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This paper presents a detailed and reproducible description of the algorithms and experiments published in "A novel pattern-based edit distance for automatic log parsing". We provide a detailed explanation of the algorithm's implementation, methodology, and experimental setup. We also provide a more complete set of our experiments and results, with a discussion on the metrics used and the influence of main parameters.

Introduction

Unstructured data is ubiquitous, and its lack of structure makes it difficult to analyze. As a sequel, it often ends up being unused [START_REF] Terrizzano | Data wrangling: The challenging yourney from the wild to the lake[END_REF]. In practice, processing unstructured data forces to develop dedicated parsers to convert it to a more convenient and structured format. This problem arises in network management, especially when analyzing system logs 3 or system command outputs. Unfortunately, developing parsers is often tedious, time consuming and error prone.

To automate log parsing, it is required to better understand the structure of the file that must be processed. In the literature, grouping the lines of a log having the same underlying structure and semantics is often referred to as the log clustering (and sometimes, log parsing) problem. To solve this problem, we propose in [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF] a novel pattern-based distance and a clustering algorithm built on top of it. As a result, our clustering algorithm partitions input log lines so that each group of lines conforms to a same underlying structure (template). It worth noting that the templates are not known a priori and are inferred during the log clustering step.

This companion paper details how to reproduce our experiments. Section 2 explains some of our implementation choices. Section 3 describes how to install, setup and run our module and provides a minimal example to use our algorithm. Section 4 recalls the main steps of our algorithm and details how to tune each hyper-parameter. Section 5 presents how we compared though experiments our proposal against two state of the art solutions and discusses the influence of each hyper parameter.

Implementation considerations

The pattern clustering code architecture involves C++ and Python 3 code. The core algorithm is implemented in C++, while the Python wrapping eases its usage. Implementing the core algorithm in C++ improves the performance of the pattern clustering by a factor of 100 and hence allows to process larger log files. The Python wrapping is realized thanks to libpython and the Boost.python libraries [START_REF]Boost C++ library[END_REF] 4 

We could have restricted to libpython, but we decided to also use the Boost library for two reasons. First, Boost.python allows to keep the C++ core independent from the implementation details imposed by libpython. Second, wrapping C++ objects usable from the python interpreter imposes to build the appropriate libpython objects; this task is significantly eased by using the Boost.python library.

In our case, the pattern distance and pattern clustering primitives take in parameter pattern automata and vectors [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF]. All these variables are represented C++-side by using vectors. As vectors are not handy to craft automata, we require an intermediate automaton-like class. We could have used Boost.graph, but for sake of simplicity, we kept the graph aspects in the Python module.

To do so, we decided to rely on the pybgl Python module [10] for two reasons. First, pybgl provides an automaton class that can easily extended to implement pattern automata. Second, it provides all the primitives required to build an automaton from an arbitrary regular expression. Once the pattern automata are built, the Python/C++ binding allows to transparently convert them to C++ vectors (as well as Python lists), and conversely, to transform C++ results (vectors) to Python lists.

Installation steps

The installation steps are described in the wiki of the pattern clustering

repository 5 [9].
They involve the installation of the libboost-dev and libpython3-dev libraries, which prevented us from allowing a simple installation though PIP. This would require to compile a version for every target operating system and Python version. Unfortunately, doing so is not straightforward, even using projects like ManyLinux [START_REF]ManyLinux GitHub repository[END_REF], and that is why we decided to provide only a source-based installation.

Once installed, the end-user can run the following minimal example:

1 from pattern_clustering import pattern_clustering Listing 1.1: Minimal example using the pattern clustering function.

To obtain more user-friendly results, we refer the user to the Jupyter notebooks provided in the pattern clustering repository.

Pattern clustering usage

This section presents the parameters of our module and more advanced usages than the one provided in Section 3. It also discusses how to tune each hyperparameter if the default setting is not satisfactory.

As explained in [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF], our pattern clustering primitive takes the following parameters:

lines: an iterable object (e.g., a list) of strings corresponding to each input log line. As the pattern clustering algorithm is greedy, one could pass an iterator allowing to process an input log file in a streaming fashion. map name dfa: a dictionary mapping pattern names with the corresponding deterministic finite automaton (DFA). In [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF], this corresponds to the pattern collection denoted by P. We detail this parameter in Section 4.1. densities: the density of each pattern is a value between 0 and 1 reflecting how strict is a pattern. In [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF], this corresponds to results returned by the density function ρ. The vector of densities offers the opportunity to use alternative density functions. threshold: this value, between 0 and 1, indicates how close must be the elements involved in a cluster from the cluster's representative. In [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF], this corresponds to D. Small values tend to increase the number of output clusters.

use async: a Boolean indicating whether the pattern clustering computations must be parallelized. make mg: the strategy used to build pattern automata from string according to P. The end-user should keep the default value to conform to our reproduce the pattern automata simplifications and experiments presented in [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF].

The value returned by the pattern clustering primitive is detailed in Section 4.2. Section 4.3 discusses two manners to perform the clustering.

Pattern collection

In our implementation, each pattern is identified by a string. Some patterns are predefined in our module and one can get the whole list of supported patterns by running the following snippet:

1 from pattern_clustering import get_pattern_names 2 print ( get_pattern_names () )

Listing 1.2: Predefined patterns.

One may tune the default pattern collection by discarding some keys, modifying some automata, or inject custom patterns. The example below shows how to inject a custom pattern named letters.

1 from pattern_clustering import * 2 from pybgl . regexp import compile_dfa In the details, the compile dfa processes the input regular expression using the Shunting Yard algorithm [START_REF] Dijkstra | Algol 60 translation: An algol 60 translator for the x1 and making a translator for algol 60[END_REF]. By using the Thompson transformation [START_REF] Thompson | Programming techniques: Regular expression search algorithm[END_REF], it progressively builds a non-deterministic finite automaton (NFA). Finally, the NFA is transformed to its corresponding minimal DFA using the Moore algorithm [START_REF] Moore | Gedanken-experiments on sequential machines[END_REF].

Returned value

Once the clustering is computed, each input line is remapped with the appropriate cluster. The pattern clustering returns a list where each element represents a cluster. The i th element of this list gathers the line number of the lines belonging to the i th cluster.

Dropping duplicated pattern automata

Our module allows to drop duplicated pattern automata. This feature is relevant if the end-user considers that every line conforming to the same pattern automaton must always fall in the same cluster. Dropping duplicated pattern automata limits the number of elements to cluster and thus accelerates the processing. However, we did not use this feature in our experiments. Indeed, we observed that it could affect the quality of the clustering, as in some situations, two lines conforming to the same pattern automaton should fall in distinct clusters.

Experimental setup

In [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF], we compare the pattern clustering (PC) against two state of the art algorithms, namely Drain [START_REF] He | Drain: An online log parsing approach with fixed depth tree[END_REF] and LogMine [START_REF] Hamooni | Logmine: Fast pattern recognition for log analytics[END_REF]. Our experimental setup is quite similar to the one described in [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF]. This section presents the main differences.

Drain and LogMine integration

The standard implementations of Drain [START_REF]Drain 3 original repository[END_REF] and LogMine [7] are not verbose enough, as they do not map input lines with the corresponding cluster. That is why we have forked the standard implementation and adapted the outputs returned by LogMine and Drain [START_REF]Drain 3 forked repository[END_REF][START_REF]Logmine forked repository[END_REF]. Our modifications are minor, they do not affect the results returned by these algorithms and only induce negligible running time overhead.

Loghub dataset

We perform our experiments on the Loghub dataset, which involves 16 log files. The Loghub repository [START_REF]Loghub: A large collection of system log datasets for AI-powered log analytics[END_REF] provides a small excerpt of each log file, whereas the Zenodo repository [START_REF]Zenodo repository containing the full Loghub logs[END_REF] contains the complete logs. A detailed description of each log (size, number of messages, labeling, etc.),is available in [START_REF] He | Loghub: A large collection of system log datasets towards automated log analytics[END_REF].

Ground truth

The Loghub repository [START_REF]Loghub: A large collection of system log datasets for AI-powered log analytics[END_REF] provides for each log file the corresponding ground truth. A ground truth maps templates (i.e., a string involving some wildcards denoted by <*>) with the corresponding lines of log.

It's worth noting that each ground truth has been manually obtained. During our experiments, we have observed several inconsistencies. In particular, we have found some clusters that have no reason to be split. For example, the original Android ground truth distinguishes the three following templates:

-animateCollapsePanels:flags=<*>, force=false, delayed=false, mExpandedVisible=false -animateCollapsePanels:flags=<*>, force=false, delayed=false, mExpandedVisible=true -animateCollapsePanels:flags=<*>, force=true, delayed=true, mExpandedVisible=true ... while it would be more natural to merge them in a single template:

-animateCollapsePanels:flags=<*>, force=<*>, delayed=<*>, mExpandedVisible=<*>

We have checked each ground truth and fixed all the inconsistencies we have found. The original and the fixed versions of the ground truths are made available in [START_REF]Ground truth templates[END_REF] and may be easily compared using any diff-like utility.

Experimental parameters

The three considered clustering algorithms mainly require two parameters, namely the pattern collection and the clustering threshold.

For each dataset, our experiments consider two pattern collections:

-Minimal collection. Our initial motivation is to design a generic log clustering tool, and thus this collection only includes universal patterns (i.e., patterns like dates, times, network addresses, numerical values). -Specific collections. In [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF], the authors tailor dataset-dependant to see how good each algorithm with a high prior knowledge could be. As a sequel, the resulting collection is highly dependent on the input dataset and requires significant end-user intervention.

To get a full benchmark, our experiments compare for each dataset the results obtained with the dedicated specific pattern collection and the minimal collection.

As done in [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF], the threshold is calibrated by running the experiments with several values. We keep the best results obtained w.r.t the tested thresholds.

To make our experiments easily reproducible, all the simulation parameters are made available in our repository. We also provide notebooks allowing to run our experiment pipeline.

Accuracy

The accuracy of each clustering algorithm is evaluated by computing two performance metrics (namely, the parsing accuracy and the adjusted Rand index). Both require a ground truth -we used the fixed on see 5.3.

The parsing accuracy has been introduced in [START_REF] Zhu | Tools and benchmarks for automated log parsing[END_REF]. More formally, given two partitions C 1 , C 2 of a set E, the pattern accuracy is defined by:

P A(C 1 , C 2 ) = 1 |E| C∈C1∩C2 |C|
By definition, this metric only rewards clusters that exactly matches those listed in the ground truth. As a sequel, if a cluster is slightly different in the inference and in the ground truth, it is not rewarded; and the bigger the cluster, the bigger the penalty. This means that algorithms returning clustering with small errors can have a very low parsing accuracy. Conversely, slight modifications on the ground truth may drastically change the parsing accuracy, especially if they impact large clusters. The adjusted Rand index [START_REF] Hubert | Comparing partitions[END_REF] is designed to be less sensitive to small variations and hence alleviate all the limitations inherent to the parsing accuracy. This value is an adjusted-for-chance version of the Rand index and is based on the number of correct and incorrect pairwise assignments.

Conclusion

This companion paper shows how to reproduce the experiments presented in [START_REF] Raynal | A novel pattern-based edit distance for automatic log parsing[END_REF] and highlights several contributions of this work. First, we have presented several code optimizations (core algorithm written in C++, parallelization) that allow to run our algorithm on real logs of average size. Second, we have packaged our code so that it is documented, tested, and easy to install. Third, we have provided all the technical material needed to reproduce our experiments which allows researchers to easily compare their proposal against LogMine, Drain and the pattern clustering algorithm. Fourth, this work has been the opportunity to enhance the ground truths provided by the Loghub dataset. For all these reasons, we hope that our contributions will be reused in the future works dealing with log clustering and automatic parsing.
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 26 FILENAME = " / var / log / Xorg .0. log " # Or any arbitrary log file 4 with open ( FILENAME ) as f : 5 LINES = [ line . strip () for line in f . readlines () ] print ( pattern_clustering ( LINES ) )
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 3 MAP_NAME_DFA = make_map_name_dfa () 5 MAP_NAME_DFA [ " letters " ] = compile_dfa ( " [a -zA -Z ]+ " ) 6 print ( pattern_clustering ( LINES , map_name_dfa = MAP_NAME_DFA ) ) Listing 1.3: Custom pattern collection.

Logs are text files, where each line usually corresponds to a timestamped message.

This means that once compiled, the pattern clustering module works for the python version corresponding to the libpython and Boost.python libraries.

https://github.com/nokia/pattern-clustering/wiki/Installation