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THE MULTI-TYPE BISEXUAL GALTON-WATSON BRANCHING PROCESS

CORALIE FRITSCH', DENIS VILLEMONAIS?#® NICOLAS ZALDUENDO*

ABSTRACT. In this work we study the bisexual Galton-Watson process with a finite number of
types, where females and males mate according to a “mating function” and form couples of different
types. We assume that this function is superadditive, which in simple words implies that two
groups of females and males will form a larger number of couples together rather than separate.
Leveraging on concave Perron-Frobenius theory, we prove a necessary and sufficient condition for
almost sure extinction as well as a law of large numbers. Finally, we study the almost sure long-
time convergence of the rescaled process through the identification of a supermartingale, and we
give sufficient conditions to ensure a convergence in L' to a non-degenerate limit.

ABSTRACT. [language=french] Dans cet article, nous nous intéressons au processus de Galton-
Watson bisexué avec un nombre fini de types, ou des femelles et des méles s’accouplent selon une
“fonction d’accouplement” pour former des couples de differents types. Nous supposons que cette
fonction est superadditive, ce qui, en termes simples, implique que deux groupes de femelles et
de maéles forment un plus grand nombre de couples ensemble que séparés. A Taide d’une théorie
de Perron-Frobenius pour les opérateurs concaves, nous démontrons une condition nécessaire et
suffisante d’extinction presque stire ainsi qu’une loi des grands nombres. Enfin, nous étudions la
convergence presque stire en temps long du processus par identification d’une surmartingale et nous
donnons des conditions suffisantes assurant la convergence dans L' du processus vers une limite
non dégénérée.

MSC 2020 Classification: 60F15; 60J10; 60J80; 60K35; 92D25
Keywords: Branching processes with interaction; Extinction criterion; Law of large numbers;
Malthusian behaviour; Concave operators;

1. INTRODUCTION

The single-type bisexual Galton-Watson branching process is a modification of the standard
Galton-Watson process. It assumes that there exist two disjoint classes (sexes), males and females
who together form mating units (or couples) which can accomplish reproduction. This process
was first introduced by Daley in [I0]: it consists of a population where, in every generation n =
1,2,3,..., F, females and M,, males form Z, = {(F,, M,) mating units, for £ a suitable and
deterministic mating function. Each mating unit reproduces independently of the others and with
identical distribution giving birth to the new generation of males and females.

Example 1. Some examples of mating functions are

(1) &(z,y) = zmin{l,y} called the promiscuous mating model.
(2) &(x,y) = min{x,y} called the perfect fidelity mating model.
(3) &(z,y) = =, which corresponds to the classical Galton-Watson model.
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2 THE MULTI-TYPE BISEXUAL GALTON-WATSON BRANCHING PROCESS

Daley studied in [10] the properties for the first two mating functions of the previous example.
Since Daley’s work, extinction conditions have been studied for models with a more general family
of superadditive mating functions (see for instance [16], [9], [L1]) and, in the last decades, results
on the limit behaviour of this kind of processes were obtained (see for example [3], [4], [5], [12],
[13]). From these works, new models of two-sex populations have been developed, such as processes
in random or varying environment ([25], [26], [31]), processes with immigration ([14], [12], [27]),
processes with mating function depending on the number of couples ([30], [32], [34]) and more
recently, processes with random mating ([19], [29]). The interested reader can also consult the
surveys of Hull [18], Alsmeyer [2] and Molina [28] for a wide description of the work accomplished
on this family of processes.

The asexual multi-type Galton-Watson branching process with a finite number of types (see [15])
is a discrete time Markov Chain on NP, for p a fixed integer, and can be thought as a system of
particles where each particle is characterized by a type among p options. Each particle reproduces
independently and with an offspring distribution that depends only on its type, and if we define
X;j € L' the number of type j particles produced by a type i progenitor, then, under some
assumptions on the process, the greatest eigenvalue of the matrix H; ; = E(X; ;) determines if the
process will be eventually extinct with probability 1.

Our focus of study is the multi-type bisexual process with a finite number of types. Although
specific models were studied in the two-sex population literature (see [20], [17]), no general math-
ematical description for a superadditive multi-type model has yet been established. The aim of
this paper is to fill this gap.

We will consider a general model, which includes the natural extension of Daley’s bisexual model
to multi-type processes, where the vector of couples in the n—th generation is defined by

Zn — (Zn,ly ey Zn,p) = 5((Fn,1a cee aFn,nf), (Mn,la o >Mn,nm)), (1)

where £ : N7 x N™» — NP is a positive function such that £(0,0) = 0 and (Fy1,..., Fun,)
and (Mp1,..., My, ) are the vectors of females and males respectively with p,ng,n, € N =
{0,1,2,...} the number of types of couples, types of females and types of males respectively. Each
couple reproduces independently from the others and produces females and males according to a
distribution that depends only on its type, such that

"N (k1 )
n+1,] Z Z Xi(,j7n+ )7 for 1 <j < ng,
=1 k=1

P an

(k,n+1) .
n+1,]_ZZY " , for 1 < j < nyy,
i=1 k=1

Where, (X(k,n),y(k,n))kmeN is a family of i.i.d. copies of ((Xi,j)lgigp,lgjgnfa (Yvi,j)lgigp,lgjgnm)
where X ; represents the number of female offspring of type j produced by one couple of type ¢,
and similarly for the males and Y; ;. We recover Daley’s process by setting p = ny = n,, = 1.
Since types may also encode gender, and to simplify our notation, we present in Section 2] our
definitions and main results in a more general setup, since they hold true for asexual and multi-
sexual Galton-Watson processes (as they appear for instance for several plants species [6] and [7,,§]).
We present a law of large numbers (Theorem [I]), necessary and sufficient conditions for extinction
(Theorem [B]) as well as asymptotic behaviour of the process (Theorems [ and [6]). We compare our
results with existing works at the end of Section 2l Section Blis devoted to the proof of Theorem [I1
In Section Ml we turn our attention to some extra properties, such as the eigenvalue problem for
concave functions, which play a fundamental role in the study of the extinction conditions, and
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prove Theorem[3l Section[Blis devoted to the proof of Theorem @l Finally, we identify and establish
properties on a supermartingale and prove Theorem [6] in Section [Gl

Notation: Unless otherwise stated, for z € (R;)P, we denote by z; the i-th component of z and,
for z,2/ € (Ry)P, we write z > 2/ (resp. z > 2/) if and only if z; > 2] (resp. z; > z]) for all
ie{l,...,p}. Weset S:={z¢€ (Ry)P, |z|= 1} to be the unitary ball for the 1—norm on (R )P,
with |z|= 21 + -+ + 2, and define S* as the elements on S with strictly positive components.
All random variables and random vectors are defined on the same probability space (2, F,P), we
denote E for the expectation associated to P and we let L' = L'(2, F,P) be the set of integrable
random variables defined on this space.

2. MODEL DESCRIPTION AND MAIN RESULTS

2.1. Model description. For p,q € N* = {1,2,... }, we consider the process (Z,,)nen with values
in NP and the process (W, )nen with values in N?, where Z,, and W,, represent the mating units
(of p different types) and the individuals population (where individuals are of ¢ different types)
respectively at the n-th generation. We assume that at each generation n > 1, Z, is entirely
determined by W,,, through a mating function & : N? — NP satisfying £(0) = 0, that is

Zn = Znas- s Znp) =EWna,- s Whyg),

where the individuals population W,, at the n-th generation is produced by the Z,_; mating units
of the previous generation. Moreover, we assume that each mating unit reproduces independently
from the others and is such that

p Zn-1,
k, 4
Waj=d > Vig™ for1<j<gq,
i=1 k=1
with (V*™) ey a family of i.i.d. copies of V. = (Vij)1<i<pi<j<q, where Vi, ...,V are p

7n)

mutually independent random vectors with values in N2. The random variable Vl(f represents

the number of offspring of type j produced by the k-th mating unit of type ¢ of the (n — 1)-th
generation. Note that the offspring Vz(fln) and VZ(;Z") of type j1 and jo produced by the same
mating unit are not necessary independent.

Considering the empty sum as zero, (Z,)nen forms a discrete time Markov Chain on NP with

absorbing state 0. We define the probability of extinction with initial condition z € NP as
¢:=P(3FneN,Z,=0]| 2y = z2),

and declare that the process will be almost surely extinct if ¢, = 1 for all z € NP,

Although our model is sufficiently general to describe multi-type multi-sexual Galton-Watson
branching process (see Example 2]), keeping in mind our motivation for the definition of this
process, we call (Z,)nen the multi-type bisexual Galton-Watson branching process (from now on,
multi-type bGWbp).

Throughout the paper, we make the assumption that the mating function £ of the process is
superadditive, that is,

5(1‘1 + .%'2) > f(.%'l) + f(.%'g), V1,19 € N9, (2)
The intuition for this type of processes is that two populations form a bigger number of mating
units together rather than separate. The idea of a superadditive bisexual Galton-Watson process
for the single-type case was first introduced by Hull in [I6] and necessary and sufficient conditions
for certain extinction were given by Daley et al. in [11].

Remark 1. It will be useful in the proof to observe that, if we consider two superadditive functions
&1,& such that & (z) < &(x), Vo € N?, then a multi-type bGWbp with mating function &; is
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stochastically dominated from above by a process with the same offspring distribution but with
mating function ;. We refer the reader to [I1] for a proof in the single type case.

Example 2 (Multi-type bisexual Galton-Watson process). We recover the multi-type bGWbp
setup presented in the introduction if we set ¢ = ny + n,, and (W1, ... ,anf) as the vector of
females and (W, , PES TR Wan f+nm) as the vector of males of the n — th generation. We can also
extend this definition to a multi-sexual process by separating the set of possible types into a larger
number of sexes.

We assume that all the random variables (V; j)1<i<p1<j<q are integrable and define the matrix
V € RP4 by
Vij=E(Vij), V1<i<p, 1<j<gq
We assume that, for all j € {1,...,q}, >, V,;; > 0.
We now define M : RE. — (R4 U {+00})? by

rzV rzV
M(z) = lim £(rzv) = sup M, (3)
r—+00 r r>1 r
where £ is any superadditive extension of £ to R% (see Remark 2 below). The limit is well defined
and equal to the supremum according to Fekete’s Lemma.
As we will see, the convergence is in fact uniform on any compact subset of S where I is

continuous (see Proposition [IT]). In addition 91 is concave on R% (see Proposition [I0J).

Remark 2. A superadditive function £ on N? can always be extended to a superadditive function
on R% (for instance setting € RY — £(|])) and it will appear that 9t does not depend on the
choice of this extension (see Proposition [IT]).

Remark 3. The functional 91 plays a similar role as the reproduction matrix in the classical multi-
type Galton-Watson case (see Example ([B]) below). However in our case, it is not necessarily
linear, but only concave. In order to analyse the function 9t and its iterates, we make use of
concave Perron-Frobenius theory and, more precisely, of the results developed by Krause [24] (see

Section E.T]).

2.2. Main results. Our first main result is a law of large numbers which relates 9t with the
behaviour of Z in a large initial population setting and which is proved in Section We set
IM™ = Mo - oM composed n times with the convention that M is the identity function, and,
for all i € {1,...,p}, M; is the i* component of M.

Theorem 1 (Law of large numbers). Let (zy,)m>1 be a random sequence in NPand zo, € RE \
{0} a deterministic value such that zm, ~m—to0o M2Zeo almost surely. For all m > 1, denote by
(Z7)n>0 a multi-type bGWbp with common mating function and offspring distribution, but with
initial configuration Z§* = zn,. Define M as in @) and assume it is finite over S. Then, for all

n >0,
I~ oo MM (260) almost surely.

)

If in addition (zpy,/m)m>1 is independent of the random variables Vz(fn and uniformly integrable,

then Z™/m converges to MM™(20) in L.

As a consequence, considering for z € Rﬁ the sequence z,, = |mz] for all m € N, we have the
following corollary (the second equality is a classical consequence for superadditive sequences).
Corollary 2. We have for all z € RY

E(Z1 | Zy = E(Z1| Zy =
M=) = lim (21| Zo = |mz]) _ sup (21| Zo = |mz])

m——+0oo m m>1 m
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The function 97 extends to the multi-type case the mean growth rate introduced in the single-
type case by Bruss in [9] and used by Daley et al. in [11] to study the extinction conditions
for the process. Note also that, in the situation where z,, = |mz], one can adapt the proof of
Klebaner [23] to obtain convergence in law in Theorem [I], as detailed in [I]. However, almost sure
and L' convergence obtained in Theorem [I] are needed in the proofs of the following results.

For the rest of the results of this section, we add the following transitivity and primitivity
assumptions for the process.

Assumption 1. We assume that:

(1) The process is transitive, which means that
P (lim |Z,|€ {0,400} | Zo = 2) =1, ¥ze N

(2) The process is primitive, that is, for all i € {1,...,p}, there exist n;, k; € N big enough
such that for all m > n;,
E(Zm | Zy = k:lel) >0

where e; is the i—th canonical vector in RP.

Assumption [l is a classical transitivity condition. The following cases are some examples
where it holds.

(1) Foralli e {1,...,p}, PW1 =0| Zp = ¢;) > 0.

(2) In the context of the bisexual setting, Vi € {1,...,p}, P(M; = 0 | Zy = ¢;) > 0 and
£(z,0) =0, Vo € R,

(3) 3 € {1,...,p}, P(|Z1]= 2 | Zo = e¢) > 0 and the process is strongly primitive, that is
Assumption is satisfied with k; = 1 for all 7 € {1,...,p} (see Appendix [A] for details).
Note that the (not strong) primitivity of the process is not sufficient. In fact, choosing
q=p=2and

1 1
§(w,y) = <{%J 790) , Vi~ 5 d(2,0) B 00,2, Vo~ 90,1

leads to a (not strongly) primitive branching process, satisfying P(|Z1|=2 | Zo = (1,0)) =
1/2 > 0 and such that {(1,0),(0,2)} is a recurrent class.
The following result provides a necessary and sufficient condition for almost sure extinction.
This result is proved in Section

Theorem 3 (Extinction criterion). Assume that Assumption [ holds and that 9 is finite over S.
Then there exist a unique \* > 0 and a unique z* € S* such that M(z*) = A*z*, and we have

¢ =1,Vze NP << \* < 1.

If \* > 1 or if there exists 2/ € NP such that one of the components of M(2') is not finite, then
there exists r > 0 such that, if |z| > r, then q, < 1.

Before turning to the next result, we point out that the last theorem encompasses the well known
extinction criteria for the classical multi-type Galton-Watson process and single-type bisexual
Galton-Watson process. Further examples are provided in Section 23]

Example 3 (Multi-type Galton-Watson process). The Galton-Watson case corresponds to the
case where p = ¢ and the mating function is given by the identity function, {(z) = x, so that the
process forms a classical asexual multi-type Galton-Watson process. In this case it is easy to see
that M(z) = 2V and hence M is a linear function and A* is its greatest eigenvalue. We thus recover
the well known fact that A* < 1 is a necessary and sufficient condition for certain extinction.
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Example 4 (Single-type bisexual Galton-Watson process). The single-type bisexual Galton-Watson
case corresponds to the case where p =1 and ¢ = 2. In this case it is easy to see that M(z) = rz
for some r > 0, z* = 1 and \* = r. We recover the fact that \* < 1 is a necessary and sufficient
condition for certain extinction (see [11]).

In the following theorem, we deal with the long-time behaviour of the process. In particular we
prove that, on the non-extinction event {Z, # 0, ¥n > 0}, the process will almost surely follow
the direction of the eigenvector z*. The proof of this theorem is in Section [l We emphasize that,
for this result, we do not assume any V log V' type condition. As far as we know, this result is new
even in the p = 1 and g = 2 (single-type) case.

In what follows, given z,y € RP, we denote

[z,y] == {2z €RP, » <z <y}

Theorem 4 (Long time behaviour). Assume that Assumption [l holds and that 9N is finite over
S. Let \* and z* given by Theorem [ and assume that \* > 1. Then there exists ng > 1 such that,
for all e € (0,1) and all n € (0,1), there exists r > 0 such that, for all |z| > r,

P(Zn, #0 and ¥n > ng, Zny1 € [(1 —)M(Zy), L +)M(Z,)] | Zo=2) > 1—n.

In addition, on the non-extinction event {Z, # 0, Yn > 0}, and up to a P(- | Zy = z)-negligible
event, for all k > 0,
. Zn—l—k _oyve\k

On the event of extinction, 2(Z,,) vanishes for n large enough almost surely, which entails that
Zn+1 € [(1—e)M(Zy), (1 4+ e)M(Z,)] for all n large enough. For \* > 1 (so that extinction is not
almost sure), this also holds true with probability one, as proved alongside Theorem dl We thus
obtain

Corollary 5. Assume that Assumption [l holds and that I is finite over S. Then, for all e € (0,1)
and all z € NP,

P (3N > 0 such that, Yn > N, Zpt1 € [((1 —e)M(Z,), 1 +e)M(Z,)] | Zo = z) = 1. (4)

Remark 4. As it will be clear from the proof, the value of ng in Theorem Ml is in fact chosen
deterministically as the minimal n € N such that 9"(z) > 0 for all z € NP \ {0}, which exists
thanks to Proposition [I4] below.

We now state a theorem related to the rescaled processes of mating units and children and we
prove that they both have a non-negative limit with the same direction as the vector z* given by
Theorem Bl We also show that the event of extinction coincides (almost surely) with the event
where this limit is equal to zero. This last part is well known in the classical branching case. As
far as we know, it is new even in the p = 1 and ¢ = 2 (single type) bisexual branching case. This
theorem is proved in Section [Gl

Theorem 6 (Asymptotic profile). Assume that Assumption [ holds, that O is finite over S. Then,
for all z € NP there exists a real non-negative random variable C such that
Zn  P(|Zo=2) as. « Wy P(|Zo=2) as. 1
Cz* and —
(A n—-+00 (M) notoo A*
with \* and z* given by Theorem [3l
Assume in addition that C is non-degenerate at 0 for some z € NP, which means that P(C > 0 |
Zy =z) >0 for some z € NP. Then P(C >0 | Zyp = z) > 0 for all z € NP such that ¢, < 1 and,
for all z € NP and up to a P(- | Zy = z) negligible event,

(C=0}={3neN, Z, =0}.

C2*V, (5)
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A natural question that arises is to find conditions so that the previous convergence holds also
in L' and the limit is non-degenerate at 0. The following proposition, proved in Section .3, deals
with this question, for which we consider the function P : ]Rﬂ)_ — R, given by

p IO
VzeRY, P(z) = nll)rfm O (6)
which is well defined, according to Theorem [IT in Section 1] below. The condition we present is

inspired by the work of Gonzélez and Molina in the single-type case [12] and Klebaner’s article [22].

Proposition 7. Assume that Assumption 0 holds, that 9N is finite over S and that \* > 1. If
there exists a concave monotone increasing function U : Ry — Ry, such that for all y € Ry,

sup  E(|P(Z1) = PON(L2))] | Zo = [2]) < U(y), (7)
2€RE P(2)=y

with y — UW)/y non-increasing and

+00
U
/ y(Qy) dy < 400,
1

then the convergence in Theorem [6l is in L' and the random variable C is non-degenerate at 0.

The existence of the function U in the previous theorem may be difficult to check. In the
following proposition we state sufficient conditions to ensure its existence, under a V' log V' condition
and extra assumptions on the functions P, £ and 9. The proof of this proposition is in Section [6.4]

Proposition 8. Assume that 9 is finite over S. In addition assume that both functions P and &
are Lipschitz, that E(V; jlogV; ;) < 4+oo for alli e {1,...,p}, j € {1,...,q}, and that there exist
C,a > 0 such that
§(zV)  M(z)
2| 2]
Then, the condition () is satisfied.

< Clz|77, Vz e NP\ {0}.

Remark 5. Since originally ¢ is only defined over N¢, the statement “£ is a Lipschitz function” must
be interpreted as “there exists an extension of £ from NY to R%, that is Lipschitz”.

The previous conditions are not necessary conditions to ensure the existence of the function U
in (7). In fact, in Proposition [, we state that in the model of Example [ below, for which there
is no Lipschitz extension for ¢ over all R, the V1ogV condition is sufficient to ensure the L!
convergence to a non-degenerate random variable in ().

2.3. Examples in the context of bGWbp. The following examples are in the context of the
multi-type bisexual Galton-Watson process. We recall that in this case ¢ = ny + n,,, where
ny,n,m € N* are respectively the number of types for females and males. In order to be consistent
with our notation, we write §((1,...,2n;), (Y1, Ynm)) = §(T1-- - Tny, Y15+ - Yn,,). In this
context, for i € {1,...p} and j € {1,...ns} we set X;; = V;;, and similarly, for j € {1,...,npy},
Yij = Vins+j- Finally, we define the matrices X € RP"f and Y € RP""™™ given by

Xij = E(Xij), Yi; = E(Yi;).

Example 5 (Perfect fidelity mating function). Consider the case where ny = n, = p and the
mating function {(z,y) = min{z, y} := (min{x;,y;}),<,, which is a natural extension of the perfect
fidelity case presented by Daley ([10]) to the multi-dimensional case. In this case, we have
min{kzX kzY}
k

= min{zX, 2Y}, Vk > 1.
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Hence the function 91 takes the form 9M(z) = min{zX, zY}. Let us discuss different particular
instances of this model.

e If X <Y are aperiodic irreducible non-negative matrices, then M(z) = 2X and so M is a
linear function and A* is its greatest eigenvalue. In the super-critical case (i.e. A* > 1), the
asymptotic profile of the types of the process in the non-extinction event is given by its
positive left eigenvector. We thus observe that, despite the interaction between males and
females, the extinction and growth characterization of the process is similar to the classical
Galton-Watson case.

e The case X proportional with Y can be handled similarly: Let (X;;)i<i<pi<j<p and
(Yij)i<i<pr<j<p defined by

(=1 =L

where (U; j)1<i<p,1<j<p is a random integrable array with mean U and (€i,j,£)1§i§p,1§j§p,éeN
is an array of i.i.d. {0,1} valued random variables independent from U. The variable U ;
describes the number of children of type j from a mating unit of type 7 and ¢; ; , determines
if the /-th child is a female or a male. Note that in this example X;; and Y;; are not
independent. Then, setting o = P(g; j , = 1), we have

X=aUand Y =(1-a)U.
As a consequence,
M(z) = min{a, 1 — a} 2U

and M is a linear function. Assume now that U is an aperiodic irreducible non-negative
matrix with greatest eigenvalue Ay and positive left eigenvector zy. Then A* = min{a, 1 —
a}Ayu and, in the super-critical case, the asymptotic profile of the types of the process
(Zn)nen on the non-extinction event is given by z* = zy.

e Let us now consider a non-linear case. Assume that X = oI, + 1, and Y = /I, + 'L,
where o, @’ > 0 and S, 8’ > 0 are constants, I, is the identity matrix of size p X p and 1,
is the matrix of size p x p filled with ones. Then, for all i € {1,...,p},

M, (2) = min {az; + Blz|, 'z + B]2]} .
Note that, for any permutation o of {1,...,p}, we have
SD/t(zo(lﬁ s 720(1))) = (mo(l) (2)7 s 7m0(p) (Z))

Hence z* is stable by permutation of its components, so that z* = (1/p,...,1/p). We deduce
that

A= [M(2")] = pmin{a/p + B,a/ /p + B} = min{a + Bp,o’ + B'p}.

Remark 6. The previous example also covers a polygamous mating by one of the sexes, if we fix
d € N and let {(z,y) = min{z,dy} = (min{z;,dy;}) as Daley did [I0] in the single-type case.
In this situation, we recover the same criterion.

i<p’

Example 6 (Completely promiscuous mating function). The case studied by Karlin and Ka-
plan [20] corresponds to the case where the number of couples is equal to the number of females
present in every generation (in particular this implies that ny = p) given the condition that there
is at least one male of each type present in every generation. In other words, they consider the
mating function

5(($1’ s axp)’ (yl" .- >ynm)) = ($1, s 7xp) H]l{yi>0}'
i=1
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The function 997 in this case corresponds to
M(z) = 2XL{zy>0)-

We assume that X is aperiodic irreducible and that Vj < n,,,vi <p :Y;; > 0, (this last condition
ensures that Assumption [ holds) then zY > 0 for all z € RY \ {0}. In particular M(z) = 2X for
all z € R, which implies that the unique unitary positive eigenvector of 9t and its corresponding
eigenvalue are the ones of X given by the Perron-Frobenious Theorem. This result already appeared
in [20].

In addition, Proposition [0 entails the following original convergence property, proved in Sec-
tion In particular, this model satisfies the conditions of Theorem [6l As stated before, Exam-
ple @ does not satisfy the assumptions of Proposition [§ since £ : N9 — NP is not Lipschitz.

Proposition 9. Consider the model in Example [6l above. Assume in addition that E(X; ;log X; ;)
is finite for all i,j € {1,...p}. Then, the rescaled process Zn/(\*)» converges almost surely and in
L' to a non-degenerate random vector, with the same direction as z*.

3. CHARACTERIZATION OF 991 AND PROOF OF THEOREM [I]

Let (Z,)nen be a multi-type bGWbp with superadditive mating function £ and consider the
function 91 associated to this process given by (B]). We start by stating and proving some properties
related to this function in Section Bl and prove Theorem [ in Section

3.1. Characterization of 1. In this section we give some fundamental properties of the operator
M defined in Section [2, and relate it to the behaviour of the number of mating units in the
population. We start by proving that 91 is concave and positively homogeneous, then we prove
that it does not depend on the chosen extension for £ to R% and state first properties of this
function.

Definition 1. A function F : R}, — R is said to be
(1) Concave if
Floz + (1 - a)y) > aP(x) + (1 - a)F(y),
for all @ € [0,1] and all z,y € RY.
(2) Positively homogeneous if for all a > 0, F(az) = oF(z) for all z € RE.
(3) Primitive if there exists ng > 1 such that F™(z) > 0 for all m > ng and z € RE\ {0}.

Proposition 10. The function I is positively homogeneous and concave.

Proof. Let o > 0, then

M(az) = lim £lakzV) =oa lim £lakzV) = aM(z2),
k—+00 k k—+o00 ak

and so 9 is positively homogeneous. Using this and the fact that £ (and hence 9) is a superad-
ditive function, we deduce that 9 is a concave mapping. O

Proposition 11. For all z € RY, we have

) — wn SLEVD L lrv)) «
r—-+00 'S r>1 'S
In addition, for any i € {1,...,p} and for any compact set K C S such that 9M; is continuous
and bounded on K, we have

sup |9 (z) — &(r2V)

2eK r r—-+00

0, (9)
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and, for any i € {1,...,p} and for any compact set K C S such that M, is infinite on K, we have
inf &ilr2V)

zeK r r—+400

+00. (10)

We emphasize that, in general, if 91; is continuous on a compact subset K of S, then there exist
two disjoint compact subsets K7 and Ko of S such that K = K7 U Ko, with M; bounded on K3
and infinite on Ky (note that K; or Ks may be empty). Indeed, on the one hand, by concavity of
M, M; ! ({+00}) is an open subset of S and thus K; = K NM; ([0, +00)) is a compact subset
of S on which M; is continuous and thus bounded. On the other hand, by continuity of 9i;,
Ky = K N ({+00}) is also compact.

Proof. For the first assertion consider z € R, | u € {0,1}? given by u; = T¢2vy, 201 and let n € N*
be such that zV > %u Then, for all » > 0,

§(r +n)2V)) _ E(rzVtu))  EreV) r
r+mn - r+n Tor r+n

Taking the limit when r — 400, we conclude that

m(z) < tim SV

r—+00 r

The reverse inequality is direct using the fact that £ is non-decreasing in all its components, which
concludes the proof of the first equality in (8). The second equality is a consequence of Fekete’s
Lemma and the fact that r — £(|r2V]) is superadditive.

For the second part, take i € {1,...,p} and let K be a compact subset of S such that 9; is
bounded continuous on K. Since 9;(z) > M for all z € S and r > 0, we only have to prove

that

lim sup sup (,’ml(z) - M) <0.

r—4o00 z€K r

Assume the contrary. Then there exist € > 0 and two sequences (z,)nen € K N and (rn)nen €
(0, +00)N such that 7, 400 and

i(TnznV
7&( nZnV) <M (zn) — €.
Tn
Since K is compact, there exists, up to a subsequence, zo, € K such that z, — 2,. In
particular, for all § € (0,1), there exists ns. such that, for all n > nse, 2, > (1 — )z and

M (2n) < Mi(200) + /2 and hence
& ((1=90)rnzeV)
Tn

By definition of 9t; and Proposition [0, the left hand side converges to 9 ((1 — 0)2e0) =
(1 —8)M;(200) when n — +o00, and hence

< S)ﬁ,(zoo) - 8/2.

(1 =0)M;(200) < Mi(200) — /2.

Since this is true for all § > 0, > 0 and since M;(2o0) < 400 by assumption, this is a
contradiction. We thus proved (9).

The proof of (I0) is similar. Take ¢ € {1,...,p} and let K be a compact subset of S such that
M; is infinite on K. Assume that it does not hold true. Then there exist A > 0 and two sequences
(zn)nen € KN and (7 )nen € (0, 4+00)Y such that r, / +oo and

gi (TnZnV)

Tn

< A.
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This implies that, up to a subsequence, z, converges to zo € K and that, for any § € (0,1),
(1 —0)M;i(200) < A.
But 91; is equal to +00 on K and hence we obtained +o0o < A, which is a contradiction. This

concludes the proof of Proposition [TTl O

As a consequence of Proposition [[T] we have the following result in the case where 9 is contin-
uous.

Corollary 12. Assume I is finite and continuous over S. Then, we have

Mz)  EEV)| faltoo
2| 2|

The following lemma, used in the proof of the forthcoming Proposition [I[4] and Proposition [I5]
relates the iterations of 91 with the expectation of the process. It is proved in the Section B.2]
after the proof of Theorem [Il and Corollary 2l Note that the proof of this lemma is based on
Corollary Bl however neither Theorem [ nor Corollary 2l makes use of Lemma [I3], Proposition [I4]
or Proposition [I5l

Lemma 13. For alln >0 and all z € NP, we have
M (z) > E(Z, | Zo = 2).
The following result states that the primitivity of the bGWbp entails the primitivity of 9.
Proposition 14. Assume that Assumption M2 holds, that is, (Z,)nen is primitive, then M is a
primitive function.

Proof. Since (Z,,)nen is primitive, we can find N,k € N big enough so that for all i € {1,...,p}
and m > N we have that E(Z,, | Zy = ke;) > 0. Hence, for m > N and z € NP\ {0}, using
Lemma [[3 and the superadditivity of £ and then of z — E(Z,, | Zy = 2),

P
EON™ (2) = M (kz) > E(Zm | Zo = kz) =Y 2E(Zm | Zo = ke;) > 0,
i=1
and so M™(z) > 0, which concludes the proof. O

We finish this subsection by stating one last property on 9.

Proposition 15. Assume that Assumption M2 holds. We have inf,cg|M(z)| > 0 and, for all
compact subset K C S* and for all i € {1,...,p}, inf,cx M;(2) > 0.

Proof. We start by proving the first assertion. Since 9 is primitive by Proposition [[4] there exists
ng > 1 such that 9™ (e;) > 0 for all ¢+ € {1,...,p}. In particular, M(e;) # 0 for all i € {1,...,p}.
Using the concavity of 91, we deduce that

P
Z zii)ﬁ(ei)
i=1

inf |9(z)| > inf > min |M(e;)| > 0.
z€8 z€8

-~ i{l,..p}

Let us now prove the second assertion. For z € K, if 9;(z) = 400, by Proposition [0, 9;(z') =
+oo for all 2/ € K and the result follows directly. If 9;(2) < 400, since 9M; is concave, it is locally
Lipschitz on S* and hence z — 9;(z) is continuous on the compact set K. It is thus sufficient to
prove the result for any fixed z € S*. For this, we simply observe that, for any two z, 2’ € S*, we
have, using the fact that z — 91;(z) is positively homogeneous and increasing,

4 € )

/
maX]e{lvvp} Zj

M;(z) >

M, (2.

Hence z — 9M;(z) is either null or positive on S*. Since 9 is primitive by Proposition[I4] z — 9;(z)
is not null (take for instance z = 9" (e;)), which concludes the proof. O
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3.2. Proof of Theorem [Il We start with the following lemma, where we do not assume that 9t
is finite over S.

Lemma 16. Let (z;)r>0 be a random sequence in NP such that zj ~p—ico k200 € Rﬁ almost
surely. We have

—5 (Z Z V ) — M(200),

i=1 m=1

almost surely when k — 4o00.
The proof of this lemma is inspired by [11].

Proof. Since all the variables V; ; are integrable, then thanks to the strong law of large numbers,
we have that for all ¢ <p, 7 <gq,

1 n
n Z o Via
n — n—-+4oo

Assume first that 2, ; > 0. In this case, since z;; — +oo almost surely we deduce that

1 Zk.i
> v e
. 2,7 (2%
Z]m el k—+
and hence
L & m
m a.s.
D Vil oV
kz k——+00
0t m=1

Fix0<e< /Ig/lm;”é V; ;. Hence, with probability one there exists ky (random) such that if & > ko,
7.7 i,]
then

2k,

kzooi(Vij —e) < Z Vz(gn) <kzeoi(Vij+e).

Assume now that z., ; = 0. Then, almost surely, there exists kg such that for all k& > kg, 2z;,; = 0,
so that the last inequality also holds true.

We consider again the general case z,, > 0. Summing on ¢ we obtain that, almost surely, there
exists kg such that, for all £ > kg and all j < g,

p Zhyi P
Y kreoi(Vij—e) < Z S VIV <Y kasei(Vig + o),
=1 i=1m=1 i=1

Vi 70 Vi 570

where we used the fact that Vl(;n) = 0 almost surely if V; ; = 0.
Define the matrices V¢ := ((Vw + 8)]1Vi’j750) e and V& = ((V@j — 8)]1Vi,j7é0)
Since the function ¢ is superadditive, in particular it is non decreasing. Hence, we get

o) _15(<Z%V,a ) )Sﬁ(k‘szi)‘ )
1<j<q

i=1 m=1

Let define

€

5 = -

min V; 7]
7]/V1]7£0

and note that § < 1 thanks to our choice of €.

1<i<p,1<j<q
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Assume first that M(2o,) < +00 and note that

kzoo V¢ 1 u
lim sup M = lim sup —¢ Z kzoo i (1 + i) Vi j

Via#0 1<j<q

1 p

= 1<i<q
= (14 0)M(200),
kzooVE
and similarly, lim inf §(hzooV2) > (1= 90)M(200)-
k—4-o00 k
Hence, taking k — 400 in (1), we obtain
1 P Pk ( ) q
(1 5)M(zwe) < liminf 1€ (Z > v ) ) stromn)
=1 Mm= Jj=

Finally, taking ¢ — 0, then § goes to 0 and we conclude the desired result when M(z) < 400.
kzoo VE
% > (1 — 8)My(2a0) still

holds and so the result follows in this case. O

If My(200) = +00 for some £ € {1,...,p}, the inequality lim inf
k—+o00

We now proceed with the proof of Theorem [Il

Proof of Theorem [I. We first prove the almost sure convergence in Step 1, and then the L' con-
vergence in Step 2.

Step 1. Almost sure convergence. The result is trivial for n = 0. By Lemma [T, we have

Z{n _ 1 P (1,k) a.s.
~ L (Z S VIR S me) (12)

m—ro0
m i=1 k=1

If My(200) > 0 for some ¢ € {1,...,p}, then this proves that Z7" ~p—s 400 m My(250) almost surely.
If My(200) = 0, then &y(kzooV) vanishes for all £ > 1 and hence Z1,1z,<cz,. = 0 almost surely
for all C' > 0. Since z;, ~m—+o0o MZoo, Wwe deduce that there exists a (random) mgy > 1 such that,
for all m > my, Z{’?Z = 0. Thus we proved that Z7" ~, 100 mM(25) almost surely, which proves
the result when n = 1.

Assume now that Z)" ~p, 100 mIM"(2o) a.s. for some n > 1. Then the previous step with
zZm = Z;' entails that

Zy'h 1 ~m—soo MMM (200)) = m?))?"“(zoo) a.s.
This concludes the proof of the first assertion in Theorem [Tl

Step 2. Convergence in L'. We prove now the L'-convergence. Denote 1, € N9, 1, = (1,...,1)
and fix zgp € NP such that 2V > 1,. Consider the bGWbp with initial position Z" = z,,, m > 1,
and denote by W{" the number of children in the first generation. We have W{" < |W"|1, <
|[W{™|20V, and so using the second equality in (3]),

27" = W) < E(IWi"z0V) < M (IW7"|20) -

Using Proposition [I0, we deduce that

27" < Wi M (z0). (13)
By assumption, the random vector

U™ = |z,/m] +1
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is uniformly integrable, and we have z, < mU almost surely, so that

P mU™

7

o<l > > vl (14)

i=1 k=1

Since U(™) is independent from the other terms, we have

1 q mUz(m)
(k,1)
j=1li=1 k=1
k,1 m
< ( Z (V5D —viy) ) [ul B (U =u). (15)
ue(NVfo}p j=1i=1 """ k=1
Using the law of large numbers, we deduce that, for each ¢ € {1,--- ,p} and j € {1,--- ,q},
Z ( pkD . ) 0
m——+00 ’

In particular, this ensures that the family

m = uerlill\z%{}é} ZZ 1 mu; ( )

converges to 0 when m — +oo. Since the family (U (m))mzo is uniformly integrable, we deduce
by (I5) that

Z (Vi3 - vig)

k=1

(m)
1SS (m) N

In particular, since (U(m)))m>0 is uniformly integrable and thus < DY Zk 1 Vi,j)
m>0

is uniformly integrable, this shows that <% gzl P Z;n:Uf V-(k’l)

i > is uniformly integrable.
’ m>0

By inequalities (I4)) and (I3)), this entails that (Z]"/m),;,>1 is uniformly integrable too. Now, since
we also proved that Z"/m converges almost surely to 9t(zs), this implies that Z]"/m converges
in L' to M(2e0).

As above, the result for general n > 1 derives by iteration, which concludes the proof of Theo-
rem [II 0

We now turn to the proof of Corollary 21

Proof of Corollary Bl Theorem [0 yields Corollary [2] when 9t takes finite values. In the situation
where 9t is not finite valued, we consider the vector 1, = (1,...,1) € N? and introduce the
superadditive function

{(x) = |z[1p.
Then, for all o € N, we define the superadditive mating function

§(o (@) = min{€ (@), (@)} == (min{&(@);, af(x)i})

and we denote by M) the function associated if we consider () as mating function with the same

1<i<p’

offspring distribution as the original process. We can check that M, (2) = min{M(z), af (z2V)}
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and so we obtain that 9, (z) /* M(z) as a — 400, for all z € RE. Since clearly £,y &, using
the Monotone Convergence Theorem, for all z € NP and i € {1,...,p},

Ew(Z1 | Zo = 2) po—— E(Zy | Zy = 2), (16)

where E(,) is the probability law associated to the process with mating function §,). In particular,
using Corollary 2 for the finite valued 9, for all z € RE
E(a)(Zl ’ Zy = Lmzj) E(a)(zl ‘ Zy = I_sz) E(Zl ’ Zy = {mzj

IMN(z) = sup m(a)(z) = sup sup = sup sup = sup
a>0 a>0m>1 m m>1a>0 m m>1 m

\
/

Since m — E(Z; | Zg = |mz]) defines a superadditive sequence, we deduce that

M(z) = lim E(Z1 | Zo = [m=2])

m>1 m

which concludes the proof of Corollary 21 (]
Let us now prove Lemma [I3] hence also concluding the proof of Propositions [I4 and 15

Proof of Lemma [I3l Let z € NP. For n = 1, we use Corollary 2l and obtain that

E(Zi | Zog =k E(Z1 | Zy =k
M(z) = klim (2] ko ?) = sup (2] k:o ?)
—00 keN

>E(Z1| Zp = 2).
Assume now that the inequality is true for some n € N. Using the fact that 9 is increasing
(since it is superadditive), we obtain
M (2) > M(E(Z, | Zo = 2))
= EON(Zn) | Zo = 2)
> (E(Z1 | Zo =)=z, | Zo = 2)
=E(Zni1 | Zo = 2),

where in the second step we have used Jensen’s inequality, since 9 is concave by Proposition [I0]
and the last inequality is due to the Markov property. The proof is then complete. O

4. EXISTENCE OF THE EIGENELEMENTS AND PROOF OF THEOREM [3

4.1. The concave eigenvalue problem. Consider A a real strictly positive N x N matrix. A
well-known result that goes back to Perron [33] states that

. A"z

lim

n—oo A"

= c(z)v, Vo € RE,

where A is the greatest eigenvalue of A with v its corresponding eigenvector and c is a suitable
function. This result and its consequences are among the main tools used to study the asymptotic
behaviour of the classical multi-type Galton-Watson process, applied to the expectation matrix
associated with the process. In this section we give similar results: a theorem that goes back to
Ulrich Krause [24] that provides us with the necessary tools to study the extinction conditions for
the multi-type bGWbp.

Theorem 17 (See [24] Section 4). Consider M : R}, — RE a concave, primitive and positively
homogeneous mapping. Then,

(1) The eigenvalue problem M (z) = Az has a unique solution (\*,z*) € R x S*, with \* > 0. If

(A, z) € Rx (RE\ {0}) is another solution of the problem, then it must hold that x = rz*
for some r >0 and A = \*.
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(2) The function L : (Ry)P — Riz* given by L(x) = klim ]‘éi()i)
—00

L(z) = P(x)z* where P : R, — Ry is a concave and positively homogeneous mapping
with P(f) >0 for all z € R\ {0}.
(3) klim M) — 2 for all z € RE \ {0}.

. ME+1 (g N . 1
(4) fim Tt =\ = Jim [ME ()| for all x € RE \ {0}.

(5) The convergence toward L(x) = P(x)z* is uniform on z € S.

exists on ]Rﬂ)_ and holds

4.2. Proof of Theorem [Bl If 9 is finite, the existence of \* and z* are guaranteed by Theo-
rem [I7] Propositions [0 and Proposition 4l Note that, in the following of the proof, we make
use of Theorem [] whose proof is developed in the next section and, except from the existence and
uniqueness of A* and z* which are yet established, does not use Theorem [Bl

If M takes finite values and A\* < 1, then, by assertion (2) in Theorem [T, for all z € NP,
(9" (2))nen is a bounded sequence. From Lemma [I3] 9™ (2) > E(Z,, | Zo = z), hence E(Z,, | Zy =
z) is bounded for all n € N and so Z,, does not converge to +oo with positive probability. The
conclusion is then given by Assumption [l since then nhﬁrrolo |Zy| can only be almost surely 0, which
finishes the proof of the theorem in the case \* < 1.

If M(2) < o0 for all z € S and A* > 1, Theorem @ entails that, for all ¢ € (0,1), there exists
no € N and r > 0 such that, if Zy = z € NP with |z| > r, we have that with positive probability
Zpy # 0 and Z,, > (1 — )" mogmn="0(Z,,) for all n > ng, with (1 — )"0 ~"0(Z,,,) # 0 (since
9 is primitive), and so we obtain ¢, < 1.

Assume now that there exist zop € S and ig € {1,...,p} such that (9M(z9));, = +o0. Consider,
in the same way as for the proof of Corollary [2] the vector 1, = (1,...,1) € N? and the function

é(ﬂf) = |z[1p.

For o« € N we define the function

g(oz) ('I) = mln{é(x)a O[é(x)},
which is superadditive, and we define () the function associated if we consider {(,) as mating
function with the same offspring distribution as the original process. We can check that M ,)(z) =
min{MM(z), o€ (zV)} and so we obtain that May(2) ~ M(z) as a — +oo, for all z € RE. Note
that in particular

(May(20)). 222 oo, (17)

20

Since clearly ) /" £, using the Monotone Convergence Theorem, for all m > 1 and i € {1,...,p},
E(a)(Zm ‘ ZO = k:el) m E(Zm ‘ ZQ = k:el) (18)

where E ) is the probability law associated to the process with mating function §(,).
By Assumption [2] there exists ¢y > 0,m > 1 and k > 1 such that for all i € {1,...,p},

E(Zm ’ ZO = kez) > Colp.
By ([I8), there exists g > 0 (which depends on m) such that for all @ > ag and all i € {1,...,p},

Col Co
E(a)(Zm | Z() = k:ez) Z P Z 20-
2 2m<ax 20,7
JI=p

This implies, by Lemma [I3], that for all i € {1,...,p},

m €0
€) > —— 2.
(a)( i) = 2k max 2 ; 0
i<p 7
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Hence, by (I7),
m+1 > Co a——+00
(m(a) (el)) - 2km<axzo](m(a)( 0))ig ——— +00.
i<

This implies that

m—+1 a—r—+00
inf (M (7)), S oo

We remark that, since M, is bounded over S, concave, positively homogeneous and primitive,
there exists Ao > 0 and x, € S such that M, (7a) = AaTa. Using this we have that

At = IR (2a)| =2 o0,

We conclude that there exists o big enough such that A,, > 1 and thanks to the previous
computations the process with mating function &5, will not be almost surely extinct. Since {(,,) <
&, this process is stochastically dominated by the original process, and so we can find r,, > 0 such
that for all z € NP with |z| > r,,, given {Zy = z}, the original process has a positive probability
of survival.

5. PROOF OF THEOREM [

In order to prove Theorem [l we first prove that, if A* > 1 and under the assumption that 97 is
bounded over S, we have that for all € € (0,1), 6 € (0,1/p],

i P (vn €N, Zug € (1= D20, (14 MZ)]) = 1, (19)
zeUs

where Us is the set given by
Us={2eN : 2> |z[01,}, (20)
where we recall that 1, = (1,...,1) € N” and for all a,b € R}, [a,b] := {z € R, a < z < b}. We
remark that, for § > 0, Us is non-empty if and only if § € (0, 1/p].
Then, we prove that for any initial values, either the process goes to extinction or it reaches a
set Us in finite time. Both results then lead to the proof of Theorem [

The second result is stated in Lemma 221 the first one is stated in Lemma 21] and is based on
Lemmas [I8] M9 and 20l for which we introduce the following additional notation.

For any ¢ € (0,1) and n > 1, we consider the sequence of events
AS ={Vie{l,...,n},Z; € [(1 —e)M(Zi—1), 1 + )M(Zi—1)]},
or simply A, when there is no risk of ambiguity. We also set Aj = ().

Lemma 18. Assume that MM is bounded on S. For any § € (0,1/p] and € € (0,1), there exists
co > 0 such that for all z € Us and all n € N,

]P’(A; ’ ZO = Z) 2 1-— ZCOE (]lAf,lf(‘Zi—ll) ’ ZQ = Z) .
i=1

where
4 E( V ]lV <m)

zz Wiy >0+ 3y Bty <o)

i=1j=1

Proof. We prove this lemma in two steps.
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Step 1. We first consider the case n = 1. That is, we prove that for ¢ € (0,1/p] and € € (0,1), there
exists c; such that, for z € Uy,

P(Z € [(1—)M(z), (1 +e)M(2)] | Zo = 2) > 1—c1 2> Y P(Vi; > |2])—e1 Z Z ’Z‘ Viy<lzl)
1=1j=1 i=1j=1
(21)

For Zy = z, we have Zy = {(Wh1,...,Wi,) with Wy, = >0 S7 IV(k D for 1 < j <gq. Fix
01 € (0,1) and r; > 0 (depending on d1) such that, for all z € N? with |z|2 1,

(1= 80)Viy Vil =B (Vijly, <) < (1L+8)Vi0
For all |z|> r with z € Us, we have
P((Wi,., Wig) > (1= 01)%2V | Zo = 2))
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<Y zmP(Vig > |2) + 5 <|2[\2
i—1 5 ( i=1 ZZVi—,j )
Pz
> Var (VY1 (k,1) | Zo =2
P i=1 k=1 RO
<2 PV > |z]) + p 2
i=1 6202(1 — 67)2 <Z Vz‘,j) |22
i=1
P
P ; ( i, Vz]<‘z‘)
< 2> PV > |z]) + z
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