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Abstract. Recently, many researchers tried to generate
(generalised) maps using deep learning, and most of the
proposed methods deal with deep neural network architec-
ture choices. Deep learning learns to reproduce examples,
so we think that improving the training examples, and es-
pecially the representation of the initial geographic infor-
mation, is the key issue for this problem. Our article ex-
tracts some representation issues from a literature review
and proposes different ways to represent vector geographic
information as a tensor. We propose two kinds of contribu-
tions: 1) the representation of information by layers; 2) the
representation of additional information. Then, we demon-
strate the interest of some of our propositions with exper-
iments that show a visual improvement for the generation
of generalised topographic maps in urban areas.

Keywords. Cartography, Deep learning , Map generalisa-
tion

1 Introduction

Deep learning is a new way to generate maps without GIS
tools, and some recent experiments show it can even in-
clude map generalisation transformations. Most of these
experiments focus on the network architecture and omit to
investigate the training set as a way to improve the map
output. The most common way to compile a set of train-
ing images is to apply a raw symbolization on the vector
data, then to tile the symbolized data, and finally to ras-
terize the tiles. The way the input data is presented to the
neural networks is not always adapted to the target task,
i.e. generating a map. In fact, as deep learning relies on
knowledge extraction from examples, it is necessary that
the input data carries not only the clear location and shape
of the geographic objects but also some contextual infor-
mation and implicit knowledge (e.g. road nature or role
in the road network). Especially when the target map in-
cludes some abstraction, or generalisation, the notions of

Prediction

Figure 1. Examples that illustrate the main representation issues
from (1. Isola et al., 2018)(2. Courtial et al., 2021b)(3. Kang
etal., 2019)

importance, patterns and spatial relations are essential, but
are badly accessible in the inputs from the literature. Fig-
ure 1 summarizes some examples of tiles from previously
published experiments that illustrate these representation
issues:

1. The images are only small extracts of a map, arbi-
trarily tiled, and the information just outside the tile
is often necessary to properly generate the map. This
problem is similar when we want to parallelize the
generalization of small adjacent tiles to reduce the
amount of processed data (Touya et al., 2017). For
example, Figure 1, line 2 includes the collapse of the
city centre into a built-up area polygon, but this task
requires the whole city to be visible.

2. The resolution of the images is sometimes not suf-
ficient; for example in Figure 1 (lines 1 and 3), the
thin roads are not preserved during map generation
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because they cannot be really distinguished in the in-
put image.

3. Objects of different types may have a similar colour,
and thus may be considered as similar by the neu-
ral network. Two examples of this problem can be
seen on Figure 1, line 1 with park and roads; and
line 2 with buildings and the built-up area that have
a close colour. In both these cases, another character-
istic (size, arrangement, shape, texture, etc.) allows a
human to distinguish them but the network might not
be able to make this distinction with a few examples,
and does not succeed to generate the rare feature (the
park in line 1 and the built-up area in line 2 of Fig-
ure 1).

4. Object overlaps or very thin separations involve infor-
mation loss in the raster input, compared to a vector
representation. This problem causes disconnections
(Figure 1, line 2).

5. Spatial relations are hardly accessible, as they involve
the notion of groups of geographic objects not explic-
itly encoded in the image. Thus, the preservation of
spatial relations is challenging.

We hypothesize that an augmented representation of infor-
mation with extra layers of information encoded in a ten-
sor would alleviate these issues and allow the network to
see the context beyond the tile, understand the object im-
portance, and preserve spatial relations. Tensors are math-
ematical generic objects that represent an information, im-
ages are particular tensor in IR®. Thus, we propose new
ways to create input tensors for the neural networks ded-
icated to map generation, and test their suitability for the
use case of urban topographic map generation.

This article is organized as follows: in Section 2 we present
a literature review of deep learning techniques employed
for map generation. Section 3 proposes an improved repre-
sentation of geographic information to solve these issues.
Then Section 4 presents some experiments and their re-
sults.

2 Related Work
2.1 Generating Maps With Deep Learning

The main application of deep learning techniques in geo-
graphical information science is remote sensing, e.g. (Zhu
et al., 2017), but these techniques also prove successful to
recognise features from map images (Chen et al.; Touya
and Lokhat, 2018) or to classify map images (Schniirer
et al., 2020; Hu et al., 2021). But our focus is on map
generalisation (Du et al., 2021; Feng et al., 2019; Cour-
tial et al., 2020a), so we are more interested in deep ar-
chitectures that can generate a map image. The task of
generating an image of a map with deep learning appears
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to be associated with the generative adversarial networks
(GAN) that generate an image from an input image with
two adversarial neural networks. In the literature, most ex-
periments of map generation with GAN are about gener-
ating an image of a map in the style of GoogleMap from
the corresponding aerial photograph, and vice versa. Isola
et al. (2018) proposed a generic image-to-image transla-
tion model called Pix2Pix, which was later improved by
many researchers to better deal with the generation of
maps (Ganguli et al., 2019; Chen et al., 2020; Zhang et al.,
2020; Li et al., 2020). In their work, the scale of the style-
transferred map is similar to that of the aerial photograph.

Some other experiments have explored the generation of
other kinds of maps or from stylized geographic informa-
tion: e.g. Google map from OSM stylized data or artis-
tic map from GoogleMap (Kang et al., 2019), topographic
map from detailed national map agency data (Courtial
et al., 2021b). These examples involve more complex car-
tographic processing, especially map generalisation, and
are therefore more sensitive to the representation issues
highlighted in the introduction of this paper.

2.2 Representing Spatial Data for Deep Learning

Representation is a basic issue in deep learning, where the
success of learning depends on how the training exam-
ples are a faithful representation of the target task (Bengio
et al., 2014). The potential of representing spatial vector
data in a graph for deep learning has already been demon-
strated (Yan et al., 2020; Iddianozie and McArdle, 2021).
On the other hand, because it is also natural to represent
map data as raster images for deep learning, the way in
which information is encoded is very rarely questioned.

In a map generation task, the representation issues are
mostly related to the raster representation of geographic
information and are common for all raster approaches for
map generalisation (Touya et al., 2019), even without deep
learning (Shunbao et al., 2012). Moreover, for a map gen-
eralisation task, you often need to look around the feature
you generalise to know how to optimally generalise it: for
instance, you need to take the whole block into account
to generalise a building in a city (Ruas, 1999). In raster
mode, some first experiments have been proposed to de-
termine an adapted tiling method that has no border effect.
For instance, a tiling method that follows the orientation
of the line to improve its generalisation has been proposed
(Du et al., 2021), while other proposed a method to pro-
duce image tiles entirely included in an urban block in or-
der to improve the land use classification of these blocks
(Huang et al., 2018). However, these proposals seem to be
insufficient for the above-mentioned issue. Therefore, we
propose in the following sections different ways to repre-
sent the vector data as an input tensor for GAN models.
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3 A Better Representation of Vector Geographic
Information

In this section we propose a new representation method
to improve the generation of map. This proposal is illus-
trated in Figure 2 : the generation is based on both a raw
input information organized by themes, and additional in-
formation. In a usual representation, for a s— size tiles, the
input tensor dimension is s X s X 3 as the image is encoded
in RGB. In our proposal, the input tensors dimension is
sx sxmnands X sXxm,where n is the number of layers
in the map, and m is the number of additional information
tensor.

3.1 Input Representation for Map Generation

We propose, instead of the symbolized representation of
input data, to represent geographic information by layer,
called Layered Representation, where each layer is a bi-
nary mask that describes a single layer of map objects (e.g.
buildings), as presented in Figure 3. Such a layered rep-
resentation should be able to avoid the information loss
caused by the overlap of map symbols, limit the confusion
between themes with similar colours and simplify the un-
derstanding of intra-group spatial relations as objects of
the same group are in the same layer.

3.2 Representation of Additional Information

As traditional map generation often requires data enrich-
ment (Mackaness and Edwards, 2002), the deep learning
approach also needs additional information. Indeed only
showing the location and the shape of an object in a tile
(whether in a symbolized or layered representation) does
not convey all necessary information for map generalisa-
tion. The FuseNet architecture has been proposed to com-
bine two images/tensors (a photograph and a depth map
initially) as input (Hazirbas et al., 2016). We propose to
this architecture to combine the additional information to
our layered representation. This architecture requires that
additional information be structured in a tensor of the same
size as the main tensor, where pixels at the same position
are associated (describe the same portion of the ground).

The three main missing information are the context of the
image, semantic attributes about the presented objects, and
information about the relevance or the importance of each
map extract.

3.2.1 Adding Semantic Information

First, attribute information provides essential information
on objects. For example, in Figure 4 the nature of the road
(symbolized on the right of the figure) is needed to under-
stand the situation, i.e. the importance of each road section
in the network.
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When the semantic information is a categorical variable,
we cannot encode it as a unique additional dimension in
the tensor; the algorithm considers the values in the tensor
as quantities. Consequently, we propose to make a binary
layer in the tensor for each category of the variable. For ex-
ample, if we want to encode the category of each building,
we would not make an image with one colour for each cat-
egory (Figure 5 .a) but several masks (Figure 5 b to d): the
additional tensor to be combined with the layered tensor
presented in Section 3.1 has a dimension s X s X m where
m the number of building categories.

3.2.2 Adding Spatial Context

Then, Figure 6 illustrates how the map generation task re-
quires a fine understanding of the spatial context around
the tile. On the left image, it is not possible to determine
which roads are important and should be kept in case of
generalisation, however, the contextual map on the right
shows that the T-shape intersection is a crossroad between
two important roads, while the others are minor roads.

Thus, we propose to compute contextual global measures,
and to encode them on the objects of the tile as additional
semantic information. For example, we can calculate the
centrality of a road section in a road network, or the den-
sity of urban blocks, to give context to an image that does
not show a complete block, or calculate for each pixel the
slope of surrounding areas.

This contextual measure is often a quantitative variable, so
it can fit into a tensor with dimension s X s x 1 where s is
the size of the image in pixels. But the quantitative value
has to be ranged through mathematical transformation. In-
deed, the additional tensor must have the same range as the
main information, i.e. a floating value between 0 and 255.
This requirement also enables the visualisation of the in-
formation as a grayscale image. This transformation has to
be adapted to the sub-type of data (continuous or discrete)
and to the distribution of data. For example, the Horton or-
der is a contextual measure calculated on rivers that gives
the importance of a river (Horton, 1945; Touya, 2007).
The Horton order is an integer value between one and the
positive infinite, but the construction method makes that
most of the rivers have a small value while very few rivers
have a large value (the distribution is a hyperbole). Thus
we propose to use the following transformation to convert
the Horton order into a tensor value between 0 and 255:
n — 255 (1 —1/(n+1)). This example is illustrated in
Figure 7.

3.2.3 Adding Focus Areas

Finally, we want to add some information about the impor-
tance of a given tile, or of a region within the tile. This ad-
dition aims at balancing the effect of under-representation
of some situations in the data set (e.g. interchanges, round-
abouts, alignments, etc.), and it may indicate the network
where the map generalisation does not follow the general
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Figure 2. Conceptual diagram of the proposed information representation for map generation.
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Figure 4. Illustration of the interest of semantic information

rule. For example, Figure 8 illustrates an issue in preserv-
ing a building alignment due to the lack of examples of
building alignments in the training set. To improve the way
the model deals with such situations it can be useful to
highlight them with focus areas.
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Figure 6. Illustration of the interest of contextual information

4 Experiments

We carried out some experiments to demonstrate the inter-
est of our proposed representation of vector data for (gen-
eralised) map generation.

4.1 Implementation

This section presents the common material for our experi-
ments. To illustrate the interest of representation, the basic
and improved training sets are made from the same vec-
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Figure 7. Value and representation of Horton order in an addi-
tional tensor.

‘ Input H
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Figure 8. Illustration of the alignment preservation problem:
building alignments are not well respected in generated maps.

tor data, that cover an area of 30* 15 kilometres in the
southwest of France. A detailed database for maps at the
1:25,000 scale of roads, water features and buildings, and
their generalisation for cartography at the 1:50,000 scale.
There is also a layer of the city centre that needs to be
grayed at the generalised scale (Touya and Dumont, 2017).

To evaluate the success of learning, without real formali-
sation of the evaluation process for maps generated using
deep learning (Courtial et al., 2020b), we decided to only
evaluate visually the results for each task. Our visual eval-
uation is guided by the following constraints for a gen-
eralised topographic map (Courtial et al., 2021b) : (C1)
Buildings should be bigger than a minimum size; (C2)
the smallest edge of the buildings should be greater than
a minimum value (granularity constraint); (C3) The build-
ings should not be too close to the roads symbols; (C4) The
buildings should not be too close to each other; (C5) The
density of buildings in a block should remain stable; (C6)
Building patterns should be preserved; (C7) Topological
relations have to be preserved.

This map generation task involves a GAN (Isola et al.,
2018) that aims at the generation of a new image that looks
like the target images from our training set. This architec-
ture combines a generator that creates the image and a dis-
criminator that evaluates if the generated image looks like
the target domain. The generator for map generation with-

out additional information is a U-Net (Ronneberger et al.,
2015) while the experiments on additional information use
a FuseNet (Hazirbas et al., 2016).

The code to generate layered images from vec-
tor data is published as a plugin of CartAGen
open source map generalisation software. Data and
code for map generation are openly available here:
https://doi.org/10.5281/zenodo.5767663.

4.2 Layered Representation

Figure 9 compares the predictions of models trained with
the symbolized and layered representations for the genera-
tion of generalised topographic maps at the 1:50 000 scale.
We observe that the unexpected deletions and overlaps of
roads and buildings are less numerous in the images gener-
ated from the layered representation, while the rest of the
constraints are similarly satisfied. It shows the usefulness
of the layered representation that allows the input image to
convey a full and legible shape for each objects.

‘ Prediction learned from ‘
Input
(symnl?ctjlised) Symbolised By layer Target
representation representation
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Figure 9. Comparison of images generated with symbolised and
layered representations.

4.3 Adding Context for Road Selection

Then, we tested the addition of information for the gen-
eration of tiles with road selection, i.e. the deletion of
the least important roads. The road network structure and
the main roads should be preserved but the road network
density should be reduced. This process seems impossi-
ble with just an isolated tile where the semantics and con-
text of the road are not accessible (Courtial et al., 2020a).
Thus, an additional information is calculated on the whole
road network, with a graph convolutional network (Cour-
tial et al., 2021a). Figure 10 illustrates the representation
of this probability to be kept during a generalisation at
1:50,000 using the whole road network, to assess the im-
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portance of the road in an image. The pixel has the value:
255 % (1 — p) with p the probability to be selected.

Extra information
Road probability map

Main information
Road layer

Building layer

Water layer

Figure 10. Illustration of the representation of road context as an
additional information.

Figure 11 compares images generated with and without
this information. It shows that the global structure of the
road network is better preserved with extra information,
and unexpected disconnections of roads are less numerous
with the additional information. This experiment demon-
strates that (1) the calculated information is relevant for
road selection, and (2) the integration of additional infor-
mation is really promising when the tile does not convey
the complete necessary information.

Inputs Prediction learned from

Base representation Target
and extra
"o TR N o |R¥0, S\ V& &
”» \X e d ﬁll‘ 0
(T -.
- -
oy s

Shapes and location | Extra

Base rep

(@) e,
PRPR AN

Figure 11. Comparison of images generated with and without
contextual information on the road network.

4.4 Focus Areas for Building Alignments

In our last experiment, we tested the interest of integrat-
ing information that emphasize spatial relations, and es-
pecially building alignments. We hope this representation
would encourage their preservation. The alignments are
obtained by manual annotation but automated methods ex-
ist (Zhang et al., 2013). Figure 12 illustrates several ways
to represent this information as a focus mask.

We trained a GAN to generate a map with our data, with
and without the focus area, then we tested the model on
different area. Figure 13 presents the results of this ex-
periment, we observe that both the prediction are unclear
and do not preserve alignments. Images generated with ex-
tra information are bad, but this experiment conveys fewer
fake structures.
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main information

Some representation of extra information

Aligned buildings Structuring roads Regular Areas Alignement axes
-

Figure 12. Illustration of different possible representations for
alignment focus areas.

Prediction learned

With extra
informations

From base
representation

Figure 13. Comparison of prediction realized with and without
alignment emphasize.

A similar test with the structuring road focus area show
no difference, consequently, the representation using area
seems to be better to generate better areas. But using focus
areas as additional input data in a FuseNet is not only so-
lution to provide focus areas to the model. We believe that
a better solution would be to use the focus areas in the loss
function of the network, to highlight on pixels that should
be weighted more than the other pixels of the image. This
way, the network would mimic more faithfully how the
alignments are generalised in the training examples. We
plan to test this proposition in further experiments.

5 Conclusion

In conclusion, this paper proposed two ways to better rep-
resent vector spatial data for a deep learning based map

6 of 8



generation task: a layered representation rather than a sim-
ple image, and an additional tensor to convey semantic and
contextual information. Our first experiments confirm that
the proposed representation improves the quality of gener-
ated maps.

The main limitation of this work is about evaluation: a
good evaluation method for map generalisation would help
us to compare and measure the interest of each proposal,
but foremost a measure of training set quality is lacking. It
could be seen as an "evaluation for tuning" process (Mack-
aness and Ruas, 2007), which is an major step in tradi-
tional map generalisation. This measure of training set
quality should at least include measures of the legibility
and completeness of input information and the correctness
of the target image.

Finally, the layered organization of data offer the opportu-
nity to apply diverse learning strategy and network archi-
tectures to each geographic theme, within a framework for
deep learning map generalisation. As map generalisation
is a complex problem, and most of the proposed deep neu-
ral networks improve only one part of the generated map,
we think such an approach is more promising than a single
end-to-end model.
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