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Abstract
This paper proposes a data-driven modeling approach for complex Anaerobic Digestion (AD)
systems. This method is called Dynamic Mode Decomposition with Control (DMDc), which is an
emerging equation-free technique for deducing global linear state-space input-output models with
actuation for complex systems. DMDc is applied to a set of data generated from simulating the
Ordinary Differential Equations (ODEs) of the Anaerobic Model 2 (AM2) using MATLAB. The
simulation results demonstrate the prediction accuracy of the linear state-space model generated
from the DMDc algorithm.
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I INTRODUCTION

Mathematical modeling and simulation are flexible and economical means to analyze and pre-
dict the dynamics of bioprocesses [1]. Anaerobic Digestion (AD) is a biological process through
which several microorganisms degrade organic components without the presence of oxygen.
Depending on the number of biochemical processes taken into account, there are more or less
complex models in the literature of AD processes[2]. The Anaerobic Digestion Model number
1 (ADM1) [3], developed by researchers from the International Water Association (IWA), is the
most complete phenomenological model for simulating AD. At its base, it consists of more than
32 state variables and more than 80 parameters. However, this model is not devoted to process
control. On the other hand, the Anaerobic Model 2 (AM2) [4] is a low-order model which de-
scribes the AD in only two main steps (Acidogenesis-Methanogenesis). Nevertheless, the high
nonlinearity and complexity of the description of the dynamics are still present. The aim of this
work is to derive a data-driven linear model for the AD process based on the states (substrate
and biomass) and control (dilution rate) measurements. The proposed approach is the Dynamic
Mode Decomposition with Control (DMDc) algorithm [5]. DMD was first introduced in [6] as
a data-driven algorithm for the modeling and order-reduction of the high complex fluid flow.
Since then, the DMD is used in a broad range of applications [7] including the dimensionality
reduction of ADM1 model [8]. The DMDc technique [5] used in this study is an extension of
the DMD algorithm incorporating the impact of actuation to generate global linear state-space
input-output models from nonlinear complex systems [9]. In this paper, first, the AM2 model is
described, then, the DMDc algorithm is introduced. Simulation results are given by the applica-
tion of the DMDc algorithm to model the AD process based on the data generated from a virtual
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AD system modeled by the AM2 using MATLAB. Finally, some conclusions and perspectives
are drawn.

II ANAEROBIC DIGESTION SYSTEM

The Anaerobic Model 2 (AM2 ) is a reduced model which represents AD in two stages (Acidogenesis-
Methanogenesis). It was developed within the framework of the European Research Project
called AMOCO [4] and it is derived from the law of mass balance [1]. This paper first presents
the principle of modeling bioprocesses with regards to the law of mass balance of the AM2
model. Then, the mathematical model of AM2 is introduced as set of ODEs. AM2 describes
the dynamics of four main state variables: two consortia of bacteria X1 and X2 and two types
of substrates S1 and S2. In the first stage, the consortium of acidogenic bacteria X1 degrades
the organic substance (S1) into Volatile Fatty Acids (VFA) (S2) and carbon dioxide (CO2) , at
the reaction rate µ(S1)X1. In the second stage, the consortium of methanogenic bacteria X2

transforms S2 into methane (CH4) and CO2, at the reaction rate µ(S2)X2.

These two steps are represented by the following reaction schemes:

• Acidogenesis: k1S1
µ(S1)X1−−−−−→ X1 + k2S2 + k4CO2

• Methanogenesis: k3S2
µ(S2)X2−−−−−→ X2 + k6CH4 + k5CO2

Where X1: is the population concentration of acidogenic bacteria (g/L). X2: is the population
concentration of methanogenic bacteria (g/L). S1: is the substrate concentration of carbonic
substance (g/L). S2: is the substrate concentration of VFA (mmol/L). µ(S1): is the specific
growth rate of X1 on S1. µ(S1)X1: is the Acidogenesis reaction rate. µ(S2): is the specific
growth rate of X2 on S2. µ(S2)X2: is the Methanogenesis reaction rate. ki are the stoichiometric
coefficients associated with the two reactions. In Figure 1, a simplified diagram of an anaerobic
Continuous Stirred Tank Reactor (CSTR) modeled by AM2 is shown, where we consider a
continuous mode of functioning (inflow rate = outflow rate) of our bioreactor. We proceed to

Figure 1: Schematic diagram of an CSTR modeled by AM2 model.

deduce the AM2 model, using the mass balance law. The ODEs of the AM2 model as originally
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proposed in [4] are:
Ṡ1 = D(S1in − S1)− k1µ1(S1)X1

Ẋ1 = (µ1(S1)−D)X1

Ṡ2 = D(S2in − S2) + k2µ1(S1)X1 − k3µ2(S2)X2

Ẋ2 = (µ2(S2)−D)X2

(1)

Where D = F
V

is the dilution rate considered as the control input (F is the flow rate and V is the
volume of the vessel), S1in and S2in are respectively the input concentrations of the substrates
S1 and S2. The kinetics µ1 and µ2 are Monod[10] and Haldane[11] functions, respectively,
given by:

µ1(S1) = µ1max
S1

S1 +K1

, µ2(S2) = µ2max
S2

S2
2

Ki
+ S2 +K2

(2)

where µ1max and µ2max are the maximum growth rates (µ2max without inhibition). K1 and
K2 are the half-saturation constant related to the substrates S1 and S2, respectively. Ki is the
inhibition constant associated with the substrate S2. The main contribution of this work is to
develop a data-driven strategy for the modeling of the CSTR bioreactor modeled with AM2 by
using only the data measurements of its states and the control input.

III METHODS

3.1 Dynamic mode decomposition (DMD)

In this section the DMD procedure is presented briefly. The standard DMD algorithm [6] can
be described by assuming the existence of a linear relationship between the recorded snapshots
of data, therefore, a companion matrix is adopted to project a linear operator onto a Proper
Orthogonal Decomposition (POD) basis obtained by applying a Singular Value Decomposition
(SVD) on the snapshot of data matrix. A collection of snapshots of data with K samples from
either simulation or experiments is organised in a table given by {x1, x2, x3, ..., xK}, where xi

is the ith snapshot (vector of all possible measurements that could be taken for the system)
and ∆t is the time step between two samples. The DMD procedure can generate the following
linear dynamical system

xi+1 = Axi, (3)

where A is a constant coefficient matrix that represents the linear dependency of the system.
Therefore, the matrix A contains on its eigenvalues the dynamical characteristics of the nonlin-
ear system. If the system is high-dimensional, the matrix A can be reduced in order to deduce
the leading eigenvalues of the linear operator A. The DMD procedure has, as an input, the
following matrices:

X1 =

 | | | |
x1 x2 x3 ... xK−1

| | | |

 (4)

X2 =

 | | | |
x2 x3 x4 ... xK

| | | |

 (5)
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The system in (3) can be rewritten as follows:

X2 ≈ AX1, (6)

where A is the best fit linear operator that advances X1 to X2 one ∆t in the future. The main
aim of DMD method is to provide the DMD modes along with the leading eigenvalues of
the underlying system included in the matrix A. A reduced matrix Ã is obtained if the DMD
algorithm is attained by a similarity transformation of the system matrix. In addition, the matrix
Ã is built to substitute the tall and skinny matrix A of the high-dimensional system. First, a SVD
is performed on the snapshot of data matrix X1

X1 = UΣV ∗, (7)

A = U∗ÃU, (8)

where Σ is a diagonal singular values matrix and U, V are the POD modes and the right sin-
gular vectors respectively. The matrix A can be calculated as the solution of the following
minimization problem :

∥X2 − AX1∥F (9)

Where ∥.∥F is the Frobenius norm given the difference between X2 and AX1.

We can also deduce from (7), (8) and (9) the following

∥X2 − UÃΣV ∗∥F (10)

where A can be replaced by

Ã = U∗X2V Σ−1, (11)

where Ã contains the leading eigenvalues of A. The DMD modes Φ then can be calculated with
the following equation:

Φ = X2V Σ−1W, (12)

where W is the matrix of eigenvectors of the reduced matrix Ã. We should stress that in our
case we are only using the full matrix A since our system is already low-dimensional and has
just four states to measure.

3.2 Dynamic mode decomposition with control (DMDc)

DMDc is a data-driven method used for the identification and modeling of high-dimensional
complex dynamical systems. It was first introduced in [5] were authors incorporate the influ-
ence of the control to generate models of complex dynamical systems from data. DMDc is an
extension of the DMD method where the effect of the external forcing is included in the clas-
sical DMD algorithm. DMDc algorithm only requires the snapshot data of the state along with
the actuation measurements.

A controlled linear dynamical system can be described as follows:

xi+1 = Axi +Bui, (13)
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where x is the state of the system, u is the control input and A,B are the system and control
matrices, respectively. The data snapshot matrices of the measurements of the system (13) are
given as in (4) and (5) while a data snapshot matrix of the control input is given as follows:

Y0 =

 | | | |
u1 u2 u3 ... uK−1

| | | |

 (14)

The system (13) can then be rewritten as

X2 ≈ AX1 +BY0, (15)

where the matrices A,B should be identified together by the DMDc algorithm. We can refor-
mulate the relationship between the data matrices X1, X2 and Y0 as follows:

X2 ≈
[
A B

] [X1

Y0

]
= GΩ (16)

where G =
[
A B

]
is the augmented operator matrix, and Ω =

[
X1

Y0

]
is the augmented data

matrix. By following the same standard DMD procedure, the matrix G can be calculated as

G = X2Ω
† (17)

[
A B

]
= X2

[
X1

Y0

]†
(18)

where † denotes the Moore-Penrose pseudo-inverse. We should stress that the matrix Ω contains
all the information about the state and control measurements given in the snapshot of data. The
best fit of the matrix G containing the process dynamics A and the control input B is given by
minimizing the following Frobenius norm :

∥X2 −GΩ∥F (19)

For computing G, the SVD is performed on both Ω and X2 matrices. The DMDc algorithm is
shown bellow:
1. The data matrices X2, X1 and Y0 are collected and constructed. Then, we construct the

augmented data matrix Ω by stacking the matrices X1, Y0 together.
2. Perform the SVD on the augmented data matrix Ω, resulting the decomposition Ω ≈ ŨΣ̃Ṽ ∗,

where Ũ can be written as Ũ =

[
Ũ1

Ũ2

]
(separating the space of the state with the space of

the input).
3. Compute another SVD on the output space X2, thereby resulting the decomposition X2 ≈

ÛΣ̂V̂ ∗.
4. Compute the approximate of the augmented operator matrix G = [A B] = [ÛÃÛ∗ ÛB̃].

It can be also rewritten as follows:

Ã = Û∗X2Ṽ Σ̃−1Ũ∗
1 Û (20)

B̃ = Û∗X2Ṽ Σ̃−1Ũ∗
2 (21)

5. Apply the eigen-decomposition of the matrix Ã, given by ÃW = Wλ.
6. Deduce the DMD modes of the operator A, given by Φ = X2Ṽ Σ̃−1Ũ∗

1 ÛW .
After the identification of the matrices A and B, the real system can be reconstructed and
predicted by the linear dynamical model in (13). In this work, we apply the native DMDc
algorithm to our system that has only four states and one possible control input to measure.
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IV SIMULATION RESULTS AND DISCUSSION

In this section, the DMDc method proposed in this study is applied for modeling the AD process
simulated by the CSTR reactor modeled with AM2. First, we consider the AM2 model in (1) as
a virtual system generating the snapshots of data as in (4),(5) and (14). Then, the data matrices
are used as an input for the DMDc algorithm presented in Section III. We run the simulation for
a period of 120 days with a sample step of one day and applying a variable control input u = D
(D is the dilution rate considered as the only control input of the CSTR reactor). The snapshots
of data matrices used for the data-driven modeling of the AD system are given below:

X1 =


S1
1 S2

1 , ..., S120−1
1

X1
1 X2

1 , ..., X120−1
1

S1
2 S2

2 , ..., S120−1
2

X1
2 X2

2 , ..., X120−1
2

 , X2 =


S2
1 S3

1 , ..., S120
1

X2
1 X3

1 , ..., X120
1

S2
2 S3

2 , ..., S120
2

X2
2 X3

2 , ..., X120
2

 (22)

Y0 =
[
D1 D2 , ..., D120−1

]
(23)

where the first column of X1 is the states measurement of the AM2 model (1) at day one
generated by the control input (D1) applied at the same day. In addition, X2 is the same as X1

but shifted one ∆t ( ∆t = 1day) in the future. Parameters used in the simulation of the AM2
model (1) are described in Table 1.

Parameter Value Unit
S1in 20 g/L
S2in 150 mmol/g
µ1max 0.5 d−1

µ2max 0.74 d−1

k1 42.14 −
k2 116.5 mmol/g
k3 268 mmol/g
K1 7.1 g/L
K2 9.28 mmol/g
Ki 80 mmol/g

Table 1: Parameters used in the simulation of the AM2 model (1) using MATLAB as in [4].

Simulation results are shown in Figure 2, where we can remark a good fit from the DMDc
global linear state-space input-output model to the real data of the AD system. In Figure 2, we
have applied a variable control input in order to derive the DMDc model; the dilution rate was a
bit tough as we wanted to force the system to be unstable (starting from a low dilution rate and
suddenly switching to a higher value) and see if the DMDc linear model can respond accurately.
We observe that the DMDc model (the matrices A and B of the DMDc linear model are given
below with (24)) is following exactly the real system and is tracking any sudden changes in
the behavior of the AM2 dynamics with respect to the variable control input. Importantly, the
DMDc global linear model fits exactly the real system with impressive accuracy. We should
emphasize that DMDc method is totally data-driven and only input-output data is needed for
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Figure 2: DMDc applied on the AM2 model for modeling and identification by applying a variable
dilution rate.

the construction of a global linear state-space model that can be used easily for tasks like state-
estimation and control.

A =


0.909 −0.446 −0.017 −1.011
−0.003 0.669 0.001 0.235
−0.065 0.029 0.508 −3.866

0 −0.014 0.002 1.036

 , B =


6.357
−0.15
22.849
−0.15

 (24)

V CONCLUSION

In this work, we have presented a data-driven strategy for modeling the nonlinear complex AD
system. The DMDc algorithm used the data from simulating the AM2 model in MATLAB.
A global linear state-space input-output model was obtained for the forecast of the controlled
AD process. Simulation results have shown the accuracy of the DMDc model in predicting the
AM2 dynamics even when a variable persistent control input is applied. Future work will focus
on the use of the DMDc method for data-driven control of the AD systems.
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