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Filtering and sensor optimization applied to angle-only navigation

Passive target estimation is a widely investigated problem of practical interest for which particle filters represent a popular class of methods. We propose an adaptation of the Laplace Particle Filter applied to angle-only navigation using landmarks. In this specific context, a high number of aiding landmarks or features could be hard to handle in terms of computational cost. Hence, this paper introduces a Cross-entropy algorithm that selects landmarks having a high contribution to the state estimation. This parsimonious approach reduces the resources required for navigation systems while holding a good accuracy. These methods are discussed through numerical results on an Angle-only navigation scenario. • Sampling period: ∆T = 1 s Number of angle measurements (2): 200 Standard deviation of the measurements: σ = 1/10 deg • Number of particles: N = 1000 Coefficient of the resampling threshold: c = 0.2 where N th = cN • Initial state X 0 : x 0 = 0, y 0 = 0, z 0 = 5000m, ẋ = 200m/s, ẏ = 200m/s, ż = 0m/s

I. INTRODUCTION

Angles-only navigation is a popular solution in robotics and transportation applications as it copes with widespread visual sensors or radio frequency receivers. Such navigation problems involve highly non-linear measurement equations and require a robust estimation process. Hence, Particle filtres appear as natural candidates. Recent works on the Laplace Particle Filter (LPF) which introduced accurate importance functions for resampling steps [START_REF] Musso | A laplacebased particle filter for track-before-detect[END_REF], [START_REF] Bui | Approximation particulaire et méthode de laplace pour le filtrage bayésien[END_REF] showed improved accuracy and precision with a reduced number of particles, making it a good choice for highly nonlinear navigation scenarios. However, angle-only navigation scenarios often provide a large number of landmarks, which can be very costly to process during the flight. For instance, Micro Aerial Vehicle navigation scenarios with stereo cameras [START_REF] Burri | The euroc micro aerial vehicle datasets[END_REF] give many features which require a large amount of signal processing resources. To that extent, a solution would be to select landmarks that are useful to the state estimation and discard those which are not. The idea introduced in this paper is to use a Cross-entropy optimization idea [START_REF] Reuven | The cross-entropy method: a unified approach to combinatorial optimization[END_REF], [START_REF] Dambreville | Cross-entropic learning of a machine for the decision in a partially observable universe[END_REF] to reduce the number of landmarks taken into account in the estimation process while maintaining good accuracy. The optimization is performed before the navigation and gives the subset of landmarks which is optimal with respect to a criterion on the Cramer-Rao Lower Bound (CRLB) detailed in the latter. After introducing the estimation problem section (II), the paper describes the principle of LPF and its adaptation for the angle-only navigation in section (III). Eventually, a specific modified Cross-entropy algorithm is proposed for landmarks selection optimization in section (IV).

II. PROBLEM STATEMENT

We consider an aircraft following a constant velocity motion. At time k, the state vector we aim to estimate is composed of the positions and the velocities:

X k = (x k , y k , z k , ẋk , ẏk , żk ) T . (1) 
The aircraft measures the azimuth and the elevation of the aircraft to beacon line of sight (Fig. 1):

                   Y k (1) = arctan y k -y L x k -x L + ε k , = θ k + ε k Y k (2) = arctan z k -z L (x k -x L ) 2 + (y k -y L ) 2 + ν k = ϕ k + ν k , (2) 
where ε k and ν k are zero-mean Gaussian noises with variance σ 2 k and are assumed to be mutually independent. The landmark coordinates (x L , y L , z L ) are assumed to be known. 

X k = f k (X k-1 ) + η k , Y k = h k (X k ) + k , (3) 
where f k and h k being possibly non-linear functions and where k , η k are-zero mean Gaussian noises. Nonlinear filtering aims to estimate the posterior density:

p k (x) P(X k = x|Y 1:k ), (4) 
where

Y 1:k = (Y 1 , ..., Y k ).
A large variety of particle filters (PF) has been designed for this purpose (see tutorial [START_REF] Sanjeev | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF]). We recall the basics of the PF and Laplace Particle Filter (LPF) presented in [START_REF] Bui | Particle filtering and the laplace method for target tracking[END_REF]. As will be seen in the simulation (section III-D), the LPF is well adapted in such a context of angleonly filtering [START_REF] Bui | Multidimensional laplace formulas for nonlinear bayesian estimation[END_REF].

A. Generic particle filter

The PF estimates the state given all the measurements until time (k) through a Dirac mixture of N weighted particles X i k , w i k :

p k (x) ≈ N i=1 w i k δ x=X i k pk (x). (5) 
The particles X i k evolve according to the dynamic model (3) and are corrected through the likelihood:

g k (x) P(Y k |X k = x). (6) 
The following steps summarize the Sampling Importance Resampling algorithm (SIR) with prior proposal [START_REF] Neil J Gordon | Novel approach to nonlinear/non-gaussian bayesian state estimation[END_REF]:

1) Initialisation (k=1) For i = 1, . . . , N . Generate the particles X i k-1 (positions and velocities) according to the prior with w i k-1 ≡ 1/N .

2) Prediction For i = 1, . . . , N . Propagate the particles by applying the dynamic model (3)

X i k|k-1 = f k (X i k-1 ) + η i k .
3) Correction For i = 1, . . . , N . Compute the likelihood (6) g k (X i k|k-1 ) = P(Y k |X i k|k-1 ) and the weights The corrected particles are:

w i k ∝ g k (X i k|k-1 ) w i k-1 such that N i=1 w i k = 1. Compute N ef f = 1 N i=1 [w i k ] 2 and the threshold N th = cN . * If N ef f ≥ N th . The corrected particles are X i k , w i k = X i k|k-1 , w i k * If N ef f < N th discard/
X i k , w i k = Xi k , 1 N .

4) State estimation

The state is estimated by

Xk = N i=1 w i k X i k .
Go to the prediction step k → k + 1

This PF algorithm can be significantly improved when considering importance functions (IF) which take into account the current measurement [START_REF] Godsill | Particle filtering: the first 25 years and beyond[END_REF] such as the Rao-Blackwellized particle filter (RBPF) [START_REF] Doucet | Rao-blackwellised particle filters for dynamic bayes nets[END_REF] or such as Sequential Markov Chain Monte Carlo (SMCMC) [START_REF] Brockwell | Sequentially interacting markov chain monte carlo methods[END_REF]. We propose here an adaptation of the LPF to the angle-only navigation. We recall briefly this algorithm, details are provided in [START_REF] Bui | Approximation particulaire et méthode de laplace pour le filtrage bayésien[END_REF], [START_REF] Bui | Multidimensional laplace formulas for nonlinear bayesian estimation[END_REF].

B. Laplace-based importance function

For the sake of clarity, in this section, the time index (k) is omitted. Consider an unknown d-dimensional state x distributed according to a prior q and observed through the measurement:

y = h(x) + , (7) 
a non-linear function and a zero-mean Gaussian noise. In the particle filter framework, the prior q (which plays the role of the predicted density) is not expressed in closed form, only a sample from q is available. The likelihood p(y|x) is denoted by g(x), the posterior is written as:

P(X = x|Y = y) p(x|y) ∝ g(x) q(x). (8) 
We aim to compute an estimate of the posterior. The importance sampling (IS) estimator p of p(x|y) is obtained by drawing N samples X i from a proposal distribution q so that:

p(x|y) ≈ N i=1 w i δ x=X i p(x), (9) 
where

w i = wi N i=1
wi with the following importance weights:

wi = g(X i )q(X i ) q(X i ) . ( 10 
)
It is well known that the optimal importance function is the posterior qopt (x) = p(x|y) which is unavailable. We choose a proposal, for instance a Gaussian, which has moments nearly equal to those of the posterior. The posterior expectation E[X|Y ] and the posterior covariance matrix V[X|Y ] are well approximated by the Laplace formula if the posterior has a predominant mode [START_REF] Bui | Multidimensional laplace formulas for nonlinear bayesian estimation[END_REF]. The following approximations are in general sufficient:

E[X|Y ] ≈ x, V[X|Y ] ≈ Ĵ-1 , (11) 
where x is the maximum a posteriori (MAP), Ĵ = J(x) and where J is the observed information matrix:

   x = arg max x∈R d {g(x) q(x)}, J(x) = -(log g) (x) -(log q) (x). (12) 
Assuming that the prior q(x) is Gaussian, J(x) becomes:

J(x) = -(log g) (x) + P -1 , ( 13 
)
where P is the covariance matrix of the prior q. For example, we choose q as a Gaussian having x as mean and Ĵ-1 as covariance matrix:

q ∼ N (x, Ĵ-1 ). (14) 

C. LPF adapted to angle-only navigation

We aim to approximate the MAP x defined as:

x = arg max x∈R 6 {g(x) q(x)}. (15) 
Denote by x = (x 1 , x 2 ) T the state vector (1) where x 1 and x 2 are composed of, respectively, the positions and the velocities (1). The measurement function consists of the set of azimuth and elevation angles and depends solely on x 1 (2) (time index is still omitted). By noting that g(x) = p(y|x) = p(y|x 1 ), the maximization can be split as follows:

max (x1,x2) p(x 1 , x 2 |y) = max x1 q(x 1 ) p(y|x 1 ) max x2 q(x 2 |x 1 ) , (16) 
where y is the measurement vector with covariance matrix R . Now, we assume that the prior q(x 1 , x 2 ) has a Gaussian distribution with mean (E 1 , E 2 ) T and with covariance matrix:

P = P 11 P 12 P 21 P 22 . (17) 
The conditional pdf q(x 2 |x 1 ) being a Gaussian with conditional mean E 2|1 (x 1 ), the maximization of the second part of (16) with respect to x 2 leads to:

x2 (x 1 ) = E 2|1 (x 1 ) = E 2 + P 21 P -1 11 (x 1 -E 1 ) . (18) 
Eventually, the initial maximization of dimension 6 (15) is reduced to a minimization on x 1 of dimension 3:

H(x 1 ) [x 1 -E 1 ] T P -1 11 [x 1 -E 1 ] (19) 
+ [y -h(x 1 )] T R -1 [y -h(x 1 )].
One way of obtaining simply an approximation of the MAP is therefore as follows:

1) Minimize with respect to x 1 , the positions (19)

x1 = arg min x1∈R 3 H(x 1 )
2) Estimate x2 , the velocities (18)

x2 = E 2|1 (x 1 )
3) Evaluate x, the approximation of the MAP (15)

x = (x 1 , x2 ) T (20) 
The LPF algorithm applied to the angles-only navigation is described below. It differs from the SIR particle filter only on the resampling step.

1) Initialisation (k=1) For i = 1, . . . , N . Generate the particles

X i k-1 = (x i 1,k-1 , x i 2,k-1
) (positions and velocities) according to the prior with w i k-1 ≡ 1/N . 2) Prediction For i = 1, . . . , N . Propagate the particles by applying the dynamic model ( 3)

X i k|k-1 = f k (X i k-1 ) + η i k .
Compute the mean and covariance of the predicted state Xk|k-1 and P k|k-1 .

3) Correction For i = 1, . . . , N . Compute the likelihood (6) g k (X i k|k-1 ) = P(Y k |X i k|k-1 ) and the weights 

w i k ∝ g k (X i k|k-1 ) w i k-1 such that N i=1 w i k = 1. Compute N ef f = 1 N i=1 [w i k ] 2 and the threshold N th = cN . * If N ef f ≥ N th . The corrected particles are X i k , w i k = X i k|k-1 , w i k * If N ef f < N th then
( Xi k ) = φ( Xi k , Xk|k-1 , P k|k-1 )
where φ is a Gaussian pdf -Compute the importance weights:

wi k ∝ g k ( Xi k ) q k ( Xi k ) qk ( Xi k ) such that N i=1 wi k = 1. The corrected particles are: X i k , w i k = Xi k , wi k .

4) State estimation

The state is estimated by

Xk = N i=1 w i k X i k
Go to the prediction step k → k + 1. Remark: using the predicted covariance matrix P k|k-1 instead of Ĵ-1 k (14) could provide a better robustness.

D. Simulations

We consider an aircraft following a constant velocity noisefree motion. The simulation parameters are the following: Initial uncertainty state covariance : P 0 = diag(3000m, 3000m, 100m, 20m/s, 20m/s, 20m/s) 2 . Position particles initialization are generated around the MAP obtained by the first triangulation (using 2 landmarks) with the Cramer-Rao Lower Bound (CRLB) evaluated at this MAP as covariance matrix.

• Angle measurements are provided using successively 3 pairs of landmarks at altitude 0. The x -y landmark positions, displayed in km, are as follows:

-for k ∈ [1s, 60s]:

L 1 = (1, 15), L 2 = (-1, 15) -for k ∈ [61s, 149s]: L 1 = (5, 20), L 2 = (-5, 25) -for k ∈ [150s, 200s]: L 1 = (50, 30), L 2 = (
20, 50) 100 Monte Carlo trials have been performed. The root mean square error (RMSE) is computed for the 6 components of the state vector X k . The error averages are compared to the CRLB, the inverse of the information matrix J k . The information matrix of the azimuth and elevation angles relative to X k up to time k using L(k) landmarks at time k (here L(k) = 2) can be expressed recursively as follows:

J k = L(k) j=1 1 σ 2 k ∂θ j k ∂X k ∂θ j k ∂X k T (21) + L(k) j=1 1 σ 2 k ∂ϕ j k ∂X k ∂ϕ j k ∂X k T + Φ -1 (k -1, k) T J k-1 Φ -1 (k -1, k),
with J 0 = P -1 0 being the initial information matrix, and

Φ(k -1, k) = ∂X k
∂X k-1 the transition matrix. The filtering errors are close to those of the CRLB (Fig. 3,4). The LPF resampling rate is about 10 %, the computational time is low, about 2s for 200 iterations on a 2,6 GHz Intel Core i5. 

A. Introduction

The signal process to provide the angles from the landmarks is energy and time-consumming. Therefore, we aim to select a subset of the landmarks without degrading the navigation performance too much. To evaluate the impact of the location of the landmarks on the estimated position, we consider the following simple example (Fig. 5). Let L 1 and L 2 be the landmarks. The triangulation is done using the azimuths θ 1 , θ 2 with variance σ 2 . P r (Aircraft) is the orthogonal projection of the aircraft on the plane. The following approximation, valid for relatively small values of |B/r|, gives the order of magnitude of the error of estimation of |r| and therefore of the error of the position estimation:

σ( | r|) ≈ √ 2 σ |r| 2 |B| | sin α| . (22) 
Indeed, we have r 1 = r + B/2 and r 2 = r -B/2.

Using the complex number notation,

r 1 = |r 1 | e i( π 2 -θ1) , r 2 = |r 2 | e i( π 2 -θ2
) , a taylor expansion gives:

                     θ 1 = π/2 -Im [log(r 1 )] ≈ π/2 -Im log(r) + B 2r - 1 2 B 2r 2 , θ 2 = π/2 -Im [log(r 2 )] ≈ π/2 -Im log(r) - B 2r - 1 2 B 2r 2 ,
where "Im" denotes the imaginary part. We obtain now:

θ 2 -θ 1 = Im B r + o |B/r| 3 = |B/r| sin(α) + o |B/r| 3 .
Thus, the variance of the inverse of the estimation of |r| is given by:

V 1 | r| ≈ 2σ 2 |B| 2 sin 2 (α)
, leading to the desired standard deviation of the position in the x-y plane (22) observing that:

V f ( | r|) ≈ f 2 (r) V ( | r|)
where f (r) = 1 r . We note (22) that the Std of | r| is proportional to the square of the distance from the middle of landmark positions and P r (Aircraft). The same is true for the x -y position errors. The approximation (22) suggests that the landmarks should be chosen in such a way to ensure (22):

• a small distance |r| • an angle α close to ±π/2 • a baseline B large enough (Fig. 5) In the next section, the simulation results of the landmarks selection optimization will reflect the trade-off between these 3 criteria.

B. Cross entropy

Subsequently, we address the optimization of landmarks use in order to maximize the localization accuracy. Our idea is to restrict the number of landmarks in use at each step, and then optimize the landmarks choice trajectory. More precisely, if Q is the total number of landmarks, M is the number of selected landmarks at each measure stage and K is the number of measure stage, then we have to optimize a trajectory in ([[1, Q]] M ) K which describe the landmarks selection for our localization process. Here, we have to deal with a discrete combinatorial optimization problem, which is solved using a metaheuristic. Our approach is inspired from the cross-entropy (CE) method [START_REF] Reuven | The cross-entropy method: a unified approach to combinatorial optimization[END_REF], [START_REF] Dambreville | Cross-entropic learning of a machine for the decision in a partially observable universe[END_REF]. Consider a function f : x ∈ E → f (x) ∈ R to be maximized. Assume a law family (π λ ) λ∈Λ defined over E. In particular, it is assumed that this family is sufficiently expressive to approximate a Dirac around any element of E. Let ρ ∈ [0, 1[ be a smoothing parameter. The cross-entropy method is an optimization algorithm that will tune the family parameter to approximate an optimum of function f . It is broadly based on the following principle:

• Initialize λ 0 ∈ Λ and set t = 0.

• Repeat the steps until optimal criterion is achieved:

1) Generate N samples ( x 1:N ) from law π λt , 2) Compute the evaluations f ( x n ) for 1 ≤ n ≤ N , 3) Assign weights to the samples in accordance with the evaluation. It is obtained a particles cloud ( x n , w n )| 1≤n≤N where w ≥ 0 and While general formulation (23) makes sense intuitively, its mathematical formalization is not clear when dealing with Dirac distribution. But, by splitting the logarithm within D( | ) and discarding the constant part of the expression, we are able to reduce (23) to mathematically sound maximizations:

• If π λ = I i=1 λ i δ xi with λ = (λ i ) ∈ R I
+ and i λ i = 1 (discrete case), then there is i n such that x n = x in by construction and minimization ( 23) is equivalent to:

max λ ρ I i=1 λ t,i ln(λ i ) + (1 -ρ) N n=1
w n ln(λ in ) , (24)

• If π λ is a density, minimization (23) is equivalent to:

max λ ρ π λt (x) ln(π λ (x))dx + (1 -ρ) N n=1 w n ln(π λ ( x n )) .
(25) This algorithm is somehow related to evolutionary algorithms, but the population distribution is characterized by the law parameter. The samples weights w n are chosen so as to select the best samples in regards to f . In [START_REF] Reuven | The cross-entropy method: a unified approach to combinatorial optimization[END_REF], only a quantile of the samples is selected, so that w n is uniform on the best quantile and is zero otherwise. However, in our implementation, the samples are sorted in regards to their evaluations by f and the weight of a sample is defined in proportion to its sorting rank.

C. Optimization

The criterion f to be maximized is based on the information matrix. Subsequently, f is defined as the 12th root of the determinant of the last Fisher information matrix computed recursively by (21):

• 12
2 is actually the size of the information matrix, so that f is comparable to a distance. • The information matrix is related to the last step of the time interval of the whole filtering process. Thus, this is a prior optimization, and not a dynamic optimization. The landmarks are available all the time; this paper does not deal with randomly intermittent landmarks, although this difficulty may be considered for future works. The variable to be optimized is the choice of landmarks subsets to be observed at each iteration of the localization process. Duplicate landmarks for the same iteration stage is simply omitted in the recursive Fisher computation. We intend then to evaluate the overall performance of localization for different cardinality bounds, M , on the number of landmarks in use.

In practice, we used N = 1000 particles in our optimization and ρ = 0.95 as a smoothing parameter. Each particle is a landmark trajectory (q m,s ) ∈ ([[1, Q]] M ) S where Q = 35 is the total number of landmarks, M is the number of selected landmarks at each measure stage and K = 10S is the number of iterations of our localization process: it is assumed that the same set of landmarks is used during a 10-length period. As a consequence, measure stage k and landmark stage s are related by relation s = . We used a family based on discrete Markov laws in order to generate the landmark trajectories:

1) Landmarks for s = 1 are generated using a sequence of conditional laws, 2) i-th landmark of stage s + 1 ∈ [[2, S]] is generated from i-th landmark of stage s using a conditional law. Family (π λ ) λ∈Λ is thus discrete and expressed by:

π λ (q) = λ(q 1,1 ) M m=2 λ(q m,1 |q m-1,1 ) S s=2 λ(q m,s |q m,s-1 ) , (26) 
where parameters q 1,1 → λ(q 1,1 ), q m,1 → λ(q m,1 |q m-1,1 ) and q m,s → λ(q m,s |q m,s-1 ) are discrete probabilities. Update of the law by means of (24) is rather easy, since the optimization is entirely separable owing to the Markovian nature of (26):

λ o (q 1,1 ) = ρλ t (q 1,1 ) + (1 -ρ) N n=1 w n δ q1,1= qn,1,1 N n=1 w n , (27) λ o (q m,1 |q m-1,1 ) ∝ ρλ t (q m-1,1 )λ t (q m,1 |q m-1,1 ) + (1 -ρ) N n=1 I qn,m-1,1=qm-1,1 w n δ qm,1= qn,m,1 N n=1 w n , (28) λ o (q m,s |q m,s-1 ) ∝ ρλ t (q m,s-1 )λ t (q m,s |q m,s-1 ) + (1 -ρ) N n=1 I qn,m,s-1=qm,s-1 w n δ qm,s= qn,m,s N n=1 w n , (29) 
where I true = 1 -I false = 1 and where λ t (q m-1,1 ) and λ t (q m,s-1 ) are computed from Markovian definition (26). In this implementation, the smoothing parameter ρ is included within divergence optimization (23). In the reference implementation of CE [START_REF] Reuven | The cross-entropy method: a unified approach to combinatorial optimization[END_REF], this smoothing parameter is applied afterward, that is on the parameter vector λ. To the benefit of our approach, the update is able to adapt optimally to the number of samples that actually match a condition. For example, the update process will produce λ o (q m,s |q m,s-1 ) = λ t (q m,s |q m,s-1 ) when there is no sample such that q n,m,s-1 = q m,s-1 . The CE process is stopped after 5000 unsuccessful steps.

D. Simulations

In our experiment, landmarks have been generated randomly at some distance along the trajectory and K = 100 observation stages (S = 10) are processed. Figure 6 presents the mean trajectory of the aircraft, from (0km, 0km, 10km) to (10km, 10km, 10km), together with 35 landmarks (dots in black). The initial velocities are (200m/s, 200m/s, 0m/s). The initial uncertainty state covariance is still:

P 0 = diag(3000m, 3000m, 100m, 20m/s, 20m/s, 20m/s) 2 .
Still in figure 6, the optimal landmarks selection is presented when M = 5 and for stages [ [START_REF] Musso | A laplacebased particle filter for track-before-detect[END_REF][START_REF] Godsill | Particle filtering: the first 25 years and beyond[END_REF] best is the optimal found value, and iter is the number of needed iterations. In this landmark configuration with a lot of redundancy, a rather good level of performance is already obtained after the first 1000 samples generation. The optimal performances need however some substantial amount of iterations within the CE algorithm. We have in mind some approaches to speed up this convergence based on geometric criteria (22).

Figure 7 presents the position standard deviations obtained after optimization. Figure 8 presents the velocity standard deviations obtained after optimization. The curves are presented with regards to M , the number of used landmarks at each step. These figures together with the previous table confirm that the performance improvement rate will decrease with the number of used landmarks. 

E. Future works

Navigation systems often estimate the attitude of the aircraft in addition to the position and the velocity. However, adding the vehicle's attitude to the estimation process is expected to complexify the optimization and degrade the triangulation's performance. The impact of attitude uncertainties on triangulation can be described via the study of the position Cramer Rao Bound. Let the state vector X k composed of the position and the attitude:

X k = (x k , y k , z k , ψ 1 , ψ 2 , ψ 3 ) T , (30) 
where (ψ 1 , ψ 2 , ψ 3 ) are respectively the precession, nutation and spin Euler angles. The velocity is overlooked here as the vehicle is assumed stationary. This augmented state vector follows the model (3). Focusing on the update step, the measurement model becomes for the i th observed landmark:

                     Y i k (1) = arctan ∆ i y,k ∆ i x,k + k = θ i k + k Y i k (2) = arctan   -∆ i k,z (∆ i x,k ) 2 + (∆ i y,k ) 2   + ν k = ϕ i k + ν k , (31) 
where ε k and ν k are zero-mean Gaussian noises with variance σ 2 k . Also, ∆ i k denotes the relative distance between the i th landmark and the aircraft resolved in the aircraft frame:

∆ i k =   ∆ i x,k ∆ y,k ∆ i z,k   = C b e,k     x i L y i L z i L   -   x k y k z k     , (32) 
and C b e,k denotes the rotation matrix from the ground frame towards the vehicle frame. It is obtained from the Euler angles (ψ 1,k , ψ 2,k , ψ 3,k ). From now on, the measurements for 2 landmarks are such that:

Y k ∼ N (h(X k ), R k ) h(X k ) = [θ 1 k , ϕ 1 k , θ 2 k , ϕ 2 k ] T , (33) 
where

Y k = Y 1 k (1), Y 1 k (2), Y 2 k (1), Y 2 k (2)
T (31) and where

R k = σ 2 k I 4 .
The prior law of the state vector is the following:

X k ∼ N ( Xk , P k ), (34) 
where P k is a diagonal matrix such that:

P k = I 3 σ 2 attitude 0 0 I 3 σ 2 position . ( 35 
)
The impact of σ attitude in the prior density is studied thanks to the CRLB of the norm of the position error:

ρ(x k , ŷk , ẑk ) = (x k -x k ) 2 + (ŷ k -y k ) 2 + (ẑ k -z k ) 2 , ( 36 
)
The CRLB is defined as the inverse of the information matrix:

CRLB = J k (X k ) -1 . (37) 
According to (21) with L(k) = 2 and Φ = I 6 , J k is given by:

J k (X k ) = 1 σ 2 k ∂h(X k ) ∂X k ∂h(X k ) ∂X k T + P -1 k . (38) 
Then, the variance of ρ from the CRLB is computed as follows:

V(ρ(X k )) = ∂ρ(X k ) T ∂X k J k (X k ) -1 ∂ρ(X k ) ∂X k . ( 39 
)
Simulations are run on a static triangulation problem from two landmarks. For the sake of simplicity, the landmarks are symmetric with respect to the (x, z) plane and the prior error on position is σ position = 100m. As displayed (Fig. 9), the prior error on attitude sharply increases the CRLB before reaching an asymptote, showing that the performance of the estimation problem strongly depends on a correct estimation of the vehicle attitude. In order to broaden the results, similar simulations were run with a variable distance between the fixed points. The second plot shows the impact of σ attitude on the position estimation error as a function of the landmarks spacing. Hence, taking into account the attitude error in the landmarks optimization process would complete the approach described in this paper and will be the object of future work.

V. CONCLUSION

The paper proposes an adapted version of the Laplace Particle Filter for the angle-only navigation using a set of landmarks. Some simulation results using 3 pairs of landmarks show the accuracy of this algorithm by comparing its performance with the Cramer Rao Lower Bound. We propose also an optimization algorithm for the selection of the landmarks. This algorithm is based on the idea of the Cross-entropy method with more complex Markov simulation laws. Simulation results show that one can reduce drastically the number of landmarks without degrading significantly the navigation performance. Lastly, the impact of attitude uncertainties on triangulation is analyzed. Further works will take into account the attitude angles uncertainties for the landmarks selection optimization.
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 1 Fig. 1: Illustration of the angle of arrival measurements from a fixed landmark
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 2 Fig. 2: Illustration of simultaneous measurements from a set of landmarks
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 15 Fig. 5: Triangulation in the x-y plane
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 14 Let δ x= xn be Dirac distribution on x n . Then, compute: λ o ∈ arg min λ∈Λ D ρπ λt + (1 -ρ) N n=1 w n δ x= xn π λ , (23) so as to minimize the Kullback-Leiber divergence D( | ) of π λ with the mixture ρπ λt + (1 -ρ) N n=1 w n δ x= xn ; the smoothing parameter ρ is here to tune down the innovation implied by the selected samples, 5) Set λ t+1 = λ o and t ← t + 1.
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  ] (red), [[31, 40]] (blue), [[61, 70]] (green) and [[91, 100]] (cyan). It is noteworthy that the optimizer favors the choice of the closest landmarks while keeping a large baseline.
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 6 Fig. 6: Optimal landmarks selection at different stages Subsequent table presents some convergence statistics for M ∈ [[1, 10]] and should be compared to the value f [35] = 8.13 obtained for M = 35: M 1 2 3 4 5 6 7 8 9 10 f [M ] 1000 1.49 2.07 2.51 2.86 3.22 3.45 3.70 3.95 4.14 4.31 f [M ] best 1.60 2.25 2.76 3.18 3.53 3.85 4.13 4.39 4.63 4.72 iter 1000 7.9 12 18 22 27 32 38 41 44 26
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 7 Fig. 7: Std of the positions: σ x , σ y , σ z (m). Curves for M = 1 : 10.
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 8 Fig. 8: Std of the velocities: σ ẋ , σ ẏ , σ ż (m/s). Curves for M = 1 : 10.

Fig. 9 :

 9 Fig.9: The first plot shows the CRLB for the position norm as a function of the prior standard deviation on the attitude. The second plot shows CRLB for the position norm as a function of the distance between the two landmarks, for various prior standard deviations on the attitude.