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Abstract 

Due to complex sets of interrelated activities in aircraft heavy maintenance (AHM), many airlines 

have to deal with substantial aircraft maintenance downtime. The scheduling problem in AHM is 

regarded as an NP-hard problem. Using exact algorithms can be time-consuming or even infeasible. 

This article proposes genetic algorithms for solving the resource-constrained project scheduling 

problem (RCPSP) in AHM. The objective of the study was to minimise the makespan of the 

maintenance plan. The proposed algorithms applied five heuristic dispatching rules to generate an 

initial population based on activity list formation. Resource allocation methods for RCPSP – earliest 

start time (EST) and workgroup and earliest start time (WEST) – were used to evaluate the fitness 

value. The elitist and roulette wheel methods were applied in the selection process. The sequences of 

the activity lists were then iteratively improved by crossover and mutation operations. The results 

show that the proposed algorithms perform efficiently compared to the existing solutions in terms of 

computational time and resource allocation. 
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Introduction 

The demand for commercial air transport has 

increased over the last few decades due to short 

travel times and affordable prices. The annual 

growth in passenger traffic from 2015 to 2034 is 

estimated to be 4.6-4.9% (Schmidt, 2017). This 

rapid growth has imposed many challenges for 

planning, scheduling, and operations in the aviation 

industry. 

Aircraft maintenance, repair, and overhaul 

(MRO) activities are critical for aircraft safety, and 

periodic maintenance checks need to be carried out  

 

 

 
 

on each aircraft after a specified number of flying 

hours. The cost of MRO is about 9% of the annual 

operating costs of airlines, and it is the third highest 

after fuel and labour costs (Qin et al., 2019). 

Furthermore, airlines cannot generate income 

during maintenance periods. Therefore, they wish  

to minimise maintenance lead-time while assuring 

that all operations are in compliance with the  

quality standards and regulatory requirements of 

Airworthiness Authorities, such as the Federal 

Aviation Administration (FAA), European Aviation 
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Safety Agency (EASA), and International Civil 

Aviation Organization (ICAO). 

Aircraft maintenance scheduling is a complicated 

task involving the synthesis of a range of economic, 

political, legal and technical factors. The demands 

on service, aircraft use and operational costs of the 

aircraft are the principal drivers of this problem 

(Sriram and Haghani, 2003). In particular, aircraft 

heavy maintenance (AHM), also called a heavy 

maintenance visit, makes the maintenance scheduling 

problem even more difficult to solve. AHM consists 

of complex sets of interrelated activities that  

must be performed within a given period of time.  

They usually require keeping the aircraft in a hangar  

for several weeks to carry out inspection and 

maintenance activities that are compliant with 

specific maintenance programmes. Due to the 

enormous number of interrelated activities in AHM, 

it is challenging for the planner to minimise the 

makespan of the maintenance plan with scarce 

resources, while ensuring that the aircraft is 

delivered on time or with the shortest possible delay. 

This problem, the so-called resource-constrained 

project scheduling problem (RCPSP), is regarded as 

a nondeterministic polynomial (NP)-hard problem 

in AHM. Using exact algorithms for solving it leads 

to extremely long computation times for obtaining 

the optimal solution, and may even be intractable. 

In this paper, we present genetic algorithms for 

solving the RCPSP in AHM. The scope of the 

problem we dealt with in this study was a heavy 

maintenance visit (D check) of an aircraft cabin, 

which is composed of five main workgroups, i.e. 

cockpit, door, galley, interior, and lavatory. Only 

scheduled maintenance tasks were considered, 

while unexpected or unscheduled maintenance 

requirements were not taken into account. The 

objective of this study was to develop genetic 

algorithms to evaluate solutions with a minimum 

makespan of the maintenance plan in reasonable 

computational time.  

Aircraft Heavy Maintenance (AHM) 

Civil aircraft maintenance can be subdivided into 

four major types of investigations, i.e. from A check 

through to D check. The type of check depends on 

the number of hours the aircraft has flown since its 

last check, the age of the aircraft, and the number of 

take-off and landing cycles it carried out. A and B 

checks are lighter checks, while C and D checks are 

considered heavier checks which must be performed 

inside a hangar using specialized equipment and 

highly trained personnel (Friend, 1992). The C and 

D checks are considered heavy maintenance. The C 

check typically occurs every two years and requires 

10,000-30,000 man-hours (2 to 4 weeks) to inspect 

and exhaustively overhaul the entire aircraft. The D 

check, the most comprehensive and occurring 

approximately every six years, involves taking the 

entire airplane apart for inspection and overhaul.  

It needs up to 50,000 man-hours to complete (UK 

Department for Business, Innovation and Skills, 

2016). However, it may require a different number 

of resources depending on the size and complexity 

of the aircraft, the guidelines of aircraft 

manufacturers, and the requirements of the airline. 

Our previous study (Weeranant and Pimapunsri, 

2017) examined the complexity of AHM by 

applying a design structure matrix (DSM; Yassine, 

2004; Eppinger and Browning, 2012) and 

simulation technique to ascertain the proper 

sequence for the aircraft maintenance plan. 

The Resource-Constrained Project 

Scheduling Problem 

The RCPSP is a classical problem that has received 

the attention of many researchers for several 

decades. The objective of RCPSP is to properly 

schedule dependent activities over time such that  

the makespan of the project is minimised while 

precedence and resource constraints are met (Wang, 

2016; Kolisch and Hartmann, 2017). The project 

scheduling problem is identified as determining the 

time required to implement the activities of a project 

to achieve a certain objective (Habibi et al., 2018). 

Heuristic scheduling is one of the traditional 

methods for seeking solutions close to the optimal 

with acceptable computational cost and usually 

requiring less time. The heuristics are often defined 

as scheduling rules with dispatch rules. Some 

heuristic algorithms (Tormos and Lova, 2001; 

Sriram and Haghani, 2003; Rosales, 2015; Kolisch 

and Hartmann, 2017) have been developed to solve 

the RCPSP, as well as a simulation approach 

(Pimapunsri and Weeranant, 2018) for examining 

uncertainty in activities and delays in AHM. 

However, there are still no promising methods that 

guarantee optimal solutions and computational 

feasibility. Although the heuristic methods provide 

good solutions in reasonable computation time, they 

are typically limited to a specific set of constraints 

or problem formulation. In addition, development of 

new heuristics is difficult. 

In general, a large-scale scheduling problem is 

NP-hard. Algorithms exist for exactly solving some 

forms of the problem, but they typically take too 

long when the size of the problem grows or 

additional constraints are added. As a result, most 

research has been devoted to either simplifying the 

scheduling problem to the point where some 
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algorithms can find solutions, or to devising 

efficient heuristics for finding good solutions. 

Genetic Algorithms 

Genetic algorithms (GAs) form a subset of 

stochastic search optimisation methods introduced 

in the mid-1970s by Holland (Holland, 1975). Based 

on the principles of natural evolutionary processes, 

GAs create new solutions by employing heuristic 

search methods, such as selection, crossover, and 

mutation, to find better solutions (Goldberg, 1989; 

Michalewicz, 1994). GAs are widely used in various 

engineering applications, e.g. production scheduling 

(Goncalves et al., 2005, 2008) and design optimisation 

(Gokdag and Yildiz, 2012; Kiani and Yildiz, 2016), 

and in solving RCPSP (Wall, 1996; Franco et al., 

2007; Kadam and Kadam, 2014). RCPSP consists of 

several candidate solutions. In GAs, each solution is 

called an individual (chromosome) which has a set 

of properties (its genes) that can be mutated to 

generate the next-generation population of solutions. 

A fitness function is used in the evaluation to select 

the best individuals. As the GA is a heuristic search 

method based on the survival of the fittest on 

optimisation, it is an effective method for solving 

RCPSP. The procedures and the pseudo-code of the 

proposed algorithm are shown in Figures 1 and 2. 

Research Methodology 

Chromosome Structure  

Usually, several hundred activities have to be 

completed to accomplish the heavy maintenance of 

an aircraft cabin. In this study, we defined an 

activity list as a chromosome. A chromosome is 

composed of genes; the number given to each gene 

corresponds to the ID number and its information 

(the duration and resources required). Figure 3 

provides an example of a network of ten activities. 

This network can create 10! chromosomes, without 

taking into account precedence constraints. For 

example, a chromosome of this network could be  
[5-6-4-10-9-1-3-7-2-8]. 

 

Initial Population 

The population of solutions is based on activity 

list formation. An activity list is composed of 

activities according to their precedence in the 

relationship. A highly constrained scheduling 

problem regularly has a small feasible search space. 

Purely random generation of activity sequences 

results in a large number of infeasible solutions. In 

this study, we used a permutation-based simulation 

procedure to produce an initial population of 

precedence-feasible chromosomes (Hartmann and 

Drexl, 1998). The permutation encoding method 

creates an initial population based on its size. The 

objective of this step is to determine a set of activity 

lists (initial population) by using five dispatching 

rules: SPT (shortest processing time); LPT (longest 

processing time); critical path and SPT; critical path 

 
 

Figure 1. Flowchart of the proposed genetic algorithm 

 

 

 
 

Figure 2.  The pseudo-code of the proposed genetic 

 algorithm 

overall procedure: GA algorithm for task scheduling 

input: job constraints, resource information, GA parameters 

output: solution from the GA algorithm 

begin 

 n←0; //n: generation number 

//Step 1: Construct initial population 

  create Population(n) consists of Y chromosomes; //Y: population size 

  repair Population(n); repair Y chromosomes based on task constraints 

 while (not terminating condition of GA)  

 do  

//Step 2: Evaluate performance of each chromosome 

  Each chromosome is evaluated by the makespan 

//Step 3: Selection 

 apply elitist method to Population(n); 

 select Parent(n) from Population(n) by roulette wheel method; 

//Step 4: Apply genetic operators 

 crossover Parent(n) to get Offspring(n);  

 mutate Offspring(n) to get MOffspring(n); //MOffspring: mutated offspring 

 repair MOffspring(n); 

 Population(n+1)←a sequence from elitist method and MOffspring(n); 

 calculate makespan of Population(n+1); 

 n←n+1; 

 end; 

 select the sequence with minimum makespan from Population(n); 

output: solution from the GA algorithm 

end; 
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and LPT; and random rules. The number of activity 

lists generated depends on the required population 

size. For example, if the population size is set to  

10, this method creates two equal chromosomes 

(activity lists) for each dispatching rule. However, 

only chromosomes that meet precedence constraints 

are considered. Otherwise, they need to be repaired 

before being evaluated. According to the chromosome, 

[5-6-4-10-9-1-3-7-2-8] in the previous step is not  

a proper sequence for the precedence constraints in 

Figure 3. Then, a repair process is carried out by 

exchanging the position of activities (genes) of the 

same priority and a new chromosome is formed in 

the population, for example [5-6-4-2-8-1-7-9-3-10]. 

 

Evaluation of Fitness Value 

In each generation, all chromosomes in  

the population are evaluated by the fitness function.  

The chromosomes with better fitness values are 

included in the mating pool to form new offspring 

(child chromosomes). The fitness function (Fi) of 

the proposed GA is defined in Equation (1). The 

fitness value represents the makespan (Cmax). The 

objective function is to minimise the makespan. 

Then, the chromosome that has the lowest value is 

considered the best current solution. Selection of 

chromosomes with better fitness value enables the 

GA to reach solutions in a shorter period of time. 

 

Fi= Minimize Cmax (1) 

 

A chromosome is an activity list formation 

which is a representation of the schedule. In this 

step, RCPSP is used to schedule the resource 

demand of each activity for the sequences and 

resource allocation methods. To evaluate the fitness 

value of each chromosome, we applied the earliest 

start time (EST) algorithm since it is simple and 

efficient and is widely used to minimise the 

makespan. Furthermore, the workgroup of the 

activity was considered for scheduling resources. 

Therefore, the workgroup and earliest start time 

(WEST) algorithm was also applied to evaluate the 

fitness value in this study. 

EST is one of the greedy algorithms that are 

used to solve scheduling problems. According to the 

sequences of each activity list (chromosome) 

generated from the previous step, EST first 

considers the resource which prompts the activity. 

In case the number of available resources is higher 

than demand, EST takes the resource prior to the 

lowest identification number. This process is 

repeated until all the activities are accomplished, 

then the duration (makespan) of each chromosome 

is calculated. The schedule of the chromosome  

[5-6-4-2-8-1-7-9-3-10] can be represented as in 

Figure 4. 

The WEST algorithm, according to EST, takes 

into account the workgroup to which the activity 

under consideration belongs. Aircraft maintenance 

(assembly and disassembly) activities are mostly 

operated in the hangar. Therefore, the resources 

required are moved to the hangar. When the activity 

considered is in the same workgroup and requires 

the same resource as the previous activity, the 

resource that operates the previous activity is 

assigned first. The reason is to reduce the moving 

time of resources and equipment between 

workgroups that are usually in different locations. 

For example, the schedule of the same chromosome 

[5-6-4-2-8-1-7-9-3-10] would be represented in  

a different way as shown in Figure 5. 

 

Selection Operation 

The objective of this step is to select parent 

chromosomes (sequences of activity lists) obtained 

from the previous step. This study applied two 

selection methods: called elitist and roulette wheel 

(Pasala et al., 2013). The elitist method selects the 

 
 

Figure 3. An example of a network information 

 

 

 
 

Figure 4. Schedule of operations of the EST algorithm 

 

 

 
 

Figure 5.  Schedule of operations of the WEST 

 algorithm 
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sequence of activity lists that offers the minimum 

fitness value, while the roulette wheel method is  

a probabilistic selection. The reciprocal of the 

fitness value and the probability of each sequence of 

activity lists are calculated by Equations (2) and (3), 

respectively. Then, the parent sequences of activity 

lists are selected based on the probability interval of 

each sequence of activity lists by using random 

numbers. This method uses the strength of each 

chromosome to create area proportions (probability) 

on the wheel. Let h be the sequence index of the 

activity list starting from 1 to Ps (population size) 

and Rh and Ph be the reciprocal of the fitness value 

and the probability of sequence h:  

 

Rh=
1

Fh
 (2) 

 

Ph=
Rh

∑ Rh
Ps
h=1

 (3) 

 

Crossover Operation 

Two individuals, denoted as parent 

chromosomes, are selected from the previous step. 

To produce a new generation, their genes are 

exchanged in a certain order to obtain offspring 

(new child) chromosomes. There are several 

crossover operators in the literature for creating new 

child chromosomes. In this study, we applied two 

well-known crossover operators, i.e. partially 

mapped crossover (PMX) and position-based 

crossover (PBX), since they always offer good 

offspring for permutation encoding (Sukkerd and 

Wuttipornpun, 2016). Note that the crossover 

process is allowed when a random number is less 

than the crossover probability (Pc). 

PMX is one of the most popular and effective 

crossovers for order-based GA to deal with 

combinatorial optimisation problems (Ting et al., 

2010). Duplicate numbers in the offspring 

chromosomes are not allowed. To address the issue 

of the legality of an order, PMX uses a mapping 

relationship to legalise the offspring that have 

duplicate numbers. Figure 6 illustrates how PMX 

legalises offspring. First, two points on Parent 1 and 

Parent 2 that will create three substrings are marked 

as shown in Step-1. Substring 2 (4-2-8-1-7) of 

Parent 1 and (6-2-5-3-7) of Parent 2 are then 

exchanged to produce proto-offspring in Step-2. 

However, this results in duplication of the genes (5, 

6, 3) that appear twice in proto-offspring 1 as well 

as the genes (1, 4, 8) in proto-offspring 2. To fix the 

illegal offspring, Step-3 partially maps the genes in 

substring 2, e.g. ‘6’ to ‘4’, ‘5’ to ‘8’, and ‘3’ to ‘1’. 

Then, the duplicated genes in substring 1 and 

substring 3 are replaced with the corresponding 

genes in the mapping relationship as shown in  

Step-4. 

PBX was proposed by Syswerda (1991). First, 

a random set of positions is selected in the parent 

strings, for example, a pair of parents as shown in 

Figure 7. Suppose that the second, fifth and eighth 

positions are selected as shown in Step-1. The first 

offspring’s positions are filled by selecting the same 

positions of Parent 1. Then deselected positions of 

Parent 2 are taken in order from left to right without 

duplicate number. The same procedure is applied  

to the second offspring. The results are shown in 

Step-2. 

 

Mutation Operation 

The mutation operator is applied to prevent the 

offspring sequences from falling into a local 

optimum area. Two mutation methods, SWAP and 

INSERT, were applied in this study since they are 

very efficient for permutation encoding. These 

random operators enable individuals to make a new 

combination. Similar to the crossover process, the 

mutation process is allowed when a random number 

is less than the mutation probability (Pm; Chen  

et al., 2013). However, similar to the initial step, the 

sequences of the new combination must respect the 

precedence constraints. Otherwise, they need to be 

repaired before the fitness value is evaluated. Then, 

the existing population is replaced by a new 

generation obtained by this step. This is followed by 

checking the stopping criterion. If it is not satisfied, 

a new loop from the selection operation process is 

started to find a new generation of the population. 

For example, suppose that mutation probability 

(Pm) is 0.01 and the random numbers of the two 

offspring in Figure 6, [8-4-6-2-5-3-7-9-1-10] and 

[3-6-4-2-8-1-7-5-9-10], are 0.5 and 0.004. Since the 

random number of the second offspring is less than 

Pm, the sequence of this offspring is mutated. In the 

SWAP mutation method, two genes on the 

chromosome are selected at random and exchange 

 
 

Figure 6. Example of partially mapped crossover 

 (PMX) 

 

 

 
 

Figure 7. Example of position-based crossover (PBX) 

Step-1. Select the substrings  Step-2. Exchange substring 

Parent 1 5 6 4 2 8 1 7 9 3 10  Offspring 1 1 6 4 2 8 5 3 9 7 10 

Parent 2 1 4 6 2 5 3 7 8 9 10 Offspring 2 6 4 2 1 5 7 9 8 3 10 
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the values, while the INSERT mutation method 

moves a randomly chosen gene to another randomly 

chosen position, as shown in the examples in 

Figures 8 and 9, respectively. 

Experiment and Analysis 

The experiments described in this section used the 

MATLAB programme on a desktop computer with 

an Intel® CoreTM i5 Duo Processor 3 GHz and 4 GB 

RAM. The AHM case study was the same as in our 

previous work (Weeranant and Pimapunsri, 2017). 

The network information was rearranged following 

the precedence constraints using the design structure 

matrix (DSM) method (Yassine and Braha, 2003; 

Yassine, 2004). The characteristics of the case study 

were as follows: the number of activities was 317; 

the number of workgroups was 5; and the number of 

resource groups was 12. This experiment was 

conducted based on a factorial design. The stopping 

criterion was computational time which was 120 

minutes maximum. There were five parameters  

with two algorithms, in which the total runs were 

(5×2×3×2×3)×2 algorithms = 360 runs which 

required 720 h. The parameters used in this 

experiment are shown in Table 1. 

The response variable of the experiment was 

the makespan obtained from each run. Table 2 

illustrates the results of the minimum makespan 

obtained from the EST and WEST algorithms. 

Although both algorithms offered the same 

minimum makespan of 32.995 days, the EST 

algorithm consumed less time than the WEST 

algorithm in the overall results. To evaluate the 

performance of both algorithms in terms of 

computational time, the convergence curves of the 

EST and WEST algorithms are shown in Figures 10 

and 11, respectively. The best parameter setting of 

the algorithms that found the minimum makespan 

with the least time, 4.90 min for EST and 34.31 

minutes for WEST, are shaded in Table 2. 

Table 3 shows the results for minimum 

makespan and resource demand. In the case of 

resource allocation, the WEST algorithm required 

115 units, while the EST algorithm required 130 

units. Compared to the plan estimated by the priority 

rule-based heuristic in Weeranant and Pimapunsri 

(2017) and an experienced planner, the makespan of 

the proposed algorithms was significantly improved 

by 25.7-29.8%, while the peak resource demand was 

improved by 4.4-15.4%. 

Conclusions 

This study proposed genetic algorithms to solve 

RCPSP in AHM. Heuristic dispatching rules were 

applied to determine a set of initial sequences of 

activity lists as an initial population. The fitness 

value was calculated by two algorithms of resource 

scheduling, EST and WEST, to obtain the makespan 

of each chromosome. The roulette wheel method 

was applied to select the parent chromosomes which 

subsequently evolved by crossover and mutation 

 
 

Figure 8. SWAP mutation operator 

 

 

 
 

Figure 9. INSERT mutation operator 

 

 
 

Figure 10. Convergence curves of the EST algorithm 

 

 
 

Figure 11. Convergence curves of the WEST algorithm 

Offspring 2 3 6 4 2 8 1 7 5 9 10 

           

SWAP Mutation  3 5 4 2 8 1 7 6 9 10 

 

Offspring 2 3 6 4 2 8 1 7 5 9 10 

           

Insert Mutation  3 5 6 4 2 8 1 7 9 10 

 

Table 1.  Parameters of the experiment 
 

Algorithm Ps Cross Pc Mutate Pm 

EST 
5, 10, 30, 60 100 PMX PBX 0.7, 0.8 0.9 SWAP INSERT 0.05, 0.01 0.1 

WEST 

Ps: Population size; Cross: Crossover operator; Pc: Crossover probability; Mutate: Mutation operator; Pm: Mutation probability. 
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processes to produce a new generation of the 

population. The performance of the proposed 

algorithms was controlled by the parameters of GA: 

population size, operators and their probability of 

crossover, and mutation processes. The results of 

the experiment indicate that the proposed algorithms 

are more efficient than the existing plans for 

determining project makespan and resource 

allocation. Due to the probabilistic nature of GA, the 

proposed algorithms do not guarantee optimality. 

However, the results obtained from the proposed 

algorithms are clearly shown to be a significant 

improvement over master plan and priority rule-

based heuristic methods. Future research will focus 

on other types of checks and heavy maintenance 

visits of other aircraft which usually have more or 

less distinct characteristics, e.g. number of 

activities, number of resources and resource groups, 

number of workgroups, etc. This future analysis is 

necessary to make the algorithm applicable to a 

wider range of case studies. 
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10 0.7 PBX 0.1 SWAP 43.02  30 0.7 PBX 0.1 SWAP 107.04 
10 0.9 PMX 0.05 SWAP 18.82  30 0.8 PMX 0.01 SWAP 119.74 

30 0.7 PMX 0.05 SWAP 38.90  30 0.8 PMX 0.1 SWAP 34.31 

30 0.7 PBX 0.1 SWAP 50.46        
30 0.8 PBX 0.05 SWAP 53.00        

30 0.9 PMX 0.05 SWAP 20.55        

60 0.7 PMX 0.1 SWAP 26.16        
60 0.8 PMX 0.01 SWAP 29.75        

60 0.8 PMX 0.1 INSERT 74.81        

60 0.9 PMX 0.05 INSERT 23.87        
100 0.8 PMX 0.1 INSERT 38.11        

100 0.9 PMX 0.1 INSERT 84.37        

Ps: Population size; Pc: Crossover probability; Cross: Crossover operator; Pm: Mutation probability; Mutate: Mutation operator. 

 

 

Table 3.  Results of makespan and resource demand analysis 
 

Algorithm Makespan (days) Max. of Resource Demand (units) 

Master plan 47.000 136 

Priority rule-based heuristic 44.420 136 

Genetic algorithm: EST 32.995 130 
Genetic algorithm: WEST 32.995 115 
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