
HAL Id: hal-03695826
https://hal.science/hal-03695826v1

Submitted on 15 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel pattern-based edit distance for automatic log
parsing: Implementation and reproducibility notes

Maxime Raynal, Marc-Olivier Buob, Georges Quénot

To cite this version:
Maxime Raynal, Marc-Olivier Buob, Georges Quénot. A novel pattern-based edit distance for au-
tomatic log parsing: Implementation and reproducibility notes. RRPR 2022 : Fourth Workshop on
Reproducible Research in Pattern Recognition (satellite event of ICPR 2022), Aug 2022, Montreal,
Canada. �hal-03695826�

https://hal.science/hal-03695826v1
https://hal.archives-ouvertes.fr

A novel pattern-based edit distance for
automatic log parsing:

Implementation and reproducibility notes

Maxime Raynal1,2, Marc-Olivier Buob1, and Georges Quénot2

1 Nokia Bell Labs, France
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble France

Abstract. This paper presents a detailed and reproducible description
of the algorithms and experiments published in “A novel pattern-based
edit distance for automatic log parsing”. We provide a detailed explana-
tion of the algorithm’s implementation, methodology, and experimental
setup. We also provide a more complete set of our experiments and re-
sults, with a discussion on the metrics used and the influence of main
parameters.

Keywords: Edit distance · log clustering · dynamic programming · re-
producible research.

1 Introduction

Unstructured data is ubiquitous, and its lack of structure makes it difficult to
analyze. As a sequel, it often ends up being unused [19]. In practice, processing
unstructured data forces to develop dedicated parsers to convert it to a more
convenient and structured format. This problem arises in network management,
especially when analyzing system logs3 or system command outputs. Unfortu-
nately, developing parsers is often tedious, time consuming and error prone.

To automate log parsing, it is required to better understand the structure
of the file that must be processed. In the literature, grouping the lines of a log
having the same underlying structure and semantics is often referred to as the
log clustering (and sometimes, log parsing) problem. To solve this problem, we
propose in [18] a novel pattern-based distance and a clustering algorithm built
on top of it. As a result, our clustering algorithm partitions input log lines so
that each group of lines conforms to a same underlying structure (template). It
worth noting that the templates are not known a priori and are inferred during
the log clustering step.

This companion paper details how to reproduce our experiments. Section 2
explains some of our implementation choices. Section 3 describes how to install,
setup and run our module and provides a minimal example to use our algorithm.
Section 4 recalls the main steps of our algorithm and details how to tune each

3 Logs are text files, where each line usually corresponds to a timestamped message.

2 Raynal, Buob, Quénot

hyper-parameter. Section 5 presents how we compared though experiments our
proposal against two state of the art solutions and discusses the influence of each
hyper parameter.

2 Implementation considerations

The pattern clustering code architecture involves C++ and Python 3 code.
The core algorithm is implemented in C++, while the Python wrapping eases its
usage. Implementing the core algorithm in C++ improves the performance of the
pattern clustering by a factor of 100 and hence allows to process larger log files.
The Python wrapping is realized thanks to libpython and the Boost.python

libraries [1]4

We could have restricted to libpython, but we decided to also use the
Boost library for two reasons. First, Boost.python allows to keep the C++
core independent from the implementation details imposed by libpython. Sec-
ond, wrapping C++ objects usable from the python interpreter imposes to build
the appropriate libpython objects; this task is significantly eased by using the
Boost.python library.

In our case, the pattern distance and pattern clustering primitives take
in parameter pattern automata and vectors [18]. All these variables are rep-
resented C++-side by using vectors. As vectors are not handy to craft au-
tomata, we require an intermediate automaton-like class. We could have used
Boost.graph, but for sake of simplicity, we kept the graph aspects in the Python
module.

To do so, we decided to rely on the pybgl Python module [10] for two reasons.
First, pybgl provides an automaton class that can easily extended to implement
pattern automata. Second, it provides all the primitives required to build an
automaton from an arbitrary regular expression. Once the pattern automata
are built, the Python/C++ binding allows to transparently convert them to
C++ vectors (as well as Python lists), and conversely, to transform C++ results
(vectors) to Python lists.

3 Installation steps

The installation steps are described in the wiki of the pattern clustering

repository 5 [9].

They involve the installation of the libboost-dev and libpython3-dev li-
braries, which prevented us from allowing a simple installation though PIP. This
would require to compile a version for every target operating system and Python
version. Unfortunately, doing so is not straightforward, even using projects like

4 This means that once compiled, the pattern clustering module works for the
python version corresponding to the libpython and Boost.python libraries.

5 https://github.com/nokia/pattern-clustering/wiki/Installation

https://github.com/nokia/pattern-clustering/wiki/Installation

pattern-based edit distance: implementation notes 3

ManyLinux [8], and that is why we decided to provide only a source-based in-
stallation.

Once installed, the end-user can run the following minimal example:

1 from pattern_clustering import pattern_clustering

2

3 FILENAME = "/var/log/Xorg .0.log" # Or any arbitrary log file

4 with open(FILENAME) as f:

5 LINES = [line.strip() for line in f.readlines ()]

6

7 print(pattern_clustering(LINES))

Listing 1.1: Minimal example using the pattern clustering function.

To obtain more user-friendly results, we refer the user to the Jupyter note-
books provided in the pattern clustering repository.

4 Pattern clustering usage

This section presents the parameters of our module and more advanced usages
than the one provided in Section 3. It also discusses how to tune each hyper-
parameter if the default setting is not satisfactory.

As explained in [18], our pattern clustering primitive takes the following
parameters:

– lines: an iterable object (e.g., a list) of strings corresponding to each
input log line. As the pattern clustering algorithm is greedy, one could pass
an iterator allowing to process an input log file in a streaming fashion.

– map name dfa: a dictionary mapping pattern names with the corresponding
deterministic finite automaton (DFA). In [18], this corresponds to the pattern
collection denoted by P. We detail this parameter in Section 4.1.

– densities: the density of each pattern is a value between 0 and 1 reflecting
how strict is a pattern. In [18], this corresponds to results returned by the
density function ρ. The vector of densities offers the opportunity to use
alternative density functions.

– threshold: this value, between 0 and 1, indicates how close must be the
elements involved in a cluster from the cluster’s representative. In [18], this
corresponds to D. Small values tend to increase the number of output clus-
ters.

– use async: a Boolean indicating whether the pattern clustering computa-
tions must be parallelized.

– make mg: the strategy used to build pattern automata from string according
to P. The end-user should keep the default value to conform to our reproduce
the pattern automata simplifications and experiments presented in [18].

The value returned by the pattern clustering primitive is detailed in Sec-
tion 4.2. Section 4.3 discusses two manners to perform the clustering.

4 Raynal, Buob, Quénot

4.1 Pattern collection

In our implementation, each pattern is identified by a string. Some patterns are
predefined in our module and one can get the whole list of supported patterns
by running the following snippet:

1 from pattern_clustering import get_pattern_names

2 print(get_pattern_names ())

Listing 1.2: Predefined patterns.

One may tune the default pattern collection by discarding some keys, modifying
some automata, or inject custom patterns. The example below shows how to
inject a custom pattern named letters.

1 from pattern_clustering import *

2 from pybgl.regexp import compile_dfa

3

4 MAP_NAME_DFA = make_map_name_dfa ()

5 MAP_NAME_DFA["letters"] = compile_dfa("[a-zA-Z]+")

6 print(pattern_clustering(LINES , map_name_dfa=MAP_NAME_DFA))

Listing 1.3: Custom pattern collection.

In the details, the compile dfa processes the input regular expression using the
Shunting Yard algorithm [12]. By using the Thompson transformation [20], it
progressively builds a non-deterministic finite automaton (NFA). Finally, the
NFA is transformed to its corresponding minimal DFA using the Moore algo-
rithm [17].

4.2 Returned value

Once the clustering is computed, each input line is remapped with the appro-
priate cluster. The pattern clustering returns a list where each element rep-
resents a cluster. The ith element of this list gathers the line number of the lines
belonging to the ith cluster.

4.3 Dropping duplicated pattern automata

Our module allows to drop duplicated pattern automata. This feature is relevant
if the end-user considers that every line conforming to the same pattern automa-
ton must always fall in the same cluster. Dropping duplicated pattern automata
limits the number of elements to cluster and thus accelerates the processing.

However, we did not use this feature in our experiments. Indeed, we observed
that it could affect the quality of the clustering, as in some situations, two lines
conforming to the same pattern automaton should fall in distinct clusters.

5 Experimental setup

In [18], we compare the pattern clustering (PC) against two state of the art
algorithms, namely Drain [14] and LogMine [13]. Our experimental setup is quite
similar to the one described in [21]. This section presents the main differences.

pattern-based edit distance: implementation notes 5

5.1 Drain and LogMine integration

The standard implementations of Drain [3] and LogMine [7] are not verbose
enough, as they do not map input lines with the corresponding cluster. That
is why we have forked the standard implementation and adapted the outputs
returned by LogMine and Drain [2,6]. Our modifications are minor, they do not
affect the results returned by these algorithms and only induce negligible running
time overhead.

5.2 Loghub dataset

We perform our experiments on the Loghub dataset, which involves 16 log files.
The Loghub repository [5] provides a small excerpt of each log file, whereas the
Zenodo repository [11] contains the complete logs. A detailed description of each
log (size, number of messages, labeling, etc.),is available in [15].

5.3 Ground truth

The Loghub repository [5] provides for each log file the corresponding ground
truth. A ground truth maps templates (i.e., a string involving some wildcards
denoted by <*>) with the corresponding lines of log.

It’s worth noting that each ground truth has been manually obtained. During
our experiments, we have observed several inconsistencies. In particular, we have
found some clusters that have no reason to be split. For example, the original
Android ground truth distinguishes the three following templates:

– animateCollapsePanels:flags=<*>,

force=false, delayed=false, mExpandedVisible=false

– animateCollapsePanels:flags=<*>,

force=false, delayed=false, mExpandedVisible=true

– animateCollapsePanels:flags=<*>,

force=true, delayed=true, mExpandedVisible=true

... while it would be more natural to merge them in a single template:

– animateCollapsePanels:flags=<*>,

force=<*>, delayed=<*>, mExpandedVisible=<*>

We have checked each ground truth and fixed all the inconsistencies we have
found. The original and the fixed versions of the ground truths are made available
in [4] and may be easily compared using any diff-like utility.

5.4 Experimental parameters

The three considered clustering algorithms mainly require two parameters, namely
the pattern collection and the clustering threshold.

For each dataset, our experiments consider two pattern collections:

6 Raynal, Buob, Quénot

– Minimal collection. Our initial motivation is to design a generic log clustering
tool, and thus this collection only includes universal patterns (i.e., patterns
like dates, times, network addresses, numerical values).

– Specific collections. In [21], the authors tailor dataset-dependant to see how
good each algorithm with a high prior knowledge could be. As a sequel, the
resulting collection is highly dependent on the input dataset and requires
significant end-user intervention.

To get a full benchmark, our experiments compare for each dataset the results
obtained with the dedicated specific pattern collection and the minimal collec-
tion.

As done in [21], the threshold is calibrated by running the experiments with
several values. We keep the best results obtained w.r.t the tested thresholds.

To make our experiments easily reproducible, all the simulation parameters
are made available in our repository. We also provide notebooks allowing to run
our experiment pipeline.

5.5 Accuracy

The accuracy of each clustering algorithm is evaluated by computing two per-
formance metrics (namely, the parsing accuracy and the adjusted Rand index).
Both require a ground truth – we used the fixed on see 5.3.

The parsing accuracy has been introduced in [21]. More formally, given two
partitions C1, C2 of a set E, the pattern accuracy is defined by:

PA(C1, C2) =
1

|E|
∑

C∈C1∩C2

|C|

By definition, this metric only rewards clusters that exactly matches those listed
in the ground truth. As a sequel, if a cluster is slightly different in the inference
and in the ground truth, it is not rewarded; and the bigger the cluster, the
bigger the penalty. This means that algorithms returning clustering with small
errors can have a very low parsing accuracy. Conversely, slight modifications on
the ground truth may drastically change the parsing accuracy, especially if they
impact large clusters.

The adjusted Rand index [16] is designed to be less sensitive to small vari-
ations and hence alleviate all the limitations inherent to the parsing accuracy.
This value is an adjusted-for-chance version of the Rand index and is based on
the number of correct and incorrect pairwise assignments.

6 Conclusion

This companion paper shows how to reproduce the experiments presented in [18]
and highlights several contributions of this work. First, we have presented several
code optimizations (core algorithm written in C++, parallelization) that allow
to run our algorithm on real logs of average size. Second, we have packaged

pattern-based edit distance: implementation notes 7

our code so that it is documented, tested, and easy to install. Third, we have
provided all the technical material needed to reproduce our experiments which
allows researchers to easily compare their proposal against LogMine, Drain and
the pattern clustering algorithm. Fourth, this work has been the opportunity to
enhance the ground truths provided by the Loghub dataset. For all these reasons,
we hope that our contributions will be reused in the future works dealing with
log clustering and automatic parsing.

References

1. Boost C++ library, https://www.boost.org/
2. Drain 3 forked repository, https://github.com/raynalm/Drain3
3. Drain 3 original repository, https://github.com/IBM/Drain3
4. Ground truth templates, https://github.com/nokia/pattern-clustering/

tree/main/logs
5. Loghub: A large collection of system log datasets for AI-powered log analytics,

https://github.com/logpai/loghub
6. Logmine forked repository, https://github.com/raynalm/logmine
7. Logmine original repository, https://github.com/trungdq88/logmine/
8. ManyLinux GitHub repository, https://github.com/pypa/manylinux
9. Pattern clustering GitHub repository, https://github.com/nokia/

pattern-clustering
10. PyBGL GitHub repository, https://github.com/nokia/pybgl
11. Zenodo repository containing the full Loghub logs, https://zenodo.org/record/

3227177
12. Dijkstra, E.W.: Algol 60 translation: An algol 60 translator for the x1 and making

a translator for algol 60. Stichting Mathematisch Centrum. Rekenafdeling (MR
34/61) (1961)

13. Hamooni, H., Debnath, B., Xu, J., Zhang, H., Jiang, G., Mueen, A.: Logmine: Fast
pattern recognition for log analytics. In: Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. pp. 1573–1582 (2016)

14. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS).
pp. 33–40. IEEE (2017)

15. He, S., Zhu, J., He, P., Lyu, M.R.: Loghub: A large collection of system log datasets
towards automated log analytics. arXiv preprint arXiv:2008.06448 (2020)

16. Hubert, L., Arabie, P.: Comparing partitions. Journal of classification 2(1), 193–
218 (1985)

17. Moore, E.F., et al.: Gedanken-experiments on sequential machines. Automata stud-
ies 34, 129–153 (1956)

18. Raynal, M., Buob, M.O., Quénot, G.: A novel pattern-based edit distance for
automatic log parsing. In: ICPR 2022 (2022)

19. Terrizzano, I.G., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: The chal-
lenging yourney from the wild to the lake. In: CIDR (2015)

20. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11(6), 419–422 (1968)

21. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks
for automated log parsing. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). pp. 121–130.
IEEE (2019)

https://www.boost.org/
https://github.com/raynalm/Drain3
https://github.com/IBM/Drain3
https://github.com/nokia/pattern-clustering/tree/main/logs
https://github.com/nokia/pattern-clustering/tree/main/logs
https://github.com/logpai/loghub
https://github.com/raynalm/logmine
https://github.com/trungdq88/logmine/
https://github.com/pypa/manylinux
https://github.com/nokia/pattern-clustering
https://github.com/nokia/pattern-clustering
https://github.com/nokia/pybgl
https://zenodo.org/record/3227177
https://zenodo.org/record/3227177

	A novel pattern-based edit distance for automatic log parsing: Implementation and reproducibility notes

