eigenelements and proof of Theorem 3

4.1. The concave eigenvalue problem. Consider A a real strictly positive N ×N matrix. A
well-known result that goes back to Perron [Per07] states that

lim
n→∞

Anx

λn
= c(x)v, ∀x ∈ Rp+,

where λ is the greatest eigenvalue of A with v its corresponding eigenvector and c is a suitable
function. This result and its consequences are among the main tools used to study the asymptotic
behaviour of the classical multi-type Galton-Watson process, applied to the expectation matrix
associated with the process. In this section we give similar results: a theorem that goes back to
Ulrich Krause [Kra94] that provides us with the necessary tools to study the extinction conditions
for the multi-type bGWbp.

Theorem 17 (See [Kra94] Section 4). Consider M : Rp+ −→ Rp+ a concave, primitive and positively
homogeneous mapping. Then,

(1) The eigenvalue problem M(z) = λz has a unique solution (λ∗, z∗) ∈ R×S∗, with λ∗ > 0. If
(λ, x) ∈ R×

(
Rp+ \ {0}

)
is another solution of the problem, then it must hold that x = rz∗

for some r > 0 and λ = λ∗.
(2) The function L : (R+)p −→ R+z

∗ given by L(x) = lim
k→∞

Mk(x)
(λ∗)k exists on Rp+ and holds

L(x) = P(x)z∗ where P : Rp+ −→ R+ is a concave and positively homogeneous mapping
with P(x) > 0 for all x ∈ Rp+ \ {0}.
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(3) lim
k→∞

Mk(x)
|Mk(x)| = z∗ for all x ∈ Rp+ \ {0}.

(4) lim
k→∞

|Mk+1(x)|
|Mk(x)| = λ∗ = lim

k→∞
|Mk(x)|

1
k for all x ∈ Rp+ \ {0}.

(5) The convergence toward L(x) = P(x)z∗ is uniform on x ∈ S.

4.2. Proof of Theorem 3. If M is finite, the existence of λ∗ and z∗ are guaranteed by Theorem 17,
Propositions 10 and Proposition 14. Note that, in the following of the proof, we make use of
Theorem 4 whose proof is developed in the next section and, except from the existence and
uniqueness of λ∗ and z∗ which are yet established, does not use Theorem 3.

If M takes finite values and λ∗ ≤ 1, then, by assertion (2) in Theorem 17, for all z ∈ Np,
(Mn(z))n∈N is a bounded sequence. From Lemma 13, Mn(z) ≥ E(Zn|Z0 = z), hence E(Zn|Z0 = z)
is bounded for all n ∈ N and so Zn does not converge to +∞ with positive probability. The
conclusion is then given by Assumption 1.1 since then lim

n→∞
|Zn| can only be almost surely 0, which

finishes the proof of the theorem in the case λ∗ ≤ 1.
If M(z) < +∞ for all z ∈ S and λ∗ > 1, Theorem 4 entails that, for all ε ∈ (0, 1), there exists

n0 ∈ N and r > 0 such that, if Z0 = z ∈ Np with |z| > r, we have that with positive probability
Zn0 6= 0 and Zn ≥ (1− ε)n−n0Mn−n0(Zn0) for all n ≥ n0, with (1− ε)n−n0Mn−n0(Zn0) 6= 0 (since
M is primitive), and so we obtain qz < 1.

Assume now that there exist z0 ∈ S and i0 ∈ {1, . . . , p} such that (M(z0))i0 = +∞. Consider,
in the same way as for the proof of Corollary 2, the vector 1p = (1, . . . , 1) ∈ Np and the function

ξ̂(x) = |x|1p.

For α ∈ N we define the function

ξ(α)(x) = min{ξ(x), αξ̂(x)},

which is superadditive, and we define M(α) the function associated if we consider ξ(α) as mating
function with the same offspring distribution as the original process. We can check that M(α)(z) =
min{M(z), αξ̂(zV)} and so we obtain that M(α)(z)↗M(z) as α→ +∞, for all z ∈ Rp+. Note that
in particular (

M(α)(z0)
)
i0

α→+∞−−−−−→ +∞. (17)

Since clearly ξ(α) ↗ ξ, using the Monotone Convergence Theorem, for all m ≥ 1 and i ∈ {1, . . . , p},

E(α)(Zm|Z0 = kei) −−−−−→
α→+∞

E(Zm|Z0 = kei). (18)

where E(α) is the probability law associated to the process with mating function ξ(α).
By Assumption 1.2, there exists c0 > 0,m ≥ 1 and k ≥ 1 such that for all i ∈ {1, . . . , p},

E(Zm|Z0 = kei) ≥ c01p.

By (18), there exists α0 > 0 (which depends on m) such that for all α > α0 and all i ∈ {1, . . . , p},

E(α)(Zm|Z0 = kei) ≥
c01p

2 ≥ c0
2 max
j≤p

z0,j
z0.

This implies, by Lemma 13, that for all i ∈ {1, . . . , p},

Mm
(α)(ei) ≥

c0
2kmax

j≤p
z0,j

z0.

Hence, by (17), (
Mm+1

(α) (ei)
)
i0
≥ c0

2kmax
j≤p

z0,j
(M(α)(z0))i0

α→+∞−−−−−→ +∞.
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This implies that
inf
z∈S

(
Mm+1

(α) (z)
)
i0

α→+∞−−−−−→ +∞.

We remark that, since M(α) is bounded over S, concave, positively homogeneous and primitive,
there exists λα > 0 and xα ∈ S such that M(α)(xα) = λαxα. Using this we have that

λm+1
α = |Mm+1

(α) (xα)| α→+∞−−−−−→ +∞.

We conclude that there exists α0 big enough such that λα0 > 1 and thanks to the previous
computations the process with mating function ξα0 will not be almost surely extinct. Since ξ(α0) ≤ ξ,
this process is stochastically dominated by the original process, and so we can find rα0 > 0 such
that for all z ∈ Np with |z| > rα0 , given {Z0 = z}, the original process has a positive probability of
survival.

5. Proof of Theorem 4

In order to prove Theorem 4, we first prove that, if λ∗ > 1 and under the assumption that M is
bounded over S, we have that for all ε ∈ (0, 1), δ ∈ (0, 1/p],

lim
|z|→+∞
z∈Uδ

P (∀n ∈ N, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)|) = 1, (19)

where Uδ is the set given by
Uδ = {z ∈ Np : z ≥ |z|δ1p}, (20)

where we recall that 1p = (1, . . . , 1) ∈ Np and for all a, b ∈ Rp+, |a, b| := {z ∈ Rp+, a ≤ z ≤ b}. We
remark that, for δ > 0, Uδ is non-empty if and only if δ ∈ (0, 1/p].

Then, we prove that for any initial values, either the process goes to extinction or it reaches a
set Uδ in finite time. Both results then lead to the proof of Theorem 4.

The second result is stated in Lemma 22, the first one is stated in Lemma 21 and is based on
Lemmas 18, 19 and 20 for which we introduction the following additional notation.

For any ε ∈ (0, 1) and n ≥ 1, we consider the sequence of events

Aεn := {∀i ∈ {1, . . . , n}, Zi ∈ |(1− ε)M(Zi−1), (1 + ε)M(Zi−1)|},

or simply An when there is no risk of ambiguity. We also set Aε0 = Ω.

Lemma 18. Assume that M is bounded on S. For any δ ∈ (0, 1/p] and ε ∈ (0, 1), there exists
c0 > 0 such that for all z ∈ Uδ and all n ∈ N,

P (Aεn | Z0 = z) ≥ 1−
n∑
i=1

c0E
(
1Aεi−1

f(|Zi−1|) | Z0 = z
)
.

where

f(x) = x
p∑
i=1

q∑
j=1

P(Vi,j > x) +
p∑
i=1

q∑
j=1

E(V 2
i,j1Vi,j≤x)
x

.

Proof. We prove this lemma in two steps.
Step 1. We first consider the case n = 1. That is, we prove that for δ ∈ (0, 1/p] and ε ∈ (0, 1), there

exists c1 such that, for z ∈ Uδ,

P (Z1 ∈ |(1− ε)M(z), (1 + ε)M(z)| | Z0 = z) ≥ 1− c1|z|
p∑
i=1

q∑
j=1

P(Vi,j > |z|)− c1

p∑
i=1

q∑
j=1

E(V 2
i,j1Vi,j≤|z|)
|z|

.

(21)
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For Z0 = z, we have Z1 = ξ(W1,1, . . . ,W1,q) with W1,j =
∑p
i=1

∑zi
k=1 V

(k,1)
i,j for 1 ≤ j ≤ q. Fix

δ1 ∈ (0, 1) and r1 > 0 (depending on δ1) such that, for all z ∈ Np with |z| ≥ r1,

(1− δ1)Vi,j ≤ V≤|z|i,j := E
(
Vi,j1Vi,j≤|z|

)
≤ (1 + δ1)Vi,j .

For all |z| ≥ r1 with z ∈ Uδ, we have

P((W1,1, . . . ,W1,q) ≥ (1− δ1)2zV | Z0 = z) ≥ P((W1,1, . . . ,W1,q) ≥ (1− δ1)zV≤|z| | Z0 = z)

≥ 1−
q∑
j=1

P(W1,j < (1− δ1)
p∑
i=1

ziV
≤|z|
i,j | Z0 = z)

but for j ∈ {1, . . . , q},

P(W1,j < (1− δ1)
p∑
i=1

ziV
≤|z|
i,j | Z0 = z) ≤ P(∃i ∈ {1, . . . , p}, k ∈ {1, . . . , zi} s.t V (k,1)

i,j > |z| | Z0 = z)

+ P
( p∑
i=1

zi∑
k=1

(
V

(k,1)
i,j 1

V
(k,1)
i,j ≤|z| − V≤|z|i,j

)
< −δ1

p∑
i=1

ziV
≤|z|
i,j | Z0 = z

)

≤
p∑
i=1

zi P(Vi,j > |z|) +
Var

(∑p
i=1

∑zi
k=1 V

(k,1)
i,j 1

V
(k,1)
i,j ≤|z| | Z0 = z

)
δ2

1

(∑p
i=1 ziV

≤|z|
i,j

)2

≤ |z|
p∑
i=1

P(Vi,j > |z|) +

p∑
i=1

zi∑
k=1

Var
(
V

(k,1)
i,j 1

V
(k,1)
i,j ≤|z| | Z0 = z

)
δ2

1δ
2(1− δ1)2

( p∑
i=1

Vi,j
)2
|z|2

≤ |z|
p∑
i=1

P(Vi,j > |z|) +

p∑
i=1

E
(
V 2
i,j1Vi,j≤|z|

)
δ2

1δ
2(1− δ1)2

( p∑
i=1

Vi,j
)2
|z|
,

where we used the independence of the random variables V (k,1)
i,j , the fact that zi ≥ δ|z| for all

i ∈ {1, . . . , p}, and V≤|z|i,j ≥ (1 − δ1)Vi,j . Proceeding similarly for the event {(W1,1, . . . ,W1,q) ≤
(1 + δ1)2zV}, we deduce that there exists a constant c > 0 such that

P(W1 ∈ |(1− δ1)2zV, (1 + δ1)2zV| | Z0 = z)

≥ 1− c|z|
p∑
i=1

q∑
j=1

P(Vi,j > |z|)− c
p∑
i=1

q∑
j=1

E(V 2
i,j1Vi,j≤|z|)
|z|

, (22)

where W1 = (W1,1, . . . ,W1,q).
If we now apply Proposition 11 with the compact set Uδ ∩ S, for all ε′ > 0, there exists r2 > 0

such that if ` > r2(1− δ1)2, ∣∣∣∣ξ(`uV)
`

−M(u)
∣∣∣∣ ≤ ε′, ∀u ∈ Uδ ∩ S,

and we deduce that for all z ∈ Uδ such that |z| ≥ r2,∣∣∣∣∣ξ((1− δ1)2zV)
(1− δ1)2|z|

− M(z)
|z|

∣∣∣∣∣ ≤ ε′.
Hence, for all z ∈ Uδ with |z| ≥ r2,

ξ((1− δ1)2zV)
(1− δ1)2|z|

≥M(z/|z|)− ε′.
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In addition, since M is concave on S, it is locally Lipschitz on S∗ and in particular each of its
components are uniformly bounded away from 0 on Uδ ∩ S ⊂ S∗ by a constant m1 > 0 (which
depends on δ ∈ (0, 1/p]). Hence, for all z ∈ Uδ with |z| ≥ r2,

ξ((1− δ1)2zV)
(1− δ1)2|z|

≥M(z/|z|)(1− ε′/m1).

Similarly, there exist r3 > 0 and m2 > 0 such that, for all z ∈ Uδ with |z| ≥ r3,
ξ((1 + δ1)2zV)

(1 + δ1)2|z|
≤M(z/|z|)(1 + ε′/m2).

Hence, for z ∈ Uδ with |z| ≥ r1 ∨ r2 ∨ r3,

{(W1,1, . . . ,W1,q) ∈ |(1− δ1)2zV, (1 + δ1)2zV|}

⊂ {Z1 ∈ |M(z)(1− ε′/m1)(1− δ1)2,M(z)(1 + ε′/m2)(1 + δ1)2|}. (23)

Choosing ε′ and δ1 small enough, we deduce that there exists r4 > 0 such that, for all z ∈ Uδ with
|z| ≥ r4, (21) holds true for some constant c1. Up to a change in the constant c1, we deduce that
this is true for all z ∈ Uδ.

Step 2. We iterate now the result obtained in the previous step. We have, for all z ∈ Uδ.

P (Z1 ∈ |(1− ε)M(z), (1 + ε)M(z)| | Z0 = z) ≥ 1− c1f(|z|)

for some constant c1 > 0. Then, observing that Z1 ∈ |(1 − ε)M(z), (1 + ε)M(z)| implies that
Z1 ∈ ||z|(1− ε)M(z/|z|), (1 + ε)|z|M(z/|z|)| and hence that

Z1/|Z1| ≥
(1− ε)M(z/|z|)
(1 + ε)|M(z/|z|)| ≥ δ

′
11p,

with

δ′1 :=
(1− ε) minu∈Uδ∩S, i∈{1,...,p}〈M(u), ei〉

(1 + ε) sup
u∈S
|M(u)| .

where minu∈Uδ∩S, i∈{1,...,p}〈M(u), ei〉 > 0 by Proposition 15. Now, applying the same reasoning as
in Step 1 but with δ1 instead of δ, we deduce that there exists a constant c2 > 0 such that, on the
event {Z0 = z},

P (Z2 ∈ |(1− ε)M(Z1), (1 + ε)M(Z1)| | Z1) ≥ 1Z1∈|(1−ε)M(z),(1+ε)M(z)|(1− c2f(|Z1|))
= 1Aε1(1− c2f(|Z1|)).

And hence, using Markov’s property at time 1,

P (Aε2 | Z0 = z) ≥ E
(
P(Z2 ∈ |(1− ε)M(Z1), (1 + ε)M(Z1)| | Z1)1Aε1 | Z0 = z

)
≥ P(Aε1 | Z0 = z)− E

(
1Aε1c2f(|Z1|) | Z0 = z

)
≥ 1− c1f(|z|)− c2E

(
1Aε1f(|Z1|) | Z0 = z

)
Iterating this procedure, we deduce that there exists a positive sequence (cn)n≥1 such that, for

all n ≥ 1,

P (Aεn | Z0 = z) ≥ 1−
n∑
i=1

ciE
(
1Aεi−1

f(|Zi−1|) | Z0 = z
)
.

According to Theorem 17 (5), there exists n0 such that

sup
u∈S

∣∣(λ∗)−n0Mn0(u)− P(u)z∗
∣∣ ≤ 1

2 inf
S
P min

i∈{1,...,p}
z∗i ,
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so that Mn0(u) ∈ |(λ∗)n0P(u)z∗/2, 3(λ∗)n0P(u)z∗/2|, ∀u ∈ S. Then, under Aεn0 , we have

Zn0 ∈ |(1− ε)n0Mn0(z), (1 + ε)n0Mn0(z)| ⊂ |(1− ε)n0(λ∗)n0P(z)z∗/2, 3(1 + ε)n0(λ∗)n0P(z)z∗/2| ,

so that (recall that |z∗| = 1)

Zn0/|Zn0 | ≥
(1− ε)n0(λ∗)n0P(z)z∗/2
3(1 + ε)n0(λ∗)n0P(z)/2 ≥ min z∗ (1− ε)n0

3(1 + ε)n0
1p.

Since δ′ := min z∗ (1−ε)n0
3(1+ε)n0 does not depend on δ, we deduce from Step 1 that there exists c′1 which

does not depend on δ such that

P(Aεn0+1 | Z0, . . . , Zn0) ≥ 1Aεn0

(
1− c′1f(|Zn0 |)

)
.

Iterating the procedure of the beginning of the proof, we deduce that there exist c′2, . . . , c′n0 which
do not depend on δ > 0 such that, for all n ∈ {n0 + 1, . . . , 2n0},

P (Aεn | Z0 = z) ≥ 1−
n0∑
i=1

ciE
(
1Aεi−1

f(|Zi−1|) | Z0 = z
)
−

n∑
i=n0+1

c′i−n0E
(
1Aεi−1

f(|Zi−1|) | Z0 = z
)

Under Aε2n0 , we have

Z2n0 ∈ |(1− ε)n0Mn0(Zn0), (1 + ε)n0Mn0(Zn0)| ⊂ |(1− ε)n0(λ∗)n0P(Zn0)z∗/2, 3(1 + ε)n0(λ∗)n0P(Zn0)z∗/2| ,

hence, using the same computations as above, we have

P(Aε2n0+1 | Z0, . . . , Z2n0) ≥ 1Aε2n0

(
1− c′1f(|Z2n0 |)

)
,

with the same constant c′1. Iterating the procedure of the beginning of the proof, we deduce that,
for all n ∈ {2n0 + 1, . . . , 3n0},

P (Aεn | Z0 = z) ≥ 1−
n0∑
i=1

ciE
(
1Aεi−1

f(|Zi−1|) | Z0 = z
)

−
2n0∑

i=n0+1
c′i−n0E

(
1Aεi−1

f(|Zi−1|) | Z0 = z
)

−
n∑

i=2n0+1
c′i−2n0E

(
1Aεi−1

f(|Zi−1|) | Z0 = z
)

Proceeding by induction and taking c0 = maxi∈{1,...,n0} ci ∨ c′i, this concludes the proof of the
lemma. �

We prove now a useful auxiliary lemma.

Lemma 19. Let (xn)n≥0 be a positive sequence such that, for some α > 1 and c > 0,

xn ≥ cαn−kxk, ∀n ≥ k ≥ 0. (24)

Then ∑
n≥0

f(xn) ≤ 2α
c(α− 1)

p∑
i=1

q∑
j=1

E
(

V 2
i,j

(cx0) ∨ Vi,j

)

with f defined in Lemma 18.

Proof. We first consider the first part and then the second part of f(xn), for each i ∈ {1, . . . , p}
and j ∈ {1, . . . , q}.
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We have, using Fubini’s Theorem,

∑
n≥0

xnP(Vi,j > xn) = E

∑
n≥0

xn1Vi,j>xn


≤ E

1Vi,j>min
n∈N

xn

Nij∑
n=0

xn

 ,
where Nij := max{n ≥ 0, xn < Vi,j}, with the convention that max ∅ = −1 (note that, since α > 1,
xn → +∞ so that Nij < +∞). Inequality (24) entails that minn∈N xn ≥ cx0 and that, for all
n ≤ Nij , xn ≤ αn−NijxNij/c ≤ αn−NijVi,j/c. We deduce that

∑
n≥0

xnP(Vi,j > xn) ≤ E

1Vi,j>cx0Vi,j

Nij∑
n=0

αn−Nij/c


≤ E

(
1Vi,j>cx0Vi,j

α

c(α− 1)

)

≤ α

c(α− 1)E
(

V 2
i,j

(cx0) ∨ Vi,j

)
,

where we used the fact that 1Vi,j>cx0 ≤
Vi,j

(cx0)∨Vij almost surely.
Using again Fubini’s Theorem, we have

∑
n≥0

E
(
V 2
i,j1Vi,j≤xn

)
xn

= E

V 2
i,j

∑
n≥0

1Vi,j≤xn
xn

 ≤ E

V 2
i,j

+∞∑
n=N ′ij

1
xn

 ,
where N ′ij = min{n ≥ 0, xn ≥ Vi,j} = Nij + 1. Inequality (24) entails that, for all n ≥ N ′ij ,
1/xn ≤ αN

′
ij−n/(cxN ′ij ). Hence, using the fact that xN ′ij ≥ Vi,j by definition of N ′ij , we obtain

∑
n≥0

E
(
V 2
i,j1Vi,j≤xn

)
xn

≤ E

V 2
i,j

1
xN ′ij ∨ Vi,j

+∞∑
n=N ′ij

αN
′
ij−n

c

 ≤ E
(

V 2
i,j

(cx0) ∨ Vi,j
α

c(α− 1)

)
,

where we used the fact that xN ′ij ≥ cx0 by (24).
Summing over i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, this concludes the proof of Lemma 19. �

Now we state a second auxiliary lemma, where we prove that for all z ∈ Np, the sequence
(Mn(z))n∈N holds the property (24).

Lemma 20. Assume that M is bounded on S and λ∗ > 1. There exists a constant c0 ∈ (0, 1] and
λ ∈ (1, λ∗) such that, for all z ∈ Np and all n ≥ 1 and k ∈ {0, . . . , n},

|Mn(z)| ≥ c0λ
n−k|Mk(z)|.

Proof. Let δ ∈ (0, 1) such that λ := 1−δ
1+δλ

∗ > 1. Fix z ∈ Np \ {0}. If there exists x > 0 such that
z ∈ |(1 − δ)xz∗, (1 + δ)xz∗|, then |z| ≤ |(1 + δ)xz∗| = (1 + δ)x, and, since M is increasing and
positively homogeneous,

|M(z)| ≥ |M((1− δ)xz∗)| = |(1− δ)xM(z∗)| = |(1− δ)xλ∗z∗| = (1− δ)xλ∗ ≥ λ|z|. (25)

Moreover, Theorem 17 (5) entails that there exists n0 ≥ 1 such that, for any z ∈ S and n ≥ n0,

Mn(z) ∈ |(1− δ)(λ∗)nC(z)z∗, (1 + δ)(λ∗)nC(z)z∗|,

so that, according to (25), for n ≥ k ≥ n0

|Mn+1(z)| ≥ λ|Mn(z)| ≥ λn+1−k|Mk(z)| ≥ λn+1−n0 |Mn0(z)|,
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By homogeneity of M, this extends to all z ∈ Np.
For all n ∈ {0, . . . , n0} and all z ∈ (N \ {0})p, we have, for all k ∈ {0, . . . , n},

|Mn+1(z)| ≥
∣∣∣∣M(

Mn(z)
|Mn(z)|

)∣∣∣∣ |Mn(z)| ≥ inf
S
|M| |Mn(z)| ≥ (inf

S
|M|)n+1−k |Mk(z)|

≥ cn+1−k
1 λn+1−k|Mk(z)|,

where c1 = λ−1 infS |M|. Setting c0 = 1 ∧ cn0
1 concludes the proof of Lemma 20. �

We are now in position to compute the limit (19).

Lemma 21. Assume that M is bounded on S and λ∗ > 1. For any δ ∈ (0, 1/p] and ε ∈ (0, 1), we
have

P

⋂
n≥1

Aεn | Z0 = z

 −−−−−−−−−→
|z|→+∞, z∈Uδ

1.

Proof. Take c0 > 0 and λ ∈ (1, λ∗) from Lemma 20. We assume without loss of generality that
α := (1− ε)λ > 1. For all i ≥ k ≥ 1, on the event Ai, we have then

|Zi| ≥ |(1− ε)kMk(Zi−k)| ≥ c0λ
k(1− ε)k|Zi−k| = c0α

k|Zi−k|.

Hence, according to Lemma 19, almost surely, on the event {Z0 = z},∑
n≥1

1An−1f(|Zn−1|) ≤
2α

c0(α− 1)

p∑
i=1

q∑
j=1

E
(

V 2
i,j

(c0|z|) ∨ Vi,j

)
.

We deduce that∑
n≥1

E
(
1An−1f(|Zn−1|) | Z0 = z

)
≤ 2α
c0(α− 1)

p∑
i=1

q∑
j=1

E
(

V 2
i,j

(c0|z|) ∨ Vi,j

)
.

Letting n → +∞ in Lemma 18, we obtain that there exists c′0 > 0 such that, for all z ≥ δ|z|1p
(recall that An−1 ⊂ An for all n ≥ 1),

P

⋂
n≥1

An | Z0 = z

 = lim
n→+∞

P
(

n⋂
k=1

An | Z0 = z

)

≥ 1− c′0
∑
n≥1

E
(
1An−1f(|Zn−1|) | Z0 = z

)
≥ 1− 2c′0α

c0(α− 1)
∑
i,j

E
(

V 2
i,j

(c0|z|) ∨ Vi,j

)
.

But Vi,j is integrable for all i, j and hence, by dominated convergence theorem,

E
(

V 2
i,j

(c0|z|) ∨ Vi,j

)
−−−−−→
|z|→+∞

0.

This concludes the proof of Lemma 21. �

Lemma 21 is useful for large starting values z such that z ≥ δ|z|1p. In order to use it for all
initial positions, we show that such values are eventually reached by the process in finite time.

Lemma 22. Assume that M is bounded on S. There exist δ0 ∈ (0, 1/p] and n0 ≥ 1 such that, for
all r > 0, for all η ∈ (0, 1), there exists ρ > 0 such that

inf
z∈Np, |z|≥ρ

P (τδ0,r ≤ n0 | Z0 = z) ≥ 1− η,
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where
τδ0,r = inf{n ≥ 0, Zn ≥ |Zn|δ01p and |Zn| ≥ r}.

In addition,
inf
z∈Np

P (τδ0,r ∧ T0 < +∞ | Z0 = z) = 1,

with T0 := inf{n ≥ 0, |Zn| = 0} the extinction time of the process.

Proof. Let n0 ≥ 1 and δ1 > 0 such that, for all i ∈ {1, . . . , p}, Mn0(ei) > δ11p. Such n0 and δ1
exist as M is primitive by Proposition 14. In order to prove the first inequality of the lemma, we
show that there exists α > 0 such that, for all η ∈ (0, 1), there exists k1 > 0 such that

P (Zn0 ≥ |z|δ21p | Z0 = z) ≥ 1− η/2 , ∀|z| ≥ k1 (26)

with δ2 := δ1/2p, and there exists k2 > 0 such that

P (α |z| > |Zn0 | | Z0 = z) ≥ 1− η/2 ∀|z| ≥ k2. (27)

Once this is proved, we set δ0 = δ2/α (which does not depend on η). Then for r > 0, setting
ρ = k1 ∨ k2 ∨ r/δ2p, we obtain from the general property P(A∩B) ≥ P(A) + P(B)− 1 that, for all z
such that |z| ≥ ρ,

P (τδ0,r ≤ n0 | Z0 = z) ≥ P (Zn0 ≥ |Zn0 |δ01p and |Zn0 | ≥ r and |Zn0 | < α |z| | Z0 = z)
≥ P (Zn0 ≥ α|z| δ01p and |Zn0 | < α |z| | Z0 = z)
≥ P (Zn0 ≥ |z|δ21p | Z0 = z) + P (|Zn0 | < α |z| | Z0 = z)− 1
≥ 1− η,

where we used for the second inequality that |α|z|δ01p| ≥ r for all |z| ≥ ρ.
Let us prove (26) and (27). By definition of n0 ≥ 1 and δ1 > 0 and by Theorem 1, we deduce

that there exists k0 ≥ 1 such that, for all k ≥ k0 and all i ∈ {1, . . . , p},

P(Zn0 ≥ kδ11p/2 | Z0 = kei) ≥ (1− η/2)1/p.

Using the auxiliary lemma in Appendix A, we obtain

P
(
Zn0 ≥

p∑
i=1

1zi≥k0ziδ11p/2 | Z0 = z

)
≥

p∏
i=1

P (Zn0 ≥ 1zi≥k0ziδ11p/2 | Z0 = ziei)

≥
p∏
i=1

(1− η/2)1/p = 1− η/2.

If in addition |z| ≥ k1 := pk0, then

δ1
2

p∑
i=1

1zi≥k0zi ≥
δ1
2 (|z| − (p− 1)k0) = δ1

2 |z|
(

1− (p− 1)k0
|z|

)
≥ δ1

2 p |z| = δ2 |z|

and (26) holds.
Set α = 2|Mn0(1p)| (note that by definition of n0, we have Mn0(1p) > 0). By superadditivity,

we have
P(|Zn0 | ≥ α|z| | Z0 = z) ≤ P(|Zn0 | ≥ α|z| | Z0 = |z|1p).

Now Theorem 1 entails that

P(|Zn0 | ≥ αm | Z0 = m1p) = P
( |Zn0 |

m
≥ 2|Mn0(1p)|

∣∣∣∣ Z0 = m1p
)
−−−−−→
m→+∞

0.

Using this, we conclude that for all η ∈ (0, 1), there exists k2 > 0 such that, for all |z| ≥ k2,

P(|Zn0 | ≥ α|z| | Z0 = z) ≤ η/2.

and (27) holds, which concludes the proof of the first part of the lemma.
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In addition, setting τ ′ρ = inf{n ≥ 0, |Zn| ≥ ρ}, we have for all starting point in z ∈ Np \ {0} such
that |z| ≤ ρ, P(τ ′ρ ∧ T0 < +∞ | Z0 = z) = 1 (by Assumption 1 and because Zn ∈ Np almost surely),
we deduce that, for all η ∈ (0, 1), there exists n1 ≥ 1 such that

P(τ ′ρ ∧ T0 ≤ n1 | Z0 = z) ≥ 1− η, ∀|z| ≤ ρ.

Using the strong Markov property at time τ ′ρ ∧ T0, we deduce that

P (τδ0,r ∧ T0 ≤ n0 + n1 | Z0 = z) ≥ (1− η)2, ∀z ∈ Np \ {0}.

Since this is true for all η ∈ (0, 1) this concludes the proof of Lemma 22. �

We are now in position to conclude the proof of Theorem 4. Consider δ0 ∈ (0, 1/p] and n0 ∈ N∗
given by Lemma 22. According to Lemma 21, for all ε ∈ (0, 1), for all η ∈ (0, 1), there exists r > 0
such that, for all z ∈ Uδ0 with |z| ≥ r,

P (∀n ≥ 0, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) ≥ 1− η/2. (28)

In addition, Lemma 22 entails that there exists ρ > 0 such that, for all |z| ≥ ρ,

P (τδ0,r ≤ n0 | Z0 = z) ≥ 1− η/2,

and hence, using the strong Markov property, we deduce that for all |z| ≥ ρ,

P (τδ0,r ≤ n0 and ∀n ≥ τδ0,r, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) ≥ 1− η.

Finally, this implies that

P (Zn0 6= 0 and ∀n ≥ n0, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) ≥ 1− η.

This concludes the proof of the first part of Theorem 4.
We now prove Corollary 5, the result holds true trivially if z = 0. Hence, using the Markov

property at time τδ0,r ∧ T0, we deduce from (28) and the fact that P (τδ0,r ∧ T0 < +∞) = 1, that
for all z ∈ Np,

P (τδ0,r ∧ T0 < +∞ and ∀n ≥ τδ0,r ∧ T0, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) ≥ 1− η/2.

Hence,

P (∃N ≥ 0 such that, ∀n ≥ N, Zn+1 ∈ |(1− ε)M(Zn), (1 + ε)M(Zn)| | Z0 = z) ≥ 1− η/2.

Since the left hand term does not depend on η, this conclude the proof of Corollary 5.
For the second part of Theorem 4, we simply observe that, P(· | Z0 = z)-almost surely, for

all ε > 0, there exists N ≥ 0 (random) such that for all m, k ≥ 0, for all n ≥ N , Zn+m ∈
|(1− ε)mMm(Zn), (1 + ε)mMm(Zn)|, hence

Zn+m+k
|Zn+m|

∈
∣∣∣∣∣(1− ε)m+kMm+k(Zn)

(1 + ε)m|Mm(Zn)| ,
(1 + ε)m+kMm+k(Zn)

(1− ε)m|Mm(Zn)|

∣∣∣∣∣
⊂
∣∣∣∣∣(1− ε)m+kMm+k(Zn/|Zn|)

(1 + ε)m|Mm(Zn/|Zn|)|
,
(1 + ε)m+kMm+k(Zn/|Zn|)

(1− ε)m|Mm(Zn/|Zn|)|

∣∣∣∣∣
⊂
∣∣∣∣∣(1− ε)m+k

(1 + ε)m inf
u∈S

Mm+k(u)
|Mm(u)| ,

(1 + ε)m+k

(1− ε)m sup
u∈S

Mm+k(u)
|Mm(u)|

∣∣∣∣∣ ,
where the infimum and supremum should be understood component-wise. But, according to
Theorem 17 (5), Mm+k(u)

|Mm(u)| converges uniformly in u ∈ S toward (λ∗)kz∗ when m→ +∞, and hence,
for all ε′ > 0, choosing m large enough, we have, for all n ≥ N ,

Zn+m+k
|Zn+m|

∈
∣∣∣∣∣(1− ε)m+k

(1 + ε)m (1− ε′)(λ∗)kz∗, (1 + ε)m+k

(1− ε)m (1 + ε′)(λ∗)kz∗
∣∣∣∣∣ .
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We deduce that (again the lim inf and lim sup should be understood component-wise)
(1− ε)m+k

(1 + ε)m (1− ε′)(λ∗)kz∗ ≤ lim inf
n→+∞

Zn+m+k
|Zn+m|

≤ lim sup
n→+∞

Zn+m+k
|Zn+m|

≤ (1 + ε)m+k

(1− ε)m (1 + ε′)(λ∗)kz∗.

Taking, first the limit when ε → 0 (m depends on ε′ but not on ε), then the limit when ε′ → 0,
concludes the proof of Theorem 4.

6. Identification of an intrinsic supermartingale and proof of Theorem 6

In this section we prove Theorem 6. In order to do so, we start by introducing the process

Cn = P(Zn)
(λ∗)n , (29)

where P is the function defined by (6).
We claim that a convergence (almost surely or in L1) of the process (Cn)n∈N to a non-negative

random variable C implies the convergence of the process
(

Zn
(λ∗)n

)
n∈N

. On the event of extinction,
the result is trivial. On the event of survival, as P is positively homogeneous by Theorem 17, we
have

Zn
(λ∗)n = Cn

Zn
|Zn|

1
P
(
Zn
|Zn|

) .
Applying Theorem 4 and if Cn → C we deduce that

Zn
(λ∗)n −→ Cz

∗ 1
P(z∗) = Cz∗, as n→ +∞,

and so the proof is complete. We also remark that the convergence of the sequence
(

Zn
(λ∗)n

)
n∈N

is
of the same type as the convergence of (Cn)n∈N.

We divide this section into five parts. The first and second parts are dedicated to the proof
of both results in Theorem 6. In the third part, we prove the convergence in L1 under stronger
assumptions and prove that, under these assumptions, the limit is non-degenerate at 0. In the
fourth part, we prove Proposition 8 and Proposition 9.

6.1. Almost sure convergence. In this section, we prove the first statement of Theorem 6. The
proof comes from the following result.

Lemma 23. The sequence (Cn)n∈N is a supermartingale with respect to (Fn)n∈N, the natural
filtration of (Zn)n∈N.

Proof. First, from the definition of P and Theorem 17, it follows that P ◦M = λ∗P. Then we
recall that, by Lemma 13, we have for all n ∈ N,

E(Zn+1|Fn) ≤M(Zn).

Hence, Jensen’s inequality together with the fact that P is increasing (since M is) and concave
imply that

E(Cn+1|Fn) = E(P(Zn+1)|Fn)
(λ∗)n+1 ≤ P(E(Zn+1|Fn))

(λ∗)n+1 ≤ P(M(Zn))
(λ∗)n+1 = P(Zn)

(λ∗)n = Cn.

�

Since (Cn)n∈N is a non-negative supermartingale, then it exists a non-negative random variable
C such that Cn

a.s.−−−−−→
n→+∞

C.

We now prove the convergence of the process
(
Wn

(λ∗)n
)
n∈N

in Theorem 6. We follow the proof

for the single-type case presented in [GM96]
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Let Nn = Zn
(λ∗)n , Sn = Wn

(λ∗)n and F̃n = σ(Z0, V
(k,`)
i,j , 1 ≤ i ≤ p, 1 ≤ j ≤ q, k ∈ N∗, 1 ≤ ` ≤ n). We

consider Z0 = z and define for n ≥ 1, Ŝn = (Ŝn,1, . . . , Ŝn,q) with for j ∈ {1, . . . , q},

Ŝn,j = 1
(λ∗)n

p∑
i=1

Zn−1,i∑
k=1

V
(k,n)
i,j 1

V
(k,n)
i,j ≤(λ∗)n−1

Note that for j ∈ {1, . . . , q},

E(Ŝn+1,j | F̃n) = 1
λ∗

p∑
i=1

Nn,iE(Vi,j1Vi,j≤(λ∗)n). (30)

Since λ∗ > 1, we have that Vi,j1Vi,j≤(λ∗)n → Vi,j almost surely as n→ +∞. Hence, by the Monotone
Convergence Theorem, E(Vi,j1Vi,j≤(λ∗)n)→ E(Vi,j). Then, taking n→ +∞, we have that

E(Ŝn+1|F̃n) −→ 1
λ∗
Cz∗V a.s. (31)

We consider now the martingale given by(
m∑
n=1

(
Ŝn − E(Ŝn | F̃n−1)

))
m∈N

.

We have that for all j ∈ {1, . . . , q} and n ∈ N

Var
(
Ŝn+1,j − E(Ŝn+1,j | F̃n)

)
= Var

 1
(λ∗)n+1

p∑
i=1

Zn,i∑
k=1

(
V

(k,n)
i,j 1

V
(k,n)
i,j ≤(λ∗)n − E

(
V

(k,n)
i,j 1

V
(k,n)
i,j ≤(λ∗)n

))
= 1

(λ∗)−2(n+1)

p∑
i=1

E(Zn,i)Var
(
Vi,j1Vi,j≤(λ∗)n

)

≤ (λ∗)−n−2
p∑
i=1

Mn
i (z)

(λ∗)n Var
(
Vi,j1Vi,j≤(λ∗)n

)

≤ (λ∗)−n−2
p∑
i=1

Mn
i (z)

(λ∗)n
∫ +∞

0
x21x≤(λ∗)n dFi,j(x),

where Fi,j(x) = P(Vi,j ≤ x).

Since
(
Mn(z)
(λ∗)n

)
n∈N

is convergent, then it is bounded, and so there exists C > 0 such that

∑
n∈N

Var
(
Ŝn+1,j − E(Ŝn+1,j | F̃n)

)
≤ C

p∑
i=1

∫ +∞

0
x2 ∑

n∈N

1
(λ∗)n1x≤(λ∗)n dFi,j(x)

= C
p∑
i=1

∫ +∞

0
x2O(x−1) dFi,j(x) < +∞,

and so applying the Martingale Convergence Theorem, we have that
∑
n∈N

(
Ŝn+1,j − E(Ŝn+1,j | F̃n)

)
is convergent almost surely and in L1. This implies that Ŝn+1,j − E(Ŝn+1,j | F̃n)→ 0 almost surely.
Thanks to (31), we have that Ŝn+1 → (λ∗)−1Cz∗V. We finish by proving that (Sn)n∈N is an
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equivalent sequence. Fix j ∈ {1, . . . , q}∑
n∈N

P(Sn+1,j 6= Ŝn+1,j) =
∑
n∈N

E(P(∃i ≤ p,∃k ≤ Zn,i, V (k,n)
i,j > (λ∗)n | F̃n))

≤
∑
n∈N

p∑
i=1

E

Zn,i∑
k=1

P(Vi,j > (λ∗)n)


≤ C

p∑
i=1

∑
n∈N

(λ∗)nP(Vi,j > (λ∗)n)

≤ C
p∑
i=1

+∞∫
0

∑
n∈N

(λ∗)n1x>(λ∗)n dFi,j(x)

=
p∑
i=1

+∞∫
0

O(x) dFi,j(x) < +∞.

The conclusion then follows by the Borel-Cantelli lemma.

6.2. Extinction vs {C = 0}. In this section, we prove the second part of Theorem 6.
The inclusion {∃n ∈ N, Zn = 0} ⊂ {C = 0} is obvious. We then consider the case λ∗ > 1 and

show that {∀n, Zn 6= 0) ⊂ {C > 0}.
For all ε > 0, we set

τε = inf{n ≥ 0, P(Zn)
(λ∗)n ≤ ε}.

By assumption C is non-degenerate at 0 for all z such that qz < 1. Hence, for all z such that
qz < 1, there exists εz > 0 such that

P(τεz = +∞ | Z0 = z) > 0.

In addition, Theorem 4 entails that there exists r0 ∈ N such that, for all |z| ≥ r0, qz < 1. Hence,
setting

ε0 = min
i=1,...,p

εr0ei

and using the fact that, by superadditivity, P(τε0 = +∞ | Z0 = z) is increasing with z, we deduce
that, for all |z| ≥ pr0,

P(τε0 = +∞ | Z0 = z) ≥ a0 := min
i=1,...,p

P(τε0 = +∞ | Z0 = r0ei)

≥ min
i=1,...,p

P(τεr0ei
= +∞ | Z0 = r0ei) > 0.

We define τ0 = 0, τ1 = τε0 and, for all n ≥ 1,

τn+1 = inf{n ≥ τn + 1, P(Zn)
(λ∗)n ≤ ε0}.

Then we obtain, for all |z| ≥ pr0 and all n ≥ 1,

P({τn+1 < +∞} ∩ {|Zm| ≥ pr0, ∀m ∈ [0, τn]} | Z0 = z)

≤ E
(
1τn<+∞, |Zm|≥pr0, ∀m∈[0,τn] P(τε0 < +∞ | Z0 = z′)|z′=Zτn | Z0 = z

)
≤ P({τn < +∞} ∩ {|Zm| ≥ pr0, ∀m ∈ [0, τn−1]} | Z0 = z) (1− a0)

≤ . . . ≤ (1− a0)n+1. (32)
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In addition, according to Theorem 1 and Theorem 4, for all η ∈ (0, 1), there exists rη > 0 such
that, for all |z| ≥ rη,

P(|Zn| ≥ pr0, ∀n ≥ 0 | Z0 = z) ≥ 1− η.

Using this last inequality and (32), we deduce that, for all |z| ≥ rη and all n ≥ 1,

P(τn+1 < +∞ | Z0 = z) ≤ P({τn+1 < +∞} ∩ {|Zn| ≥ pr0, ∀n ∈ [0, τn]} | Z0 = z)
+ P(∃n ≥ 0 such that |Zn| < pr0 | Z0 = z)

≤ (1− a0)n+1 + η.

Since {C = 0} ⊂ {τn+1 < +∞, ∀n ≥ 1}, we deduce that, for all |z| ≥ rη,

P(C = 0 | Z0 = z) ≤ η. (33)

Denoting Tη := inf{n ≥ 0, |Zn| ≥ rη}, we deduce from the transitivity assumption that {Tη <
+∞} ⊃ {∀n, Zn 6= 0}. Hence, for all z ∈ Np, using the strong Markov property at time Tη and
then (33),

P(C = 0 and ∀n, Zn 6= 0 | Z0 = z) ≤ P(C = 0 and Tη < +∞ | Z0 = z)

= E

1Tη<+∞ P
(

lim
n→+∞

P(Zn)
(λ∗)n+u = 0 | Z0 = z′

)
|u=Tη , z′=ZTη

| Z0 = z


= E

(
1Tη<+∞P

(
C = 0 | Z0 = z′

)
|z′=ZTη

| Z0 = z

)
≤ η.

Since the last inequality holds true for all η ∈ (0, 1), we deduce that, for all z ∈ Np,

P(C = 0 and ∀n, Zn 6= 0 | Z0 = z) = 0.

6.3. L1 convergence and non-degeneracy of the limit. In this section, we prove the conver-
gence of (Cn)n∈N in L1 to a non-degenerate limit C, which corresponds to Proposition 7. We recall
that in this part we assume that there exists a concave monotone increasing function U : R+ −→ R+,
such that for all y ∈ R+,

sup
z∈Rp+:P(z)=y

E(|P(Z1)− P(M(bzc))| | Z0 = bzc) ≤ U(y),

with y → U(y)/y non-increasing and
+∞∫
1

U(y)
y2 dy < +∞.

The idea behind the proof is to use the following lemma.

Lemma 24. [See [Kle84] - Lemma 2] Let f : R+ −→ R+ be a non-increasing function, such that
x 7→ xf(x) is non-decreasing and

+∞∑
n=1

f(n)
n

< +∞.

Let (an)n∈N be a sequence of positive numbers satisfying for some m > 1 and all n ≥ 0

|an+1 − an| ≤ anf(anmn).

Then
• lim
n→+∞

an = a exists,
• there exists a constant b0 depending only on the function f and m such that if a0 > b0 then
a > 0.
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We start our proof by noticing that, for all z ∈ Np,

|E(Cn+1 | Z0 = z)− E(Cn | Z0 = z)| ≤ E(|Cn+1 − Cn| | Z0 = z)
= E(E(|Cn+1 − Cn| | Fn) | Z0 = z)

= 1
(λ∗)n+1E(E(|P(Zn+1)− λ∗P(Zn)| | Fn) | Z0 = z)

≤ 1
(λ∗)n+1E(U(P(Zn)) | Z0 = z),

and so applying Jensen’s inequality, since U is concave, we get

E(|Cn+1 − Cn| | Z0 = z) ≤ (λ∗)−1E(Cn | Z0 = z)U(E(P(Zn) | Z0 = z))
E(P(Zn) | Z0 = z) (34)

From this inequality, we have that if we define

F (x) = U(x)
λ∗x

,

then, we obtain,

|E(Cn+1 | Z0 = z)− E(Cn | Z0 = z)| ≤ E(Cn | Z0 = z)F (E(Cn | Z0 = z)(λ∗)n),

and we can apply Lemma 24 with f = F and m = λ∗. This implies that, for all z ∈ Np,

c(z) := lim
n→+∞

E(Cn|Z0 = z)

exists. It also implies that there exists b0 such that if P(z) ≥ b0, then c(z) > 0. Since P is
homogeneous and lower bounded away from 0 on S, we deduce that there exists r0 > 0 such that,
for all z ∈ Np with |z| ≥ r0, c(z) > 0. Since in addition c(z) is increasing with z, we deduce that

c := inf
z∈Np,|z|≥r0

c(z) > 0.

If we now define
T = inf{n ∈ N : |Zn| ≥ r0},

we have that, if z ∈ Np is such that qz < 1, then P(T < +∞ | Z0 = z) ≥ qz > 0 by transitivity
assumption and so, applying the strong Markov property we obtain

c(z) = lim
n→∞

E(Cn|Z0 = z) ≥ lim
n→+∞

E
(
E(Cn | Z0 = y)|y=ZT (λ∗)−T1T<+∞ | Z0 = z

)
≥ cE

(
(λ∗)−T1T<+∞ | Z0 = z

)
> 0.

Now fix z ∈ Np such that qz < 1 and take ε such that c(z)− ε > 0. We can find N0 such that for
all n ≥ N0,

c(z)− ε ≤ E(Cn | Z0 = z) ≤ c(z) + ε.

Hence, using this in (34), we get that for all n ≥ N0, since x→ Û(x)/x is non-increasing,

E(|Cn+1 − Cn| | Z0 = z) ≤ (λ∗)−1(c(z) + ε)U((c(z) + ε)(λ∗)n)
(c(z)− ε)(λ∗)n ,

and so we can find C > 0 and δ > 0, such that for all n ∈ N,

E(|Cn+1 − Cn| | Z0 = z) ≤ CU(δ(λ∗)n)
(λ∗)n .

On the other hand, since the integral
∫ +∞

1

U(y)
y2 dy is finite, we have that the series

∑
n∈N

U(δ(λ∗)n)
(λ∗)n
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converges (see [Kle85]). This implies that (Cn)n∈N is a Cauchy sequence in L1, which gives the L1

convergence.
Finally, we have that if z ∈ Np is such that qz < 1, then

E(C|Z0 = z) = lim
n→+∞

E(Cn|Z0 = z) > 0,

which proves that the limit is non-degenerate at 0.

6.4. Sufficient Conditions for the existence of U . In this section, we prove Proposition 8 and
Proposition 9. We start the proof by stating and proving a lemma that is useful for the proof of
both results.

Lemma 25. Consider p non-negative independent and integrable random variables X1, . . . , Xp.
Set z ∈ Np and β > 0, then

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
X

(k)
i − E(Xi)

)∣∣∣∣∣
)
≤ |z|β+1/2 + 2|z|

p∑
i=1

+∞∫
|z|β

x dFi(x),

where (X(k)
1 , . . . , X

(k)
p )k∈N are i.i.d. copies of (X1, . . . , Xp), and Fi(x) = P(Xi ≤ x).

Proof. We have

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
X

(k)
i − E(Xi)

)∣∣∣∣∣
)
≤ E

(∣∣∣∣∣
p∑
i=1

zi∑
k=1

(
X

(k)
i 1

X
(k)
i ≤|z|β

− E(Xi1Xi≤|z|β )
)∣∣∣∣∣
)

+ E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
X

(k)
i 1

X
(k)
i >|z|β − E(Xi1Xi>|z|β )

)∣∣∣∣∣
)
.

We bound the two expectations above separately. For the first one we have, setting Y (k)
i =

X
(k)
i 1

X
(k)
i ≤|z|β

,

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
Y

(k)
i − E(Y (k)

i )
)∣∣∣∣∣
)2

≤ E

( p∑
i=1

zi∑
k=1

(
Y

(k)
i − E(Y (k)

i )
))2


=

p∑
i=1

zi∑
k=1

E
((
Y

(k)
i − E(Y (k)

i )
)2
)

=
p∑
i=1

zi∑
k=1

Var
(
X

(k)
i 1

X
(k)
i ≤|z|β

)
≤

p∑
i=1

zi∑
k=1
|z|2β

= |z|2β+1.

For the second term, we have

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
X

(k)
i 1

X
(k)
i >|z|β − E(X(k)

i 1
X

(k)
i >|z|β )

)∣∣∣∣∣
)
≤ 2

p∑
i=1

zi∑
k=1

E
(
X

(k)
i 1

X
(k)
i >|z|β

)

= 2
p∑
i=1

zi

+∞∫
0

x1x>|z|β dFi(x)

≤ 2|z|
p∑
i=1

+∞∫
|z|β

x dFi(x),

and the result follows. �

The following lemma is a key ingredient of the proof.
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Lemma 26. [See [Kle85] - Page 52] Let f be a positive function on [1,+∞) such that x 7→ f(x)
x is

non-increasing and
+∞∫
1

f(x)
x2 dx < +∞.

Then there exists a monotone increasing function f̂ such that for all x ∈ R+, f̂(x) ≥ f(x),
x→ f̂(x)/x is non-increasing,

∫+∞
1 (f̂(x)/x2) dx < +∞ and f̂ is concave on R+.

Proof of Proposition 8. We recall that for this proof, we have the following additional assumption.

Assumption 2. We assume that
(1) The mating function ξ and the function P are Lipschitz.
(2) For all i ∈ {1, . . . p} and j ∈ {1, . . . , q}, we have E(Vi,j log Vi,j) < +∞.
(3) There exists α > 0 such that, ∀z ∈ Rp+ \ {0},∣∣∣∣ξ(zV)

|z|
− M(z)
|z|

∣∣∣∣ = O(|z|−α). (35)

Since P is continuous, positive on Rp+ \ {0} and positively homogeneous, there exist L1, L2 > 0
such that, for all z ∈ Rp+,

L1|z| ≤ P(z) ≤ L2|z|. (36)
Let us consider first z ∈ Np. Since P is Lipschitz, there exists K1 > 0 such that

E(|P(Z1)− λ∗P(z)| | Z0 = z) = E(|P(Z1)− P(M(z))| | Z0 = z)
≤ K1E ( |Z1 −M(z)| |Z0 = z)

≤ K1

(
E (|Z1 − ξ(zV)| |Z0 = z) + |z|

∣∣∣∣ξ(zV)
|z|

− M(z)
|z|

∣∣∣∣) .
Using that ξ is also Lipschitz, there exists K2 > 0 such that

E (|Z1 − ξ(zV)| |Z0 = z) ≤ K2

q∑
j=1

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

V
(k)
i,j − (zV)j

∣∣∣∣∣
)

= K2

q∑
j=1

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
V

(k)
i,j − E(V (k)

i,j )
)∣∣∣∣∣
)

Making use of Lemma 25 with β ∈ (0, 1/2) and applying Assumption 2-3, we obtain that there
exists K3 such that for all z ∈ Np,

E(|P(Z1)− λ∗P(z)| | Z0 = z) ≤ K3

|z|β+1/2 + |z|
p∑
i=1

q∑
j=1

+∞∫
|z|β

x dFi,j(x) + |z|1−α
 ,

for α > 0 and Fi,j(x) = P(Vi,j ≤ x).
To extend the previous bound to z /∈ Np, note that if z ∈ Rp+ with |z| > 2p, we have 0 < 1

2 |z| ≤
|bzc| ≤ |z|. Hence there exist K4,K5 > 0 such that for all z ∈ Rp+ with |z| > 2p,

E(|P(Z1)− λ∗P(bzc)| | Z0 = bzc) ≤ K4

|z| p∑
i=1

q∑
j=1

+∞∫
K5|z|β

x dFi,j(x) + |z|β+1/2 + |z|1−α
 .

Finally, applying (36), we get that there exists C1, C2 > 0, such that for all z ∈ Rp+ with |z| > 2p

E(|P(Z1)− λ∗P(bzc)| | Z0 = bzc) ≤ C1

P(z)
p∑
i=1

q∑
j=1

+∞∫
Cβ2 P(z)β

x dFi,j(x) + P(z)β+1/2 + P(z)1−α

 .
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Now define
C3 := max

z∈Np:|z|≤2p
E(|P(Z1)− P(bzc)| | Z0 = z) < +∞.

Then, for all z ∈ Rp+,

E(|P(Z1)−λ∗P(bzc)| | Z0 = bzc) ≤ C1

P(z)
p∑
i=1

q∑
j=1

+∞∫
Cβ2 P(z)β

x dFi,j(x) + P(z)β+1/2 + P(z)1−α

+C3.

This implies that for all y ∈ R+,

sup
z:P(z)=y

E(|P(Z1)− λ∗P(bzc)| | Z0 = bzc) ≤ C1

y p∑
i=1

q∑
j=1

+∞∫
Cβ2 y

β

x dFi,j(x) + yβ+1/2 + y1−α

+ C3.

Now set F : R+ −→ R+ given by

F (y) = C1

y p∑
i=1

q∑
j=1

+∞∫
Cβ2 y

β

x dFi,j(x) + yβ+1/2 + y1−α

+ C3.

Then we have on one hand that

F (y)
y

= C1

 p∑
i=1

q∑
j=1

+∞∫
Cβ2 y

β

x dFi,j(x) + yβ−
1/2 + y−α

+ C3
y
,

defines a non-increasing function on (0,+∞) since β ∈ (0, 1/2) and α > 0. On the other hand

+∞∫
1

F (y)
y2 dy = C1

 p∑
i=1

q∑
j=1

+∞∫
1

+∞∫
Cβ2 y

β

x

y
dFi,j(x) dy +

+∞∫
1

( 1
y3/2−β + 1

y1+α

)
dy

+
+∞∫
1

C3
y2 dy.

Once again, since α > 0 and β ∈ (0, 1/2), we only need to prove that the first integral is finite. In
fact, applying Fubini’s Theorem,

+∞∫
1

+∞∫
Cβ2 y

β

x

y
dFi,j(x) dy ≤

+∞∫
0

x

1
C2
x

1/β∫
1

dy
y

dFi,j(x)

=
+∞∫
0

xO(log x) dFi,j(x),

where the last integral is finite, since E(Vi,j log Vi,j) < +∞ by assumption.
Applying Lemma 26, there exists a concave monotone increasing function U : R+ −→ R+, with

y → U(y)/y non-increasing and
∫ +∞

1

U(y)
y2 dy < +∞, and such that for all y ∈ R+,

sup
z:P(z)=y

E(|P(Z1)− λ∗P(bzc)| | Z0 = bzc) ≤ F (y) ≤ U(y).

The proof is then complete. �

Proof of Proposition 9. For this proof, we consider the case of the Promiscuous mating of Example 6.
We set p = nf and

ξ((x1, . . . xp), (y1, . . . , ynm)) = (x1, . . . xp)
nm∏
j=1

1yj>0.
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Hence, we have M(z) = zX1zY>0. Since Yi,j > 0 for all i ∈ {1, . . . p} and all j ∈ {1, . . . nm}, we
have M(z) = zX. We also note that

L(z) = lim
n→+∞

Mn(z)
(λ∗)n = 〈u∗, z〉z∗,

where u∗ is the positive right eigenvector of X such that 〈u∗, z∗〉 = 1 and 〈·, ·〉 stands for the
Euclidean product. In particular, P(z) = 〈u∗, z〉.

Consider z ∈ Np, then

E(|P(Z1)− λ∗P(z)| | Z0 = z) = E(|〈u∗, Z1〉 − 〈u∗, zX〉| | Z0 = z)
= E(|〈u∗, Z1 − zX〉| | Z0 = z)

≤ C0

p∑
j=1

E(|Z1.j − (zX)j | | Z0 = z),

for some constant C0 > 0 and hence

E(|P(Z1)− λ∗P(z)| | Z0 = z) ≤ C0

p∑
j=1

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

X
(k)
i,j 1∀`≤nm, M1,`>0 −

p∑
i=1

ziXi,j

∣∣∣∣∣
)

≤ C0

p∑
j=1

E
(∣∣∣∣∣

p∑
i=1

zi∑
k=1

(
X

(k)
i,j − Xi,j

)∣∣∣∣∣
)

+ C0

p∑
j=1

p∑
i=1

zi∑
k=1

E
(
X

(k)
i,j 1∃`≤nm, M1,`=0

∣∣∣Z0 = z
)
.

with (X(k))k∈N a family of i.i.d copies of X = (Xi,j)1≤i,j≤p. For the second term, we have for
i, j ∈ {1, . . . , p} and k ∈ {1, . . . zi} fixed

E
(
X

(k)
i,j 1∃`≤nm, M1,`=0

∣∣∣Z0 = z
)
≤

nm∑
`=1

E
(
X

(k)
i,j 1M1,`=0

∣∣∣Z0 = z
)

=
nm∑
`=1

E
(
X

(k)
i,j

p∏
i′=1

zi′∏
k′=1

1
Y

(k′)
i′,` =0

)

≤
nm∑
`=1

Xi,j
p∏

i′=1

zi′∏
k′=1

(i′,k′)6=(i,k)

P
(
Y

(k′)
i′,` = 0

)

≤ Xi,jnmγ|z|−1,

with γ = maxi′≤p,`≤nm P(Yi′,` = 0) ∈ [0, 1). Then, applying Lemma 25 with β ∈ (0, 1/2), we deduce
that there exists C1 > 0 such that, for all z ∈ Np,

E(|P(Z1)− λ∗P(z)| | Z0 = z) ≤ C1

|z| p∑
i=1

q∑
j=1

+∞∫
|z|β

x dFi,j(x) + |z|β+1/2 + |z|γ|z|−1

 .
The result then follows as in the proof of Proposition 8. �

Appendix A. Transitivity condition under strong primitivity

Our aim is to show that the transitivity condition of Assumption 1.1 holds true under the
third criterion provided below Assumption 1. We use the following auxiliary lemma, which is a
consequence of superadditivity.
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Lemma 27. For all z0, z̃0, z1, z̃1 ∈ Np,

P(Zn ≥ z1 + z̃1 |Z0 ≥ z0 + z̃0) ≥ P(Zn ≥ z1 + z̃1 |Z0 = z0 + z̃0)
≥ P(Zn ≥ z1 |Z0 = z0)× P(Zn ≥ z̃1 |Z0 = z̃0) .

Proof. First observe that the first inequality is a direct consequent of the fact that ξ is an increasing
function, so we deal only with the second inequality. Consider z0, z̃0, z1, z̃1 ∈ Np. We first treat the
case n = 1, and then proceed by induction. We have

P(Z1 ≥ z1 + z̃1 | Z0 = z0 + z̃0) = P

ξ
 p∑
i=1

z0,i+z̃0,i∑
k=1

V
(k,1)
i,·

 ≥ z1 + z̃1


≥ P

ξ( p∑
i=1

z0,i∑
k=1

V
(k,1)
i,·

)
+ ξ

 p∑
i=1

z0,i+z̃0,i∑
k=z0,i+1

V
(k,1)
i,·

 ≥ z1 + z̃1


≥ P

ξ( p∑
i=1

z0,i∑
k=1

V
(k,1)
i,·

)
≥ z1 , ξ

 p∑
i=1

z0,i+z̃0,i∑
k=z0,i+1

V
(k,1)
i,·

 ≥ z̃1


= P

(
ξ

( p∑
i=1

z0,i∑
k=1

V
(k,1)
i,·

)
≥ z1

)
× P

ξ
 p∑
i=1

z̃0,i∑
k=1

V
(k,1)
i,·

 ≥ z̃1


= P(Z1 ≥ z1 | Z0 = z0)× P(Z1 ≥ z̃1 | Z0 = z̃0).

Observe that the first inequality in particular entails that if (Zn(z))n∈N for z ∈ Np denotes a
bGWbp with Z0 = z, then for all z0, z̃0 ∈ Np, Z1(z0 + z̃0) stochastically dominates Z1(z0) + Z1(z̃0).
Assume now that the result is true for some n ∈ N and we prove it for n+ 1.

P(Zn+1 ≥ z1 + z̃1 | Z0 = z0 + z̃0) = P

ξ
 p∑
i=1

Zn,i(z0+z̃0)∑
k=1

V
(k,n+1)
i,·

 ≥ z1 + z̃1


≥ P

ξ
 p∑
i=1

Zn,i(z0)∑
k=1

V
(k,n+1)
i,·

 ≥ z1 , ξ

 p∑
i=1

Zn,i(z̃0)+Zn,i(z0)∑
k=Zn,i(z0)+1

V
(k,n+1)
i,·

 ≥ z̃1


= P

ξ
 p∑
i=1

Zn,i(z0)∑
k=1

V
(k,n+1)
i,·

 ≥ z1

× P

ξ
 p∑
i=1

Zn,i(z̃0)+Zn,i(z0)∑
k=Zn,i(z0)+1

V
(k,n+1)
i,·

 ≥ z̃1


= P(Zn+1 ≥ z1 | Z0 = z0)× P(Zn+1 ≥ z̃1 | Z0 = z̃0).

which finishes the proof. �

We now prove that the third criterion provided below Assumption 1 leads to Assumption 1.1
by contradiction. If this assumption is not satisfied, then there exits a non empty recurrent
states class in Np \ {0}. We can chose z = (z1, . . . , zp) ∈ Np \ {0} with the minimal size in its
class, so that P(|Zn| ≥ |z| |Z0 = z) = 1 for all n ≥ 1. We prove that 2z is reachable from z,
that is, there exist n ≥ 1 such that P(Zn ≥ 2 z|Z0 = z) > 0. Once this is proved, we deduce
from Lemma 27 that P(|Zn| ≥ 2 |z||Z0 ≥ 2 z) ≥ P(|Zn| ≥ |z||Z0 = z)2 = 1, which implies that
P(∃n, Zn = z |Z0 ≥ 2 z) = 0 and contradicts the fact that z is recurrent. We thus deduce that
there is no recurrent state, except the absorbing state {0}, and Assumption 1.1 is satisfied.

Let us prove that 2z is reachable from z (in fact, we prove that every population can be doubled).
As the process is strongly primitive, for all i ∈ {1, . . . , p}, there exists ni such that for all m ≥ ni,
P(Zm,` ≥ 1|Z0 = ei) > 0. Let m = max1≤i≤p ni, then for all i ∈ {1, . . . , p},

P(Zm ≥ e` |Z0 = ei) > 0. (37)
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Moreover, as P(|Z1| = 2|Z0 = e`) > 0, there exist j1, j2 ∈ {1, . . . , p} such that

P(Z1 ≥ ej1 + ej2 |Z0 = e`) > 0. (38)

By strongly primitive assumption, for n = max{nj1 , nj2},

P(Zn ≥ ei |Z0 = ej1) > 0 and P(Zn ≥ ei |Z0 = ej2) > 0,

hence, by Lemma 27,

P(Zn ≥ 2ei |Z0 = ej1 + ej2) ≥ P(Zn ≥ ei |Z0 = ej1)P(Zn ≥ ei |Z0 = ej2) > 0. (39)

Finally,

P(Zn+m+1 ≥ 2ei |Z0 = ei) ≥ P(Zn+m+1 ≥ 2ei |Zm+1 ≥ ej1 + ej2)
× P(Zm+1 ≥ ej1 + ej2 |Zm ≥ e`)
× P(Zm ≥ e` |Z0 = ei)

then, from (37), (38), (39) and the Markov property, P(Zn+m+1 ≥ 2ei |Z0 = ei) > 0 for all
i ∈ {1, . . . , p}, and we conclude by Lemma 27 that P(Zn+m+1 ≥ 2z |Z0 = z) > 0.
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