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In this paper, we study the central limit theorem (CLT) and its weak invariance principle (WIP) for sums of stationary random elds non necessarily adapted, under dierent normalizations. To do so, we rst state sucient conditions for the validity of a suitable ortho-martingale approximation. Then, with the help of this approximation, we derive projective criteria under which the CLT as well as the WIP holds. These projective criteria are in the spirit of the Hannan's condition and are well adapted to linear random elds with ortho-martingale innovations and which exhibit long memory.

Introduction

Let (X i ) i∈Z d , d ≥ 1, be a stationary random eld with zero mean and nite variance. Let also S n be its associated partial sum with n = (n 1 • • • n d ) ∈ N d , dened as

S n = n 1 i 1 =1 • • • n d i d =1 X i .
In this paper, we are interested in the central limit theorem and the weak invariance principle. In particular the WIP addresses the question of nding a positive sequence s n such that s n → ∞ and

S [n•t] s n t∈[0,1] d ⇒ {σW d (t)} t∈[0,1] d , (1.1) 
in D [0, 1] d equipped with the uniform topology, where

[n • t] = ([n 1 t 1 ] , • • • , [n d t d ]
). The notation " ⇒ " means the convergence in distribution. When the X k are functions of an i.i.d random eld, under the so-called Hannan's condition [START_REF] Hannan | Central limit theorems for time series regression[END_REF] generalized to Z d , Wang and Volný [START_REF] Volný | An invariance principle for stationary random elds under Hannan's condition[END_REF] have established that (1.1) holds with s 2 n = n 1 . . . n d . When d = 2, their condition reads as

(i,j)∈Z 2 P 0,0 (X i,j ) 2 < ∞, (1.2) 
where P 0,0 is the projection operator dened by (1.4). We also refer to [START_REF] Zhang | On the quenched CLT for stationary random elds under projective criteria[END_REF] for a quenched version of the CLT under (1.2). The result stated in [START_REF] Volný | An invariance principle for stationary random elds under Hannan's condition[END_REF] does not allow to consider models for which the normalization in the WIP does not have a linear growth with respect to n. Our paper is a step in this direction and aims at relaxing the condition (1.2) to still get the WIP. Our results can be viewed as the random eld counterparts of those established in Dedecker et al. [START_REF] Dedecker | On the weak invariance principle for non-adapted sequences under projective criteria[END_REF]. To do so, we start with a new ortho-martingale approximation using the notion of commuting ltration (note that there is no natural ordering of future and past in higher dimension).

Before giving a avor of the results obtained in this paper by considering a simple example of linear random eld with long memory, let us rst mention additional earlier results to [START_REF] Dedecker | On the weak invariance principle for non-adapted sequences under projective criteria[END_REF], involving projective type criteria and using the notion of ortho-martingale. First, in [START_REF] Wang | A new condition for the invariance principle for stationary random elds[END_REF], Wang and Woodroofe proved the WIP for stationary random elds indexed by rectangular sets with the help of an m-dependent random eld approximation. Their condition is in term of conditional expectation and is in the spirit of the Maxwell-Woodroofe's condition in dimension 1 (see [START_REF] Maxwell | Central limit theorems for additive functionals of Markov chains[END_REF]). Then, as an application, they proved the WIP for ortho-martingales when they are functions of an i.i.d random eld. In [START_REF] Machkouri | A central limit theorem for stationary random elds[END_REF], using the same method (m-dependent random eld approximation) and the physical dependence measure, El Machkouri et al. proved a more general result in the sense that their result apply to a wider class of stationary random elds.

Concerning stationary ortho-martingales, a CLT has been obtained by Volný [START_REF] Volný | A central limit theorem for elds of martingale dierences[END_REF]. More precisely, let us consider the case d = 2 and assume that (T i,j ) (i,j)∈Z 2 is a group of commuting probability preserving transformation of (Ω, A, P). Suppose in addition that h is a random variable in L 2 and that (h • T i,j ) (i,j)∈Z 2 is an ortho-martingale (see denition 2.1) with respect to a commuting ltration (F i,j ) (i,j)∈Z 2 (see denition 1.1). In this situation, it has been proved in [START_REF] Volný | A central limit theorem for elds of martingale dierences[END_REF] that, as n 1 ∧ n 2 → ∞, (n 1 n 2 ) -1/2 n 1 i=1 n 2 j=1 h • T i,j converges in distribution to a centered gaussian random variable with variance h 2 2 provided that one of the transformation T 0,1 or T 1,0 is ergodic (here and along the paper the symbol a ∧ b stands for the minimum between a and b). Our strategy of proof is then to derive a new ortho-martingale approximation for S n /s n which combined with the CLT in [START_REF] Volný | A central limit theorem for elds of martingale dierences[END_REF] will lead us to new projective criteria ensuring the convergence in law of S n /s n . To derive the corresponding WIP, we then state a new criterion ensuring the uniform integrability of s -2 n max k≤n S 2 k . To illustrate our results, let us consider the following linear elds in dimension 2 with long memory. Let X k, = i,j∈N 2 1 (i + 1)(j + 1) ξ 0,0 • T k-i, -j , with T the shift transformation dened as in subsection 1.1 and ξ 0,0 a centered random variable in L 2 and such that E (ξ 0,0 |F -1,0 ) = E (ξ 0,0 |F 0,-1 ) = 0 a.s. ,

where F i,j = σ {ξ h,k , h ≤ i, k ≤ j}. As a consequence of our result, we get that for this process (1.1) holds with the normalization s n 1 ,n 2 = √ n 1 n 2 log(n 1 ) log(n 2 ) (see our Corollary 4.1). This kind of limiting behavior seems to be new in the context of linear random elds. Even if all our results hold for any d ≥ 1, for the sake of clarity due to complicated notations, we shall rather state and prove them in case d = 2. However, some indications concerning the statements of the results in case d > 2 are given in Section 5.

Our paper is organized as follows. In Sections 2 and 3, we state our main results in case of random elds with dimension 2. In Section 4, we apply our results to linear elds with orthomartingale innovations. Then, in Section 5, we extend our results to higher dimension. Section 6 is devoted to the proofs of the main results. We end this section by giving some notations and denitions used all along the paper.

Notations and Denitions. Let (Ω, A, P) be a probability space. To dene properly a stationary ltration, as in [START_REF] Zhang | On the quenched CLT for stationary random elds under projective criteria[END_REF], it is convenient to start with an auxiliary stationary process (ξ i,j ) i,j∈Z 2 and then to set

F i,j = σ{ξ h,k , h ≤ i, k ≤ j}. (1.3)
For all i, j, we also dene

F ∞,∞ = (i,j)∈Z 2 F i,j , F i,-∞ = j∈Z F i,j , F -∞,j = i∈Z F i,j , and 
F -∞,-∞ = (i,j)∈Z 2 F i,j . Denition 1.1. The ltration (F i,j ) (i,j)∈Z 2 dened as above is said to be commuting if ∀i, j, h, k ∈ Z, E [E [X|F i,j ] |F h,k ] = E [E [X|F h,k ] |F i,j ] = E [X|F i∧h,j∧k ] a.s. ,
provided all the above conditional expectations are well dened.

Note that a ltration dened by an independent and identically distributed (i.i.d) random eld is commuting. This kind of ltrations can also be constructed using stationary random elds with independent rows or columns (see [START_REF] Machkouri | A central limit theorem for stationary random elds[END_REF]). From now on, we assume that the ltration dened in (1.3) is commuting.

Next we introduce the projection operators dened by: for all i, j ∈ Z and X ∈ L 1 (Ω),

P i, j (X) = E [X|F i,j ] -E [X|F i,j-1 ] P i,j (X) = E [X|F i,j ] -E [X|F i-1,j ] .
Note that, if the ltration is commuting then P i,j (X) = P i,j • P i, j (X) = P i, j • P i,j (X).

Therefore P i,j (X) = E [X|F i,j ] -E [X|F i,j-1 ] -E [X|F i-1,j ] + E [X|F i-1,j-1 ] . (1.4)
Let us now introduce the shift operators as follows: on R Z 2 , let

T (1) ((x k, ) (k, )∈Z 2 ) = (x k+1, ) (k, )∈Z 2 , T (2) ((x k, ) (k, )∈Z 2 ) = (x k, +1 ) (k, )∈Z 2 .
(1.5)

We will denote

T i (1) • T j (2) (x k, ) (k, )∈Z 2 by T i,j ((x k, ) (k, )∈Z 2 )
. Note that the ltration dened above can also be rewritten F i,j = T -i,-j (F 0,0 ). Now we introduce a stationary random eld in the following way. For a real-valued measurable function f on R Z 2 , we dene

X 0,0 = f (ξ i,j ) (i,j)∈Z 2 and X k, = f T k, (ξ i,j ) (i,j)∈Z 2 = X 0,0 • T k, . (1.6) 
The stationary random eld (X i,j ) (i,j)∈Z 2 will be said to be regular if X 0,0 is F ∞,∞ -measurable, and

E (X 0,0 |F -∞,∞ ) = E (X 0,0 |F ∞,-∞ ) = E (X 0,0 |F -∞,-∞ ) = 0 a.s.
2 Ortho-Martingale Approximation Let (X i,j ) (i,j)∈Z 2 be a stationary random eld dened by (1.6) and let

S n 1 ,n 2 = n 1 i=1 n 2 j=1 X i,j and σ 2 n 1 ,n 2 = S n 1 ,n 2 2 2 .
Denition 2.1. Let m be an integrable F 0,0 -measurable function. We say that (m

• T i,j ) (i,j)∈Z 2
is a eld of ortho-martingale dierences with respect to a commuting ltration

(F i,j ) (i,j)∈Z 2 , if for all i, j, k, ∈ Z, such that either k < i, or < j then E (m • T i,j |F k, ) = 0 a.s. . In addition, M n 1 ,n 2 := n 1 i=1 n 2
j=1 m • T i,j is said to be an ortho-martingale.

Let (s n 1 ,n 2 ) n 1 ,n 2 ≥1 be a double indexed sequence of positive numbers such that s n 1 ,n 2 → ∞ as n 1 ∧ n 2 → ∞. Below we give an ortho-martingale approximation for the normalized partial sum

S n 1 ,n 2 /s n 1 ,n 2 . Theorem 2.2. Let m be a square integrable F 0,0 -measurable function such that E (m|F -1,0 ) = E (m|F 0,-1 ) = 0 a.s. and let R n 1 ,n 2 = E [S n 1 ,n 2 |F n 1 ,0 ] 2 + E [S n 1 ,n 2 |F 0,n 2 ] 2 + E [S n 1 ,n 2 |F 0,0 ] 2 .
Then the following conditions are equivalent

C 0 (s n 1 ,n 2 ): lim n 1 ∧n 2 →∞ S n 1 ,n 2 s n 1 ,n 2 - 1 √ n 1 n 2 n 1 i=1 n 2 j=1 m • T i,j 2 = 0 . C 1 (s n 1 ,n 2 ):                  (a) R n 1 ,n 2 = o(s n 1 ,n 2 ), (b) S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] 2 = o(s n 1 ,n 2 ), (c) lim n 1 ∧n 2 →∞ 1 n 1 n 2 n 1 i=1 n 2 j=1 √ n 1 n 2 s n 1 ,n 2 n 1 h=1 n 2 k=1 P 0,0 (X h-i,k-j ) -m 2 2 = 0 .
If one of the conditions is satised and T (1) or T (2) is ergodic, then s -1 n 1 ,n 2 S n 1 ,n 2 converges in distribution to σN , where N is a standard Gaussian random variable, and

σ 2 = E(m 2 ). Remark 2.3. Note that if E [m 2 ] < ∞ then the convergence in law of M n 1 ,n 2 √ n 1 n 2
always takes place, but to a mixture of normal laws (see [START_REF] Volný | On limit theorems for elds of martingale dierences[END_REF]). However, the additional condition that at least one of the transformation is ergodic ( T (1) or T (2) ) guarantees the convergence towards a normal law. For more detailed results see [START_REF] Volný | A central limit theorem for elds of martingale dierences[END_REF].

Proposition 2.4. If C 1 (σ n 1 ,n 2 )(a) and (b) hold then σ n 1 ,n 2 √ n 1 n 2
is a two-parameter slowly varying function (2p-svf) in the following sense : for any non negative integers k and

lim n 1 ∧n 2 →∞ σ 2 kn 1 , n 2 σ 2 n 1 ,n 2 = k • . (2.1)
In addition, if σ n 1 ,n 2 → ∞ as n 1 ∧ n 2 goes to innity and if

lim n 1 ∧n 2 →∞ σ 1,n 2 σ n 1 ,n 2 = 0, lim n 1 ∧n 2 →∞ σ n 1 ,1 σ n 1 ,n 2 = 0, (2.2) 
then,

lim x∧y→∞ σ 2 [kx],[ y] σ 2 [x],[y] = k • . (2.3) 
Next we give a similar remark carried from its one dimensional version (see [START_REF] Dedecker | On the weak invariance principle for non-adapted sequences under projective criteria[END_REF]Remark 3] ).

Remark 2.5.

If C 0 (s n 1 ,n 2 ) holds then s -2 n 1 ,n 2 σ 2 n 1 ,n 2 converges to E (m 2 ). Consequently, if E (m 2 ) > 0 then C 0 (σ n 1 ,n 2 ) holds with m = m/ m 2 . Therefore C 1 (σ n 1 ,n 2 )(a)
, and (b) holds, which implies that σ n 1 ,n 2 /

√ n 1 n 2 is a 2p-svf (by using Prop 2.4) and the same is true for

s n 1 ,n 2 / √ n 1 n 2 .
Below we give sucient conditions for C 1 (s n 1 ,n 2 )(c) to hold.

Proposition 2.6. Condition C 1 (s n 1 ,n 2 )(c) is satised as soon as the following conditions hold:

as n 1 ∧ n 2 → ∞, √ n 1 n 2 s n 1 ,n 2 n 1 h=-n 1 n 2 k=-n 2 P 0,0 (X h,k ) -→ m in L 2 , (2.4 
)

n 1 n 2 j=1 n 1 h=-n 1 n 2 k=j P 0,0 (X h,k ) 2 2 + n 1 h=-n 1 -j k=-n 2 P 0,0 (X h,k ) 2 2 = o(s 2 n 1 ,n 2 ), (2.5 
)

n 1 i=1 n 2 j=1 n 1 h=i n 2 -j k=1-j P 0,0 (X h,k ) 2 2 + -i h=-n 1 n 2 -j k=1-j P 0,0 (X h,k ) 2 = o(s 2 n 1 ,n 2 ). (2.6)
In particular if X 0,0 is F 0,0 -measurable and

s n 1 ,n 2 √ n 1 n 2 = h 1 (n 1 )h 2 (n 2 )
, with h 1 and h 2 two one-parameter slowly varying functions, then C 0 (s n 1 ,n 2 ) is satised as soon as:

R n 1 ,n 2 = o(s n 1 ,n 2 ) and √ n 1 n 2 s n 1 ,n 2 n 1 h=0 n 2 k=0 P 0,0 (X h,k ) → m in L 2 . (2.7)
As a consequence of the previous proposition, we obtain the following corollary : Corollary 2.7. Consider the following conditions:

n 1 i=-n 1 n 2 j=-n 2 P 0,0 (X i,j ) -→ m in L 2 , and S n 1 ,n 2 2 √ n 1 n 2 -→ m 2 , as n 1 ∧ n 2 → ∞, (2.8)
X 0,0 is regular and

(i,j)∈Z 2 P 0,0 (X i,j ) 2 < ∞.
(2.9)

We have the implications (2.9)

⇒ (2.8) ⇒ C 1 ( √ n 1 n 2 ).
Note that in dimension one, (2.9) is the so-called Hannan's condition. The condition (2.8) can be viewed as a non-adapted version of the Theorem 5 of [START_REF] Peligrad | Martingale approximations for random elds[END_REF].

Weak invariance principle

We start this section by giving sucient conditions for s -2

n 1 ,n 2 max 1≤k≤n 1 1≤l≤n 2 S 2 k,l (n 1 ,n 2 )∈N 2
to be uniformly integrable. With this aim, let us introduce the following notation :

R n 1 ,n 2 (S k,l ) = E(S k,l |F n 1 ,0 ) + E(S k,l |F 0,n 2 ) -E(S k,l |F 0,0 ). Proposition 3.1. The sequence s -2 n 1 ,n 2 max 1≤k≤n 1 1≤l≤n 2 S 2 k,l (n 1 ,n 2 )∈N 2
is uniformly integrable if the following conditions are satised :

C 2 (s n 1 ,n 2 ):                                  (a) sup 1≤k≤n 1 1≤l≤n 2 |R n 1 ,n 2 (S k,l )| 2 = o(s n 1 ,n 2 ), (b) sup 1≤k≤n 1 1≤l≤n 2 |S k,l -E [S k,l |F n 1 ,n 2 ]| 2 = o(s n 1 ,n 2 ),
(c) for some positive sequence (u i,j ) i,j∈Z 2 such that

√ n 1 n 2 s n 1 ,n 2 n 1 i=-n 1 n 2 j=-n 2 u i,j is bounded, lim λ→∞ lim sup n 1 ∧n 2 →∞ √ n 1 n 2 s n 1 ,n 2 n 1 i=-n 1 n 2 j=-n 2 E P 2 0,0 (X i,j ) u i,j 1 P 2 0,0 (X i,j )>λu 2 i,j = 0.
Remark 3.2. Note that if the rst part of C 2 (s n 1 ,n 2 )(c) holds then its second part does as soon as

P 0,0 (X i,j ) u i,j (i,j)∈Z 2
is a square uniformly integrable family.

We give now sucient conditions for C 2 (s n 1 ,n 2 )(a) and (b) to hold.

Proposition 3.3. C 2 (s n 1 ,n 2 )(a) and (b) hold as soon as X 0,0 is regular and

C 3 (s n 1 ,n 2 ):                  (a) n 1 u=1 n 2 v=1 |i|≥u |j|≥v P 0,0 (X i,j ) 2 2 = o(s n 1 ,n 2 ), (b) √ n 1 n 1 -1 i=1-n 1 n 2 v=1 |j|≥v P 0,0 (X i,j ) 2 2 = o(s n 1 ,n 2 ), (c) √ n 2 n 1 u=1 n 2 -1 j=1-n 2 |i|≥u P 0,0 (X i,j ) 2 2 = o(s n 1 ,n 2 ).
In addition, in the adapted case, C 3 (s n 1 ,n 2 ) holds provided

C 3 (s n 1 ,n 2 ) :          (a) √ n 1 n 1 u=1 n 2 v=1 1 √ u E (X u,v |F 0,0 ) 2 = o(s n 1 ,n 2 ), (b) √ n 2 n 1 u=1 n 2 v=1 1 √ v E (X u,v |F 0,0 ) 2 = o(s n 1 ,n 2 ).
Remark 3.4. If s 2 n 1 ,n 2 is regular enough, so for instance if there exist α and β in ]0, 1[ such that

n 1-α 1 n 1-β 2 (n 1 + n 2 ) s 2 n 1 ,n 2 → ∞ as n 1 ∧ n 2 → ∞, then Hölder's inequality combined with Kro- necker's Lemma for double indexed sequences implies that C 3 (s n 1 ,n 2 ) is satised as soon as u,v≥1 uv s 2 u,v E (X u,v |F 0,0 ) 2 2 < ∞. According to [1, Page 88], the uniform integrability of s -2 n 1 ,n 2 max 1≤k≤n 1 1≤l≤n 2 S 2 k,l (n 1 ,n 2 )∈N 2 implies the tightness of {s -1 n 1 ,n 2 S [n 1 t 1 ],[n 2 t 2 ] , (t 1 , t 2 ) ∈ [0, 1] 2 } in D([0, 1] 2 ).
Hence, Theorem 2.2 together with Proposition 3.1 give the following weak invariance principle. Theorem 3.5. Suppose that s

[n 1 t 1 ],[n 2 t 2 ] /s n 1 ,n 2 is bounded for any t ∈ [0, 1] 2 . If C 1 (s n 1 ,n 2 )(c) and C 2 (s n 1 ,n 2 ) hold and T (1) or T (2) is ergodic, then s -1 n 1 ,n 2 S [n 1 t 1 ],[n 2 t 2 ] , t ∈ [0, 1] 2 converges in distribution in D([0, 1] 2 )
to σW 2 where W 2 is a 2-parameter Brownian sheet and σ = E (m 2 ). Remark 3.6. The proof reveals that if we assume that C 1 (s n 1 ,n 2 )(c) holds with m such that E (m 2 ) > 0, then we do not need to assume the boundedness of (s

[n 1 t 1 ],[n 2 t 2 ] /s n 1 ,n 2 ) t∈[0,1] 2 in
the statement of the previous theorem. [START_REF] Dedecker | On the weak invariance principle for non-adapted sequences under projective criteria[END_REF] Application to linear elds of ortho-martingales Dene X 0,0 = i,j∈Z 2 a i,j ξ 0,0 •T -i,-j where (a i,j ) (i,j)∈Z 2 a double-indexed sequence of real numbers in 2 , and ξ 0,0 is a regular F 0,0 -measurable function in L 2 such that

E (ξ 0,0 |F -1,0 ) = E (ξ 0,0 |F 0,-1 ) = 0 a.s. . Let ξ k, = ξ 0,0 • T k, and S n 1 ,n 2 = n 1 k=1 n 2 =1 X k, = n 1 k=1 n 2 =1 (i,j)∈Z 2 a i,j ξ k-i, -j .
Corollary 4.1. Let ξ 0,0 , (a k, ) k, ∈Z 2 and X 0,0 be dened as above. We then dene the doubleindexed sequence

s n 1 ,n 2 = √ n 1 n 2 n 1 i=-n 1 n 2 j=-n 2 a i,j . Assume the following conditions: lim sup n 1 ∧n 2 →∞ n 1 k=-n 1 n 2 =-n 2 |a k, | n 1 k=-n 1 n 2 =-n 2 a k, < ∞ , (4.1 
)

n 1 u=1 n 2 v=1 |i|≥u |j|≥v a 2 i,j = o(s n 1 ,n 2 ) , (4.2) 
√ n 1 n 1 -1 i=1-n 1 n 2 v=1 |j|≥v a 2 i,j = o(s n 1 ,n 2 ) , (4.3) 
and

√ n 2 n 1 u=1 n 2 -1 j=1-n 2 |i|≥u a 2 i,j = o(s n 1 ,n 2 ) . (4.4) Then s -1 n 1 ,n 2 S [n 1 t 1 ][n 2 t 2 ] , (t 1 , t 2 ) ∈ [0, 1] 2 converges in distribution in D([0, 1] 2 ) to E ξ 2 0,0 W 2 , where W 2 is a 2-parameter Brownian sheet. Remark 4.2. If Condition (4.1) is satised and i,j∈Z |a i,j | < ∞ instead of assuming (4.2)- (4.4)
, then the conclusion of Corollary 4.1 follows from Theorem 5.1 in [START_REF] Volný | An invariance principle for stationary random elds under Hannan's condition[END_REF] since, according to Condition (4.1), as

n 1 , n 2 → ∞, s n 1 ,n 2 /
Comment 4.3. Condition (4.1) of the above corollary does not allow the following possibility:

n 1 k=-n 1 n 2 =-n 2 |a k, | diverges but n 1 k=-n 1 n 2 =-n 2 a k, converges.
For instance let us consider the following sequence: a i,j = (-1) i+j (i + j) -2 for i, j ≥ 1 and 0 otherwise, then Corollary 4.1 does not apply. More generally, this is also the case for double alternating series i,j a i,j (in the sense that each row and column is an alternating simple series) that are in addition monotonic which means that |a i,j | ≤ |a n,m | for i ≥ n and j ≥ m. Indeed such series are not absolutely convergent if i,j |a i,j | = ∞ but convergent as soon as |a i,j + a i+1,j | ≥ |a i,j+1 + a i+1,j+1 | for all i, j (see Meyer [START_REF] Meyer | On the convergence of alternating double series[END_REF] for more details) and then, in this situation, condition (4.1) fails. However, by simple algebra, we infer that, for such series, condition (2.7) holds with

s n 1 ,n 2 ∼ √ n 1 n 2 i,j≥0 a i,j
(and then s -1 n,n S n,n converges in distribution to a Gaussian random variable) as soon as

u,v≥0 n 1 k=1 n 2 =1 a k+u, +v 2 + n 1 u=1 n 1 k=1 n 2 =1 a k+u, +v 2 = o(n 1 n 2 )
and

n 1 u=1 v≥0 n 1 k=u n 2 =1 a k+u, +v 2 + n 2 v=1 u≥0 n 1 k=1 n 2 =v a k+u, +v 2 = o(n 1 n 2 ).
Clearly, both of the above conditions hold if u,v≥0 k≥u ≥v a k,

2

< ∞ which is satised as soon as i,j≥0 a 2 i,j < ∞ (to see this, use an Abel transformation and the monotonicity conditions on the sequence (a i,j )). for k ≥ 0 and ≥ 0, and 0 otherwise, satises the condition of Corollary 4.1 with

s n 1 ,n 2 ∼ √ n 1 n 2 log(n 1 ) log(n 2 ).
Example 4.5. Let us consider now another example in the same spirit but for which the normalizing sequence s n 1 ,n 2 is not a product of a function of n 1 times a function of n 2 . The double indexed sequence (a k, ) k, ∈Z 2 is this time dened by a k, = 1 (k + ) 2 for k and > 0, and 0 otherwise. In this case the conditions of Corollary 4.1 are satised with

s n 1 ,n 2 ∼ √ n 1 n 2 log n 1 n 2 n 1 + n 2 .
Comment 4.6. It is also possible to apply our Theorem 3.5 to non linear random elds. For instance, let us consider the following Volterra process

X k, = i,j≥0 ξ k-i, -j (α i,j ξ k-i-1, -j + β i,j ξ k-i, -j-1 ) ,
where (ξ k, ) k, is a sequence of ortho-martingale dierences. In this case, setting

s n 1 ,n 2 = √ n 1 n 2 n 1 i=0 n 2 j=0 (α i,j + β i,j
) and assuming that there exist reals α and β such that

lim n 1 ∧n 2 →∞ n 1 i=0 n 2 j=0 α i,j n 1 i=0 n 2 j=0 (α i,j + β i,j ) = α and lim n 1 ∧n 2 →∞ n 1 i=0 n 2 j=0 β i,j n 1 i=0 n 2 j=0 (α i,j + β i,j ) = β , (4.5) 
one sees that condition (2.4) holds with m = ξ 0,0 αξ -1,0 + βξ 0,-1 . Moreover, following the lines of the proof of Corollary 4.1, we infer that, if in addition to (4.5), we assume that

lim n 1 ∧n 2 →∞ n 1 i=0 n 2 j=0 (|α i,j | + |β i,j |) n 1 i=0 n 2 j=0 (α i,j + β i,j ) < ∞
and conditions (4.2)-(4.4) are satised with α 2 i,j + β 2 i,j replacing a 2 i,j in the numerators, then

s -1 n 1 ,n 2 S [n 1 t 1 ][n 2 t 2 ] , (t 1 , t 2 ) ∈ [0, 1] 2 converges in distribution in D([0, 1] 2 ) to c α,β W 2 , where W 2 is a 2-parameter Brownian sheet and c 2 α,β = E(m 2 ).

Extension to higher dimension d > 2

In this section, we extend our results to dimension d > 2. To do so, we rst introduce some notations in dimension d. Let i, j be two elements of Z d . For i := (i 1 , . . . , i d ), and j := (j 1 , . . . , j d ), we set

• i + j := (i 1 + j 1 , . . . , i d + j d ) • i ≤ j mean that i k ≤ j k for all 1 ≤ k ≤ d • i ∧ j := (i 1 ∧ j 1 , . . . , i d ∧ j d ) • |n| := (n 1 × • • • × n d )
Note also that the integers of Z d will be in bold, for example 1 = (1, . . . , 1) ∈ Z d . Next for n = (n 1 , . . . , n d ), and for every 1 ≤ k ≤ d, we set n k = (0, . . . , n k , . . . , 0), n k 1 k 2 = (0, . . . , 0, n k 1 , 0, . . . , 0, n k 2 , 0, . . . , 0) and so on. Also n -k = (n 1 , . . . , n k-1 , 0, n k+1 , . . . , n d ).

As in dimension 2, let F i = σ(ξ j , j ≤ i) where (ξ i ) i∈Z d is an auxiliary stationary process. We assume that the ltration is commuting. The shift transformation

T (1) , • • • , T (d) is dened as follows: on R Z d , for 1 ≤ j ≤ d, T (j) ((x k ) k∈Z d ) = (x k 1 ,••• ,k j-1 ,k j +1,k j+1 ,••• ,k d ) k∈Z d .
(5.1)

For i = (i 1 , • • • , i d ), we set T i 1 (1) • • • • • T i d (d) ((w k ) k∈Z d ) by T i ((w k ) k∈Z d .
Next, for a real valued measurable function f on R Z d , we dene

X 0 = f (ξ i ) i∈Z d , and X k = f T k (ξ i ) i∈Z d = X 0 • T k .
Let S n be its associated partial sum dened as

S n = n 1 i 1 =1 • • • n d i d =1 X i .
We now clarify the rest R n (S n ) in the decomposition of S n with the help of the projective operators. We have

S n = n 1 k 1 =1 • • • n d k d =1 P k (S n ) + R n (S n ), where R n (S i ) = (-1) d-1 E [S i |F 0 ] + (-1) d-2 d k=1 E S i |F n k + (-1) d-3 d-1 k 1 =1 d k 2 >k 1 E S i |F n k 1 k 2 +(-1) d-4 d-2 k 1 =1 d-1 k 2 >k 1 d k 3 >k 2 E S i |F n k 1 k 2 k 3 + • • • +(-1) d-d d-(d-1)+1 k 1 =1 3 k 2 >k 1 • • • d-1 k d-2 >k d-3 d k d-1 >k d-2 E S i |F n k 1 k 2 ..k d-1 .
To simplify its expression, let us introduce some specic notations. We dene the set D of integers from 1 to d,

(D := (1, ..., d)). Next for any 1 ≤ k ≤ d, Q k will designate a set of the type {i 1 , . . . , i k } with i u = i v for u = v and i u ∈ D for any 1 ≤ u ≤ k.
Notice that for k xed, there exist dierent Q k since there are d k ways to chose a set of k dierent integers among D. Thus we will numerate each combination of

Q k by Q k for 1 ≤ ≤ d k
, and these combinations will be numerated in the natural increasing way. For

example for k = 1, Q 1 1 = {1} , Q 2 1 = {2} . . . Q d 1 = {d} and for k = 2, Q 1 2 = {1, 2} , Q 2 2 = {1, 3} . . . Q d-1 2 = {1, d}, Q (d-1)+1 2 = {2, 3} . . . Q (d-1)+(d-2)+1 2 = {3, 4}. In addition (Q k ) C will denote the complement of Q k in D. For Q k := {e 1 . . . e k }, we denote F Q k by F n e 1 ...e k . Hence, setting u k,d = d k , we have R n (S i ) = (-1) d-1 E [S i |F 0 ] + d-1 k=1 (-1) d-1-k u k,d =1 E S i |F Q k .
(5.2)

5.1

Ortho-Martingale approximation and CLT in dimension d ≥ 2 Theorem 5.1. Let m be a F 0 -measurable function such that, E (m|F -1,0...0 ) = E (m|F 0,-1,0...0 ) = • • • = E (m|F 0...0,-1 ) = 0. Then the two following conditions are equivalent

C d 0 (s n ): lim n→∞ S n s n - 1 √ n n 1 i 1 =1 • • • n d i d =1 m • T i 2 = 0 . C d 1 (s n ):                              (a) for every 0 ≤ k ≤ d -1, and 1 ≤ ≤ d k E S n |F Q k 2 = o(σ n ), (b) S n -E [S n |F n ] 2 = o(s n ), (c) lim n→∞ 1 n n 1 i 1 =1 • • • n d i d =1 √ n s n n 1 k 1 =1 • • • n d k d =1 P 0 (X k-i ) -m 2 2 = 0.
If one of the conditions is satised and one of T (1) , • • • , T (d) is ergodic, then s -1 n S n converges in distribution to σN , where N is a standard gaussian random variable, and σ 2 = E(m 2 ). 

lim n→∞ σ 2 k 1 n 1 ,...,k d n d σ 2 n 1 ,...,n d = lim n→∞ E S 2 k 1 n 1 ,...,k d n d E S 2 n 1 ,...,n d = k 1 • • • k d . (5.3) In addition, if σ n 1 ,...,n d → ∞ as n 1 ∧. . .∧n d → ∞ and if for every 1 ≤ k ≤ d-1, and 1 ≤ ≤ u k,d , we have lim n 1 ∧...∧n d →∞ σ Q k σ n 1 ,...,n d = 0, (5.4) 
where for example

σ Q 1 1 = σ 1,n 2 ,...,n d . Then, lim x 1 ∧...∧x d →∞ σ 2 [k 1 x 1 ],...,[k d x d ] σ 2 [x 1 ],...,[x d ] = k 1 • • • k d . (5.5)
As in dimension 2, we now give a sucient condition to prove C d 1 (s n )(c).

Proposition 5.3. Condition C d 1 (s n )(c) holds as soon as

|n| s n n 1 k 1 =-n 1 • • • n d k d =-n d P 0 (X k ) -→ m in L 2 , (5.6) 
and

d k=1 n 1 u 1 =1 • • • n d u d =1 nq iq=-nq q∈Q 1 k-1 n k i k =u k + -u k i k =-n k np-up ip=1-up p∈(Q 1 k ) C P 0 (X i ) 2 2 = o(s 2 n ), (5.7) 
with

Q 1 k = {1, 2, 3, . . . , k} and Q 1 0 = (Q 1 d ) C = ∅.
In particular if X 0 is F 0 -measurable and

s n |n| = h 1 (n 1 ) . . . h d (n d )
with h k a one-parameter slowly varying function for k = 1, ..., d, then

C d 0 (s n )
is satised as soon as:

|n| s n n 1 k 1 =0 • • • n d k d =0 P 0 (X k ) -→ m in L 2 , (5.8) 
and

C d 0 (s n )(a) is satised.
As a consequence, we get a generalized version of Corollary 2.7.

Corollary 5.4. Considering the following conditions

i∈Z d P 0 (X i ) -→ L 2 m,
and

S n 2 √ n -→ m 2 , (5.9) 
X 0 is regular and

i∈Z d P 0 (X i ) 2 < ∞.
(5.10)

We have the implications (5.10) ⇒ (5.9

) ⇒ C d 1 (s n ).
One can see this as an non-adapted case of Theorem 7 in [START_REF] Peligrad | Martingale approximations for random elds[END_REF] 5.2

Weak invariance principle in dimension d ≥ 2 Proposition 5.5. The sequence s -2 n max 1≤i≤n S 2 i n∈N d is uniformly integrable if and only if the following conditions are satised :

C d 2 (s n ):                          (a) sup 1≤i≤n |R n (S i )| 2 = o(s n ), (b) sup 1≤i≤n |S i -E [S i |F n ]| 2 = o(s n ).
(c) for some positive sequence

(u i ) i∈Z d such that |n| s n n i=-n u i is bounded, lim λ→∞ lim sup n 1 ∧•••∧n d →∞ |n| s n n i=-n E P 2 0 (X n ) u i 1 P 2 0 (X i )>λu 2 i = 0.
Remark 3.3 can also be adapted to dimension d.

Remark 5.6. Condition C d 2 (s n )(a) and (b) hold as soon as, X 0 is regular and

n 1 u 1 =1 • • • n d u d =1 |i 1 |≥u 1 • • • |i d |≥u d P 0 (X i ) 2 2 = o(s n ), (5.11) 
and for every

1 ≤ k ≤ d -1, and 1 ≤ ≤ d k , q∈Q k √ n q nq-1 iq=1-nq q∈Q k np ip=1 p∈(Q k ) C +∞ ip=up p∈(Q k ) C P 0 (X i ) 2 2 = o(s n ), (5.12 
)

q∈Q k √ n q nq-1 iq=1-nq q∈Q k np ip=1 p∈(Q k ) C -up ip=-∞ p∈(Q k ) C P 0 (X i ) 2 2 = o(s n ), (5.13) 
Next, Theorem 5.1 together with Proposition 5.5 give the following weak invariance principle Theorem 5.7. Assume C d 2 (s n ) holds and that one of

T (1) , • • • , T (d) is ergodic. In addition suppose that s [n•t] /s n is bounded for any t ∈ [0, 1] d and E (m 2 ) < ∞. If C d 1 (s n )(c) holds, then s -1 n S [n•t] , t ∈ [0, 1] d converges in distribution in D([0, 1] d ) to σW d where W d is a d-parameter Brownian sheet and σ = E (m 2 ).
The proofs of the results stated in this section are of the same avor as those developed in Section 6 when d = 2 but with more tedious computations due to the higher dimension. They are therefore omitted and left to the reader. Note rst that the following decomposition holds :

S n 1 ,n 2 = S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] + R n 1 ,n 2 (S n 1 ,n 2 ) + E [S n 1 ,n 2 |F n 1 ,n 2 ] -R n 1 ,n 2 (S n 1 ,n 2 ), (6.1) 
with

R n 1 ,n 2 (S n 1 ,n 2 ) = E(S n 1 ,n 2 |F n 1 ,0 ) + E(S n 1 ,n 2 |F 0,n 2 ) -E(S n 1 ,n 2 |F 0,0 ). Then we denote n 1 i=1 n 2 j=1 m • T i,j by M n 1 ,n 2 .
Note rst that with the denition of m, we have that

E (M n 1 ,n 2 |F 0,0 ) = E (M n 1 ,n 2 |F n 1 ,0 ) = E (M n 1 ,n 2 |F 0,n 2 ) = 0. Therefore recalling that R n 1 ,n 2 = E [S n 1 ,n 2 |F n 1 ,0 ] 2 + E [S n 1 ,n 2 |F 0,n 2 ] 2 + E [S n 1 ,n 2 |F 0,0 ] 2 , we derive that R n 1 ,n 2 ≤ 3 S n 1 ,n 2 -M n 1 ,n 2 2 .
Hence C 0 (s n 1 ,n 2 ) entails C 1 (s n 1 ,n 2 )(a). Next, using (6.1) and orthogonality, we have :

S n 1 ,n 2 s n 1 ,n 2 - M n 1 ,n 2 √ n 1 n 2 2 2 = S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] s n 1 ,n 2 2 2 + R n 1 ,n 2 (S n 1 ,n 2 ) s n 1 ,n 2 2 2 + E [S n 1 ,n 2 |F n 1 ,n 2 ] -R n 1 ,n 2 (S n 1 ,n 2 ) s n 1 ,n 2 - M n 1 ,n 2 √ n 1 n 2 2 2 := A 2 + B 2 + C 2 . (6.2) Therefore C 0 (s n 1 ,n 2 ) implies C 1 (s n 1 ,n 2 )(b)
and C → 0. Note now that the following decomposition is valid:

E [S n 1 ,n 2 |F n 1 ,n 2 ] -R n 1 ,n 2 (S n 1 ,n 2 ) = n 1 i=1 n 2 j=1 P i,j (S n 1 ,n 2 ). (6.3) 
For more details concerning the decomposition we refer to [START_REF] Zhang | On the quenched CLT for stationary random elds under projective criteria[END_REF]. Using (6.3), it follows that

C = 1 √ n 1 n 2 n 1 i=1 n 2 j=1 √ n 1 n 2 n 1 h=1 n 2 k=1 P i,j (X h,k ) s n 1 ,n 2 -m • T i,j 2 .
Hence, by orthogonality, we get

C 2 = 1 n 1 n 2 n 1 i=1 n 2 j=1 √ n 1 n 2 n 1 h=1 n 2 k=1 P i,j (X h,k ) s n 1 ,n 2 -m • T i,j 2 2 
.

Using stationarity, we then derive

C 2 = 1 n 1 n 2 n 1 i=1 n 2 j=1 √ n 1 n 2 n 1 h=1 n 2 k=1 P 0,0 (X h-i,k-j ) s n 1 ,n 2 -m 2 2 . (6.4) Therefore, C → 0 is equivalent to C 1 (s n 1 ,n 2 )(c). This ends the proof of C 0 (s n 1 ,n 2 ) ⇒ C 1 (s n 1 ,n 2 ).
For the converse, we use (6.2), (6.4) and the fact that

R n 1 ,n 2 (S n 1 ,n 2 ) 2 ≤ R n 1 ,n 2 . Now if either C 0 (s n 1 ,n 2 ) or C 1 (s n 1 ,n 2 )
holds then, by Remark 2.3, we derive that s -1 n 1 ,n 2 S n 1 ,n 2 converges in distribution to E (m 2 )N , provided that one of the transformations T (1) or T (2) is ergodic. Assume that the conditions C 1 (σ n 1 ,n 2 )(a) and C 1 (σ n 1 ,n 2 )(b) hold. To prove σ n 1 ,n 2 is a 2p-svf, it suces to prove (2.1). Note rst that the following decomposition holds: for every non-negative integers k and ,

σ 2 kn 1 , n 2 = S n 1 , n 2 2 2 + k i=2 S in 1 , n 2 -S (i-1)n 1 , n 2 2 2 + 2B, (6.5) 
where

B = E S n 1 , n 2 k i=2 S in 1 , n 2 -S (i-1)n 1 , n 2 .
Hence by stationarity,

σ 2 kn 1 , n 2 = k S n 1 , n 2 2 2 + 2 k-1 i=2 k j=i+1 E S n 1 , n 2 S (j-i+1)n 1 , n 2 -S (j-i)n 1 , n 2 + 2B := k S n 1 , n 2 2 2 + 2A + 2B.
We shall then focus on S n 1 , n 2 2 2 . Proceeding as before, we have

S n 1 , n 2 2 2 = S n 1 ,n 2 2 2 + 2 -1 i=2 j=i+1 E S n 1 ,n 2 S n 1 ,(j-i+1)n 2 -S n 1 ,(j-i)n 2 + 2E S n 1 ,n 2 i=2 S n 1 ,in 2 -S n 1 ,(i-1)n 2 := S n 1 ,n 2 2 2 + 2C + 2D.
Therefore,

σ 2 kn 1 , n 2 = k • S n 1 ,n 2 2 
2 + 2A + 2B + 2C + 2D. Hence to prove (2.1), it is sucient to show that A, B, C and D are o(σ 2 n 1 ,n 2 ). We rst handle D and write

|D| ≤ E (S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ]) i=2 S n 1 ,in 2 -S n 1 ,(i-1)n 2 + E E [S n 1 ,n 2 |F n 1 ,n 2 ] i=2 S n 1 ,in 2 -S n 1 ,(i-1)n 2 := D 1 + D 2 .
By stationarity and using C 1 (σ n 1 ,n 2 )(b) we infer that

D 1 ≤ S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] 2 i=2 S n 1 ,in 2 -S n 1 ,(i-1)n 2 2 ≤ ( -1) S n 1 ,n 2 2 S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] 2 = o(σ 2 n 1 ,n 2 ).
On another hand, using stationarity and C 1 (σ n 1 ,n 2 )(a) we get

D 2 ≤ S n 1 ,n 2 2 E i=2 S n 1 ,in 2 -S n 1 ,(i-1)n 2 |F n 1 ,n 2 2 ≤ ( -1) S n 1 ,n 2 2 E (S n 1 ,n 2 |F n 1 ,0 ) 2 = o(σ 2 n 1 ,n 2 ).
Thus D = o(σ 2 n 1 ,n 2 ). We handle now the quantity C and write

|C| ≤ -1 i=2 j=i+1 E (S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ]) S n 1 ,(j-i+1)n 2 -S n 1 ,(j-i)n 2 + -1 i=2 j=i+1 E E [S n 1 ,n 2 |F n 1 ,n 2 ] S n 1 ,(j-i+1)n 2 -S n 1 ,(j-i)n 2 := C 1 + C 2 .
Using stationarity C 1 (σ n 1 ,n 2 )(b), we get

C 1 ≤ -1 i=2 j=i+1 S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] 2 S n 1 ,(j-i+1)n 2 -S n 1 ,(j-i)n 2 2 ≤ 2 S n 1 ,n 2 2 S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] 2 = o(σ 2 n 1 ,n 2 ).
Next, by stationarity and C 1 (σ n 1 ,n 2 )(a) we infer that,

C 2 ≤ -1 i=2 j=i+1 S n 1 ,n 2 2 E S n 1 ,(j-i+1)n 2 -S n 1 ,(j-i)n 2 |F n 1 ,n 2 ≤ 2 S n 1 ,n 2 2 E (S n 1 ,n 2 |F n 1 ,0 ) 2 = o(σ 2 n 1 ,n 2 ). Recall that, S n 1 , n 2 2 2 = S n 1 ,n 2 2 2 + 2C + 2D. Thereby, lim n 1 ∧n 2 →∞ S n 1 , n 2 2 2 S n 1 ,n 2 2 2
= . (6.6)

We handle now the quantity B. We infer that

|B| ≤ E (S n 1 , n 2 -E [S n 1 , n 2 |F n 1 , n 2 ]) k i=2 S in 1 , n 2 -S (i-1)n 1 , n 2 + E E S n 1 , n 2 |F n1, n 2 k i=2 S in 1 , n 2 -S (i-1)n 1 , n 2 := B 1 + B 2 .
Using stationarity and C 1 (σ n 1 ,n 2 )(b) and (6.6), we get

B 1 ≤ S n 1 , n 2 -E [S in 1 , n 2 |F in 1 , n 2 ] 2 k i=2 S in 1 , n 2 -S (i-1)n 1 , n 2 2 ≤ (k -1) S n 1 , n 2 -E [S in 1 , n 2 |F in 1 , n 2 ] 2 S n 1 , n 2 2 = o(σ 2 n 1 ,n 2 ).
Using stationarity and C 1 (σ n 1 ,n 2 )(a) and (6.6), we derive

B 2 ≤ S n 1 , n 2 2 E k i=2 S in 1 , n 2 -S (i-1)n 1 , n 2 |F n 1 , n 2 2 ≤ (k -1) S n 1 , n 2 2 E (S n 1 , n 2 |F 0, n 2 ) 2 = o(σ 2 n 1 ,n 2 ). Therefore B = o(σ 2 n 1 ,n 2
). Now we handle the quantity A and write

|A| ≤ k-1 i=2 k j=i+1 E (S n 1 , n 2 -E [S n 1 , n 2 |F n 1 , n 2 ]) S (j-i+1)n 1 , n 2 -S (j-i)n 1 , n 2 + k-1 i=2 k j=i+1 E (E [S n 1 , n 2 |F n 1 , n 2 ]) S (j-i+1)n 1 , n 2 -S (j-i)n 1 , n 2 := A 1 + A 2 .
Thereby, with similar arguments as above,

A 1 ≤ k 2 S n 1 , n 2 2 S n 1 , n 2 -E (S n 1 , n 2 |F 0, n 2 ) 2 = o(σ 2 n 1 ,n 2 ), A 2 ≤ k 2 S n 1 , n 2 2 E (S n 1 , n 2 |F 0, n 2 ) 2 = o(σ 2 n 1 ,n 2 ).
Hence A = o(σ 2 n 1 ,n 2 ). This ends the proof of (2.1). Now we prove (2.3). Let introduce the two following conditions :

lim x∧y→∞ k[x]+k+1 i=1 [y]+ +1 j=1 X i,j -[kx] i=1 [ y] j=1 X i,j 2 σ [x],[y]
= 0 (6.7)

and

lim x∧y→∞ k[x]+k+1 i=1 [y]+ +1 j=1 X i,j -k[x] i=1 [y] j=1 X i,j 2 σ [x],[y] = 0. (6.8)
We infer that if (6.7) and (6.8) hold then (2.1) can be extended to (2.3). Next, it is easy to see that (6.7) and (6.8) hold as soon as σ The rst part of the proof is quite direct. Indeed, let us denote the double sums in the norm of the conditions (2.5) and (2.6) by a, b, c, d, and the quantities appearing in the left hand side of the conditions (2.5) and(2.6) by A, B, C, and D. For example:

[x],[y] → ∞ as [x] ∧ [y] → ∞,
a = √ n 1 n 2 s n 1 ,n 2 n 1 h=-n 1 n 2 k=j P 0,0 (X h,k ) and A = n 1 n 2 j=1 n 1 h=-n 1 n 2 k=j P 0,0 (X h,k ) 2 2 
.

We have

1 n 1 n 2 n 1 i=1 n 2 j=1 √ n 1 n 2 s n 1 ,n 2 n 1 -i h=1-i n 2 -j k=1-j P 0,0 (X h,k ) -m 2 2 = 1 n 1 n 2 n 1 i=1 n 2 j=1 √ n 1 n 2 s n 1 ,n 2 n 1 h=-n 1 n 2 k=-n 2 P 0,0 (X h,k ) -m -a -b -c -d 2 2 ≤ √ n 1 n 2 s n 1 ,n 2 n 1 h=-n 1 n 2 k=-n 2 P 0,0 (X h,k ) -m 2 2 + A + B + C + D s 2 n 1 ,n 2 . Hence if (2.4)-(2.6) are satised then C 1 (s n 1 ,n 2 )(c) holds.
Now assume that X 0,0 is F 0,0 -measurable and s n 1 ,n 2 √ n 1 n 2 is a composition of two one-parameter slowly varying functions. In this case, conditions (2.4)-(2.6) reduce to

√ n 1 n 2 s n 1 ,n 2 n 1 h=0 n 2 k=0 P 0,0 (X h,k ) -→ m in L 2 , (6.9 
)

n 1 n 2 j=1 n 1 h=0 n 2 k=n 2 -j+1 P 0,0 (X h,k ) 2 2 = o(s 2 n 1 ,n 2 ), (6.10 
)

n 1 i=1 n 2 j=1 n 1 h=n 1 -i+1 n 2 -j k=0 P 0,0 (X h,k ) 2 2 = o(s 2 n 1 ,n 2 ). (6.11)
Note that the following decomposition holds: for every

n 1 ≥ 1, n 2 > j > 0, √ n 1 n 2 s n 1 ,n 2 n 1 h=0 n 2 k=n 2 -j+1 P 0,0 (X h,k ) = √ n 1 n 2 s n 1 ,n 2 n 1 h=0 n 2 k=0 P 0,0 (X h,k ) - n 1 (n 2 -j) s n 1 ,n 2 -j n 1 h=0 n 2 -j k=0 P 0,0 (X h,k ) + n 1 (n 2 -j) s n 1 ,n 2 -j n 1 h=0 n 2 -j k=0 P 0,0 (X h,k ) 1 - √ n 1 n 2 n 1 (n 2 -j) s n 1 ,n 2 -j s n 1 ,n 2 . Since s n 1 ,n 2 = √ n 1 n 2 h 1 (n 1 )h 2 (n 2 )
with h 1 and h 2 two slowly varying functions, we get

√ n 1 n 2 s n 1 ,n 2 n 1 h=0 n 2 k=n 2 -j+1 P 0,0 (X h,k ) = √ n 1 n 2 s n 1 ,n 2 n 1 h=0 n 2 k=0 P 0,0 (X h,k ) - n 1 (n 2 -j) s n 1 ,n 2 -j n 1 h=0 n 2 -j k=0 P 0,0 (X h,k ) + n 1 (n 2 -j) s n 1 ,n 2 -j n 1 h=0 n 2 -j k=0 P 0,0 (X h,k ) 1 - h 2 (n 2 -j) h 2 (n 2 ) .
It follows that condition (6.9) implies condition (6.10) provided

1 n 2 n 2 j=1 1 - h 2 (j -1) h 2 (n 2 ) 2 -→ 0.
This holds since h 2 is a one-parameter slowly varying function. With similar arguments and using that h 1 is a one-parameter slowly varying function, we get that (6.9) implies (6.11).

Proof of Corollary 2.7

This proof is quite similar to its one dimensional version [4, Corollary 1]. We give it for completeness. Let rst prove (2.8) ⇒ C 1 ( √ n 1 n 2 ). Taking s n 1 ,n 2 = √ n 1 n 2 and m = i,j∈Z 2 P 0,0 (X i,j ), it follows that if the rst part of (2.8) holds then the conditions (2.4)-(2.6) of Proposition 2.6 are clearly satised. Therefore C 1 ( √ n 1 n 2 )(c) holds. Now starting from the decomposition (6.1) and using orthogonality, we derive

S n 1 ,n 2 2 2 n 1 n 2 = 1 n 1 n 2 S n 1 ,n 2 -E [S n 1 ,n 2 |F n 1 ,n 2 ] 2 2 + 1 n 1 n 2 R n 1 ,n 2 (S n 1 ,n 2 ) 2 2 + 1 n 1 n 2 E [S n 1 ,n 2 |F n 1 ,n 2 ] -R n 1 ,n 2 (S n 1 ,n 2 ) 2 2 := A 2 + B 2 + C 2 , (6.12) 
where

R n 1 ,n 2 (S n 1 ,n 2 ) = E [S n 1 ,n 2 |F n 1 ,0 ] + E [S n 1 ,n 2 |F 0,n 2 ] -E [S n 1 ,n 2 |F 0,0 ]. According to the proof of Theorem 2.2, since C 1 ( √ n 1 n 2 )(c) holds, C 2 converges to m 2 2 . Since by assumption, (n 1 n 2 ) -1 S n 1 ,n 2 2 2 converges to m 2 2
, we get overall that A and B converge to zero. Note that

A → 0 is exactly C 1 ( √ n 1 n 2 )(b). It remains to prove that C 1 ( √ n 1 n 2 )(a) is satised. With this aim, note that since M n 1 ,n 2 := n 1 i=1 n 2
j=1 m • T i,j is an ortho-martingale with respect to ltration (F i,j ) i,j∈Z , we have

E (S n 1 ,n 2 |F n 1 ,0 ) = E [E (S n 1 ,n 2 |F n 1 ,n 2 ) -R n 1 ,n 2 (S n 1 ,n 2 ) + R n 1 ,n 2 (S n 1 ,n 2 ) -M n 1 ,n 2 |F n 1 ,0 ] . Therefore E (S n 1 ,n 2 |F n 1 ,0 ) 2 √ n 1 n 2 ≤ B + 1 √ n 1 n 2 E (S n 1 ,n 2 |F n 1 ,n 2 ) -R n 1 ,n 2 (S n 1 ,n 2 ) -M n 1 ,n 2 2 ,
which converges to zero by C 1 ( √ n 1 n 2 )(c) and the fact that B → 0. Similarly, we get that

(n 1 n 2 ) -1/2 E (S n 1 ,n 2 |F 0,n 2 ) 2 → 0 and (n 1 n 2 ) -1/2 E (S n 1 ,n 2 |F 0,0 ) 2 → 0. Hence C 1 ( √ n 1 n 2 )(a)
holds.

It remains to prove that (2.9) ⇒ (2.8). Clearly if (2.9) holds so does the rst part of (2.8). Next we shall prove that

1 n 1 n 2 E S 2 n 1 ,n 2 → (k 1 ,k 2 )∈Z 2 E [X 0,0 X k 1 ,k 2 ] a.s. and E m 2 = (k 1 ,k 2 )∈Z 2 E [X 0,0 X k 1 ,k 2 ] , (6.13) 
which implies the second part of (2.8). Since X 0,0 is regular, the following decomposition holds

E [X 0,0 X k 1 ,k 2 ] = (i 1 ,i 2 )∈Z 2 (j 1 ,j 2 )∈Z 2 E [P i 1 ,i 2 (X 0,0 )P j 1 ,j 2 (X k 1 ,k 2 )] .
By orthogonality (which comes from the fact that the ltration (F i,j ) is commuting) and stationarity, we derive

E [X 0,0 X k 1 ,k 2 ] = (i 1 ,i 2 )∈Z 2 E [P 0,0 (X i 1 ,i 2 )P 0,0 (X k 1 +i 1 ,k 2 +i 2 )] . (6.14) 
Hence

|E [X 0,0 X k 1 ,k 2 ]| ≤ (i 1 ,i 2 )∈Z 2 P 0,0 (X i 1 ,i 2 ) 2 P 0,0 (X k 1 +i 1 ,k 2 +i 2 ) 2 , so that (k 1 ,k 2 )∈Z 2 |E [X 0,0 X k 1 ,k 2 ]| ≤   (i 1 ,i 2 )∈Z 2 P 0,0 (X i 1 ,i 2 ) 2   2 ,
which is nite under condition (2.9). Therefore, the series

(k 1 ,k 2 )∈Z 2 |E [X 0,0 X k 1 ,k 2 ]| converges.
In addition, note that with (6.14), we have

(k 1 ,k 2 )∈Z 2 E [X 0,0 X k 1 ,k 2 ] = (i 1 ,i 2 )∈Z 2 (j 1 ,j 2 )∈Z 2 E [P 0,0 (X i 1 ,i 2 )P 0,0 (X j 1 ,j 2 )] .
In addition,

E m 2 = (i 1 ,i 2 )∈Z 2 (j 1 ,j 2 )∈Z 2 E [P 0,0 (X i 1 ,i 2 )P 0,0 (X j 1 ,j 2 )] .
So,

E m 2 = (k 1 ,k 2 )∈Z 2 E [X 0,0 X k 1 ,k 2 ] .
On another hand,

1 n 1 n 2 E S 2 n 1 ,n 2 = n 1 -1 i 1 =-n 1 +1 n 2 -1 i 2 =-n 2 +1 1 - |i 1 | n 1 1 - |i 2 | n 2 E (X 0,0 X i 1 ,i 2 ) , which then converges to (k 1 ,k 2 )∈Z 2 E [X 0,0 X k 1 ,k 2 ] = E (m 2
). This ends the proof of (2.8).

6.5

Proof of Proposition 3.1

By simplicity in the next proof, we denote max 1≤k≤n 1 1≤l≤n 2 by max k,l , and max 1≤k≤n 1 by max k respectively for l. All along the proof, C will be a universal positive constant (depending on the dimension) which may vary from line to line. Our main aim is to prove that lim λ→∞ lim sup

n 1 ∧n 2 →∞ 1 s 2 n 1 ,n 2 E max k,l S 2 k,l 1 max k,l| S k,l| >λsn 1 ,n 2 = 0.
Note that the following decomposition holds: for every

1 ≤ k ≤ n 1 , 1 ≤ l ≤ n 2 , S k,l = S k,l -E [S k,l |F n 1 ,n 2 ] + R n 1 ,n 2 (S k,l ) + E [S k,l |F n 1 ,n 2 ] -R n 1 ,n 2 (S k,l ), (6.15) 
where

R n 1 ,n 2 (S k,l ) = E [S k,l |F n 1 ,0 ] + E [S k,l |F 0,n 2 ] -E [S k,l |F 0,0 ].
Starting from (6.15) and using the fact that for any A ≥ 0,

x 2 1 |x|>A ≤ 4 |x| - A 2 2 +
, where (x) + = x1 x≥0 , we get by convexity that, for any λ ≥ 0,

E max k,l S 2 k,l 1 max k,l| S k,l| >2λsn 1 ,n 2 ≤ 4E max k,l |S k,l | -λs n 1 ,n 2 2 + ≤ 12E max k,l |S k,l -E [S k,l |F n 1 ,n 2 ]| 2 + 12E max k,l |R n 1 ,n 2 (S k,l )| 2 + 12E max k,l |E [S k,l |F n 1 ,n 2 ] -R n 1 ,n 2 (S k,l )| -λs n 1 ,n 2 2 + .
Therefore by the condition C 2 (s n 1 ,n 2 )(a) and (b), it is sucient to show that,

lim λ→∞ lim n 1 ∧n 2 →∞ 1 s 2 n 1 ,n 2 E max k,l |E [S k,l |F n 1 ,n 2 ] -R n 1 ,n 2 (S k,l )| -λs n 1 ,n 2 2 + = 0. (6.16)
For the sake of simplicity, we set S k,l Note that using the projective operators, we have

:= E [S k,l |F n 1 ,n 2 ]-R n 1 ,n 2 (S k,l ), S + n 1 ,n 2 := max(0, S
S k,l = k u=1 l v=1 u-1 i=u-n 1 v-1 j=v-n 2 P u-i,v-j (X u,v ) = k-1 i=1-n 1 l-1 j=1-n 2 k∧(n 1 +i) u=1∨(i+1) l∧(n 2 +j) v=1∨(j+1) P u-i,v-j (X u,v ).
For any xed positive integer i and j, we introduce the double indexed sequence (Y i,j,k,l ) k,l≥1 dened by

Y i,j,k,l = k∧(n 1 +i) u=1∨(i+1) l∧(n 2 +j) v=1∨(j+1) P u-i,v-j (X u,v ).
Notice that, (Y i,j,k,l ) k,l≥1 is an ortho-martingale w.r.t the ltration (F i,j ) i,j∈Z .

With these notations,

S k,l = k-1 i=1-n 1 l-1 j=1-n 2 Y i,j,k,l . Setting b i,j = u i,j ( n 1 k=-n 1 n 2 =-n 2 u k, ) -1 , with (u i,j ) i,j∈Z a positive sequence such that √ n 1 n 2 s n 1 ,n 2 n 1 -1 i=1-n 1 n 2 -1 j=1-n 2 u i,j < ∞, we get S k,l -λs n 1 ,n 2 + ≤ k-1 i=1-n 1 l-1 j=1-n 2 (Y i,j,k,l -λb i,j s n 1 ,n 2 ) + . (6.19) 
By Hölder's inequality and taking the maximum over (k, l) on both sides, we derive that

S + n 1 ,n 2 -λs n 1 ,n 2 2 + ≤ n 1 -1 i=1-n 1 n 2 -1 j=1-n 2 u i,j n 1 -1 i=1-n 1 n 2 -1 j=1-n 2 1 u i,j Y + i,j,n 1 ,n 2 -λb i,j s n 1 ,n 2 2 + ,
where Y + i,j,n 1 ,n 2 = max k,l (max(0, Y i,j,k,l )). Hence to prove (6.17), it is sucient to show that,

lim λ→∞ lim sup n 1 ∧n 2 →∞ 1 √ n 1 n 2 s n 1 ,n 2 n 1 -1 i=1-n 1 n 2 -1 j=1-n 2 1 u i,j E Y + i,j,n 1 ,n 2 -λb i,j s n 1 ,n 2 2 + = 0. (6.20)
To prove this, we will need the two following lemmas, whose proofs are postponed to Section 7. 

E max k,l |M k,l | p 1 max k,l| M k,l| >λ ≤ 2 2p p p -1 2 E |M n 1 ,n 2 | p 1 |Mn 1 ,n 2 |> λ 4 . Lemma 6.3. Let M n 1 ,n 2 ≡ n 1 i=1 n 2
j=1 d i,j be an ortho-martingale in L 2 . Then for all λ > 0

E (M n 1 ,n 2 -λ) 2 + ≤ n 1 i=1 E   n 2 j=1 d i,j 2 
1 max k |Mk,n 2 |>λ   , (6.21) 
and

E |M n 1 ,n 2 | 2 1 |Mn 1 ,n 2 |>λ ≤ 8 n 1 i=1 E   n 2 j=1 d i,j 2 
1 max k |Mk,n 2 |> λ 2   . (6.22)
In addition, for any xed i (the same goes for j), we have

E   n 2 j=1 d i,j -λ 2 +   ≤ n 2 j=1 E d 2 i,j 1 max l≤n 2 | l j=1 d i,j |>λ . (6.23) 
To reduce the complexity of the notation, we write n 1 -1 i=1-n 1 n 2 -1 j=1-n 2 for i,j , and

k∧(n 1 +i) u=1∨(i+1)
by k u , the same goes for l v . Now we denote

U (n 1 , n 2 , λ) := 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j E Y + i,j,n 1 ,n 2 -λb i,j s n 1 ,n 2 2 + .
Since (|x| -λ) 2 + ≤ x 2 1 |x|>λ , we have

U (n 1 , n 2 , λ) ≤ 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j E Y + i,j,n 1 ,n 2 2 1 Y + i,j,n 1 ,n 2 >λb i,j sn 1 ,n 2 
.

Next applying Lemma 6.2, we get

U (n 1 , n 2 , λ) ≤ C √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j E Y 2 i,j,n 1 ,n 2 1 |Yi,j,n 1 ,n 2 |> λ 4 b i,j sn 1 ,n 2 
.

Then using (6.22) of Lemma 6.3, we derive

U (n 1 , n 2 , λ) ≤ C √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u E   n 2 v P u-i,v-j (X u,v ) 2 1 maxu|Y i,j,u,n 2 |> λ 8 b i,j sn 1 ,n 2   .
Let A > 0 and set A i,j,n 2 = Au 2 i,j n 2 , we have that U (n 1 , n 2 , λ) is less than or equal to

C √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u E   n 2 v P u-i,v-j (X u,v ) 2 1 ( n 2 v P u-i,v-j (Xu,v)) 2 >A i,j,n 2   + C √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 A i,j,n 2 P max u |Y i,j,u,n 2 | > λ 8 b i,j s n 1 ,n 2 := C(I + II).
Using (6.23) of Lemma 6.3, we get

I ≤ C 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u n 2 v E P 2 u-i,v-j (X u,v )1 max l| l v P u-i,v-j (Xu,v)|> √ A i,j,n 2 2 
.

It follows that for any B > 0

I ≤ C 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u n 2 v E P 2 u-i,v-j (X u,v )1 P 2 u-i,v-j (Xu,v)>Bu 2 i,j + C 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u n 2 v Bu 2 i,j P max l l v P u-i,v-j (X u,v ) > A i,j,n 2 2 . 
By stationarity, it follows that,

I ≤ C 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j E P 2 0,0 (X i,j )1 P 2 0,0 (X i,j )>Bu 2 i,j + C 1 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u n 2 v Bu 2 i,j P max l l v P u-i,v-j (X u,v ) > A i,j,n 2 2 . := C 1 (I 1 + I 2 ).
The quantity I 1 converges to zero by C 2 (s n 1 ,n 2 )(c), if we rst let n 1 ,n 2 tend to innity and then B to innity. To handle I 2 , we use Doob's inequality that leads to

I 2 ≤ 4 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u n 2 v Bu 2 i,j n 2 ∧(n 2 +j) v=1∨(j+1) E [P u-i,v-j (X u,v )] 2 A i,j,n 2 .
Using stationarity again, and recalling that A i,j,n 2 = Au 2 i,j n 2 , we derive

I 2 ≤ 4 √ n 1 n 2 s n 1 ,n 2 i,j 1 u i,j n 1 u n 2 v Bu 2 i,j n 2 E P 2 0,0 (X i,j ) Au 2 i,j n 2 ≤ 4 B A √ n 1 n 2 s n 1 ,n 2 i,j E P 2 0,0 (X i,j ) u i,j . Now by C 2 (s n 1 ,n 2 )(c), we have sup n 1 ≥1 n 2 ≥1 √ n 1 n 2 s n 1 ,n 2 n 1 -1 i=1-n 1 n 2 -1 j=1-n 2 E P 2 0,0 (X i,j ) u i,j < ∞. (6.24)
Hence I 2 converges to zero if we rst let A goes to innity and then B to innity. So overall I converges to zero by letting rst n 1 ∧ n 2 tend to innity and then A. Now to deal with II, we proceed as for I 2 . Indeed, Doob's maximal inequality leads to

II = A √ n 1 n 2 s n 1 ,n 2 i,j u i,j P max u |Y i,j,u,n 2 | > λ 8 b i,j s n 1 ,n 2 , ≤ C 2 A √ n 1 n 2 s n 1 ,n 2 i,j u i,j E Y 2 i,j,n 1 ,n 2 λ 2 b 2 i,j s 2 n 1 ,n 2 .
Hence, by stationarity,

II ≤ C 2 A λ 2 √ n 1 n 2 s n 1 ,n 2 i,j E P 2 0,0 (X i,j ) u i,j √ n 1 n 2 s n 1 ,n 2 i,j u i,j 2 
, which converges to zero by letting rst n 1 ∧ n 2 tend to innity and then λ. This ends the proof of (6.17). The proof of (6.18) can be done similarly. Notice rst that the condition C 2 (s n 1 ,n 2 )(a) holds as soon as,

sup 1≤k≤n 1 1≤l≤n 2 |E [S k,l |F n 1 ,0 ] -E [S k,l |F 0,0 ]| 2 = o(s n 1 ,n 2 ), (6.25) sup 1≤k≤n 1 1≤l≤n 2 |E [S k,l |F 0,n 2 ] -E [S k,l |F 0,0 ]| 2 = o(s n 1 ,n 2 ), (6.26) 
and sup

1≤k≤n 1 1≤l≤n 2 |E [S k,l |F 0,0 ]| 2 = o(s n 1 ,n 2 ). (6.27) Note that sup 1≤k≤n 1 1≤l≤n 2 |E [S k,l |F 0,0 ]| 2 ≤ n 1 k=1 n 2 =1 E (X k, |F 0,0 ) 2 ,
and since

X k, = +∞ i=-∞ +∞ j=-∞ P 0,0 (X k, ), E (X k, |F 0,0 ) = 0 i=-∞ 0 j=-∞ P i,j (X k, ).
Therefore, the condition (6.27) is implied by C 3 (s n 1 ,n 2 )(a). Now, we focus on (6.25). Notice rst that

E [S k,l |F n 1 ,0 ] -E [S k,l |F 0,0 ] = k u=1 v=1 n 1 i=1 0 j=-∞ P i,j (X u,v ).
Thus (6.25) is equivalent to

sup 1≤k≤n 1 1≤l≤n 2 k u=1 v=1 n 1 i=1 0 j=-∞ P i,j (X u,v ) 2 = o(s n 1 ,n 2 ). (6.28) But sup 1≤k≤n 1 1≤l≤n 2 k u=1 v=1 n 1 i=1 0 j=-∞ P i,j (X u,v ) 2 ≤ n 2 v=1 sup 1≤k≤n 1 k u=1 n 1 i=1 0 j=-∞ P i,j (X u,v ) 2 ≤ n 2 v=1 sup 1≤k≤n 1 k u=1 u-1 i=u-n 1 0 j=-∞ P u-i,j (X u,v ) 2 ≤ n 2 v=1 sup 1≤k≤n 1 k-1 i=1-n 1 k∧(i+n 1 ) u=(i+1)∨1 0 j=-∞ P u-i,j (X u,v ) 2 .
We denote 0 j=-∞ P u-i,j (X u,v ) by D i,u (v), and notice that D i,u (v) is orthogonal with respect to u. Next denote k∧(i+n 1 ) u=(i+1)∨1 D i,u (v) by Y i,k (v). Let (U i (v)) i≥1-n 1 be a sequence of positive real numbers that we will dene later. By Cauchy-Schwarz's inequality,

k-1 i=1-n 1 Y i,k (v) 2 = k-1 i=1-n 1 U i (v) 1 U i (v) Y i,k (v) 2 ≤ k-1 i=1-n 1 U i (v) k-1 i=1-n 1 1 U i (v) (Y i,k (v)) 2 .
Therefore,

sup 1≤k≤n 1 k-1 i=1-n 1 Y i,k (v) 2 2 ≤ n 1 -1 i=1-n 1 U i (v) n 1 -1 i=1-n 1 1 U i (v) sup 1≤k≤n 1 |Y i,k (v)| 2 2 
.

Note now that (Y i,k (v)) k≥1 is a martingale. Using Doob's inequality and stationarity, it follows that sup So overall taking U i (v) = +∞ j=v P 0,0 (X i,j ) 2 2 , we have

sup 1≤k≤n 1 k-1 i=1-n 1 Y i,k (v) 2 2 ≤ 4n 1   n 1 -1 i=1-n 1 +∞ j=v P 0,0 (X i,j ) 2 2   2 .
Therefore

n 2 v=1 sup 1≤k≤n 1 k-1 i=1-n 1 Y i,k (v) 2 ≤ 2 √ n 1 n 1 -1 i=1-n 1 n 2 v=1 +∞ j=v P 0,0 (X i,j ) 2 2 .
Thus (6.25) holds as soon as C 3 (s n 1 ,n 2 )(b) holds. Since the ltration is commuting, arguments applied to (6.25) can still be applied to show that (6.26) holds. Thus ( We now prove that in adapted case C 3 (s n 1 ,n 2 ) holds as soon as C 3 (s n 1 ,n 2 ) does. In adapted case C 3 (s n 1 ,n 2 )(a) reads as where P ĩ,j (X) = E (X|F i,j ) -E (X|F i-1,j ). We then apply [START_REF] Dedecker | Invariance principles for linear processes with application to isotonic regression[END_REF]Lemma 6.1] to the partial sum with b i = 1 and u i = P -ĩ,-v (X 0,0 ) 2 . Hence we get that

n 1 i=1 n 2 v=1 P -ĩ,-v (X 0,0 ) 2 ≤ C n 1 i=1 1 √ i n 2 v=1 n 1 k=i P -k,-v (X 0,0 ) 2 2 1/2
, Therefore, we deduce that

n 1 i=1 n 2 v=1 P -ĩ,-v (X 0,0 ) 2 ≤ C n 1 i=1 n 2 v=1 1 √ i E (X i,v |F 0,0 ) 2 .
Hence 

4 .

 4 As quoted in the introduction, the double indexed sequence (a k, ) (k, )∈Z 2 dened by a k,

Remark 2 .

 2 4 writes in dimension d > 2 as follows: Proposition 5.2. If C d 1 (s n )(a) and (b) hold, then

2 v=1E 1 n 1 i=1 n 2 v=1P

 2112 (X u,v |F 0,0 ) 2 = o(s n 1 ,n 2 ), which is implied by C 3 (s n 1 ,n 2 )(a). Next, note that C 3 (s n 1 ,n 2 )(b) can be rewritten as √ n -ĩ,-v (X 0,0 ) 2 = o(s n 1 ,n 2 ),

  and (2.2) is satised.

	6.3	Proof of Proposition 2.6

  1,1 , . . . , S n 1 ,n 2 ), and S - n 1 ,n 2 := max(0, -S 1,1 , . . . , -S n 1 ,n 2 ).

	and	lim λ→∞	lim sup n 1 ∧n 2 →∞	1 n 1 ,n 2 s 2	E S -n 1 ,n 2 -λs n 1 ,n 2	2 +	= 0.	(6.18)
	Therefore if we assume that C 2 (s n 1 ,n 2 )(a) and C 2 (s n 1 ,n 2 )(b) hold, then max k,l	S 2 k,l s 2 n 1 ,n 2 (n 1 ,n 2 )∈(N * ) 2
	will be uniformly integrable as soon as				
		lim λ→∞	lim sup n 1 ∧n 2 →∞	1 n 1 ,n 2 s 2	E S + n 1 ,n 2 -λs n 1 ,n 2	2 +	= 0	(6.17)

  Denition 6.1. We say that a random eld(M n 1 ,n 2 ) (n1,n 2 )∈N 2 is an ortho-submartingale w.r.t the commuting ltration (F n 1 ,n 2 ) (n 1 ,n 2 )∈Z 2 if M n 1 ,n 2 is integrable, F n 1 ,n 2 -measurable,and for all integers i, j, k, , we have E (M i,j |F k, ) ≥ M min(i,k),min(j, ) .

	Lemma 6.2. Let M n 1 ,n 2 ≡ n 1 i=1 and λ > 0	n 2 j=1 d i,j be an ortho-submartingale. Then for all p ∈]1, +∞[,

  6.26) holds as soon as C 3 (s n 1 ,n 2 )(c) does. Now to give sucient condition for C 2 (s n 1 ,n 2 )(b) to hold, note rst that,S k, -E (S k, |F n 1 ,n 2 ) = Hence C 2 (s n 1 ,n 2 )(b)holds as soon as, s n 1 ,n 2 ). (6.31) Clearly (6.31) holds as soon as C 3 (s n 1 ,n 2 )(a) holds. For (6.29), notice now s n 1 ,n 2 ). (6.33) Clearly (6.33) holds as soon as C 3 (s n 1 ,n 2 )(a) is satised. With similar argument as before, we infer that (6.32) holds as soon as C 3 (s n 1 ,n 2 )(b) does. The proof of (6.30) and (6.31) can be done arguing as before.

					k		+∞	+∞
				sup					P i,j (X u,v )
				1≤k≤n 1 1≤l≤n 2	u=1 v=1	i=n 1 +1	j=n 2 +1
		n 1	+∞			n 1		+∞	0	+∞
				P i,j (X u,v ) =				P i,j (X u,v ) +	P i,j (X u,v ).
	i=-∞	j=n 2 +1			i=1	j=n 2 +1	i=-∞	j=n 2 +1
	Therefore, (6.29) holds as soon as			
					k		n 1		+∞
				sup 1≤k≤n 1 1≤l≤n 2	u=1 v=1	i=1	j=n 2 +1	P i,j (X u,v )	2	= o(s n 1 ,n 2 ),	(6.32)
	and				k		0		+∞
				sup					P i,j (X u,v )
				1≤k≤n 1 1≤l≤n 2	u=1 v=1	i=-∞	j=n 2 +1
	k	n 1	+∞				+∞	n 2	+∞	+∞
				P i,j (X u,v ) +		P i,j (X u,v ) +
	u=1 v=1	i=-∞	j=n 2 +1			i=n 1 +1	j=-∞	i=n 1 +1	j=n 2 +1
					k		n 1		+∞
				sup 1≤k≤n 1 1≤l≤n 2	u=1 v=1	i=-∞	j=n 2 +1	P i,j (X u,v )	2	= o(s n 1 ,n 2 ),	(6.29)
					k		+∞	n 2
				sup					(6.30)
				1≤k≤n 1 1≤l≤n 2	u=1 v=1	i=n 1 +1	j=-∞

P i,j (X u,v ) . P i,j (X u,v ) 2 = o(s n 1 ,n 2 ), 2 = o(2 = o(

.

  , C 3 (s n 1 ,n 2 )(b) is implied by C 3 (s n 1 ,n 2 )(a). Similar arguments are applied to C 3 (s n 1 ,n 2 )(c) (implied by C 3 (s n 1 ,n 2 )(b)).2.10] to the submartingale (max1≤k≤n 1 M k,n 2 ) n 2 ∈N we have |M k,l | p 1 max 1≤l≤n 2 max 1≤k≤n 1 |M k,l |>λ |M k,n 2 | p 1 max 1≤k≤n 1 |Mk,n 2 |> λ 2The desired result follows by applying [10, Corollary 2.10] again to (M k,n 2 ) k∈N .The inequality (6.21) comes from inequality (3.6) in[START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF] withX i = n 2j=1 d i,j by taking the expectation and by noticing that (X i ) i≥1 is a sequence of martingale dierences. Next (6.22) comes from (6.21) by taking account that x 2 1 |x|>λ ≤ 4 |x| -λ 2

	E max 1≤l≤n 2	max 1≤k≤n 1
			≤ 2 p p p -1	E max 1≤k≤n 1
	7.2	Proof of Lemma 6.3
			2
			. Finally (6.23) is again an
			+
	application of [5, inequality (3.6)].

√ n 1 n 2 → i,j∈Z a i,j > 0.
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6.7

Proof of Theorem 3.5 Since C 2 (s n 1 ,n 2 ) holds, the sequence s -2 n 1 ,n 2 max 1≤k≤n 1

is uniformly integrable, and the process s -1

It remains to prove that the nite-dimensional distributions converge, that is, for any t (1) 

This follows from the invariance principle for elds of stationary ortho-martingale dierences (see [2, Theorem 1]), provided that for any We shall apply Theorem 3.5, and then we only need to show that conditions C 1 (s n 1 ,n 2 )(c) and C 2 (s n 1 ,n 2 ) hold. We rst prove C 2 (s n 1 ,n 2 )(a), and C 2 (s n 1 ,n 2 )(b). Using Remark 3.3, they hold as soon as C 3 (s n 1 ,n 2 ) is satised. Note that P 0,0 (X i,j ) = a i,j ξ 0,0 . Therefore C 3 (s n 1 ,n 2 ) is implied by (4.2), (4.3), and (4.4).

We prove now that C 2 (s n 1 ,n 2 )(c) holds with u i,j = |a i,j |. SinceP 0,0 (X i,j ) = a i,j ξ 0,0 and