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Text-guided visual representation learning for medical image retrieval systems

Radiologists are now confronted with the difficulty of interpreting cross-sectional studies composed of thousands of images. In hospitals, all acquired imaging data are stored in a picture archiving and communication system (PACS). To take advantage of these masses of previously interpreted images, with the ultimate goal to facilitate the diagnosis of new cases, a promising approach would be to integrate a Content-Based Image Retrieval (CBIR) system into PACS. CBIR system performances are inherently limited by the features considered to represent the images. The current state of the art for the extraction of visual features relies on deep learning which requires a sufficient amount of annotated data to learn a generalizable model, such annotated data being rare and difficult to use in medical imaging. At the same time, PACS contain additional information such as radiological reports which supplement visual information carried by the images. We study here how such semantic information, hidden in these reports, can be used to supervise the learning of neuronal models to build a better visual representation of images. In this context our contribution is threefold. We first adapted a contrastive learning approach, which is usually used to learn representation from pairs of positive images in an unsupervised manner, to deal with in-domain medical data. Second, to train such a model to be robust and generalizable with a sufficient amount of data, we propose to re-employ the "dormant" medical imaging literature. Finally, the visual features and the deep models learned in this way, can be considered in CBIR systems as coarse-grained information which can then be fine-tuned in PACS, with more specific images depending on the applications. The obtained experimental result with state of the art contrastive learning methods highlight the interest of this approach.

I. INTRODUCTION

The field of diagnostic imaging in Radiology has experienced tremendous growth both in terms of technologies (e.g., new modalities) and market expansion. This leads to an exponential increase in the production of imaging data, moving the diagnostic imaging task in a big data challenge. However, the production of a large amount of data does not automatically allow the full exploitation of its intrinsic value for healthcare. A promising approach to maintain interpretative accuracy in this "deluge" of data is to integrate computer-based assistance into the image interpretation process.

When facing complex cases during image interpretation, radiologists tend to compare them to known cases to establish a diagnosis. Cases are read on a PACS (Picture and Archiving Communication System) which stores all clinical / imaging data produced by the hospital. However, such systems are built for archiving and visualization purposes only. To search for a specific case, radiologists can only search by keywords which is suboptimal and requires the radiologist to have actively tagged the previous cases. PACS cannot therefore fulfill the function of diagnostic aid when the radiologist is confronted with an image of difficult interpretation or rare pathology. An important achievement would be to integrate a Content-Based Image Retrieval (CBIR) system in PACS so that physicians could search for known pathological cases using query images. CBIR is usually performed by example, where a query image is given as input and an appropriate distance is used to find the best matches in the corresponding feature space.

Under CBIR models, images are indexed using visual features extracted from their contents. Pioneer approaches use (unsupervised) hand-crafted descriptors to measure the image similarities based on color, texture, shape, gradient, etc. In medical imaging, such features remain often inaccurate to represent image characteristics. They are especially inappropriate when it comes to discrimination capability and scalability over large image datasets [START_REF] Dubey | A decade survey of content based image retrieval using deep learning[END_REF], [START_REF] Alzu | Deep learning model with lowdimensional random projection for large-scale image search[END_REF]. Another approach is the use of distance metric learning which tends to outperform handcrafted approaches. This approach is widely used in feature vectors representation but is also explored in CBIR. It mainly focuses on the optimization of the similarity measure for classical machine learning methods used in image retrieval. However, such approaches remain limited when it comes to non-linear data as they rely on linear distance functions [START_REF] Hoi | Learning distance metrics with contextual constraints for image retrieval[END_REF], [START_REF] Dubey | A decade survey of content based image retrieval using deep learning[END_REF]. The emergence of deep learning in the last decade, especially of Convolutional Neural Networks (CNN) for image data, induced a major shift in feature representation. During the last decade, the state-of-the-art pipeline of the hand-crafted approach was replaced by a CNN based feature learning. This shift was mainly induced by the huge quantity of newly available data which improved the performance of deep learning [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF]. The main limitation of deep learning approaches is their dependence on large quantities of labelled data. In medical imaging, these annotated data are rare since they require expert labeling thus making it difficult to compete with large annotations campaigns. Yet, existing works primarily relying on transferring model weights from ImageNet pretraining tend to be suboptimal on medical images [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF].

At the same time, PACS contain additional information such as radiological reports which supplement the visual information carried by the images. Some effort towards the automation of label extraction from such reports were made but remain limited as the extraction rules remain inaccurate, limited to a few major categories and domain-specific. From this textual information, Zhang et al. [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF] introduced the Con-VIRT framework to supervise visual representation learning with radiological reports. This approach was then brought to natural images with the CLIP framework [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]. Here again, the availability of medical data (text and image) can make difficult the use of such approaches in the context of PACS and CBIR. Unlike natural images, access to labelled data remain a major burden when it comes to medical images as access to large quantity of data is restricted by the data protection legislation.

To face these limits, we propose here to use the "dormant" data from the medical imaging literature to supervise the learning of neuronal models to build a better visual representation of medical images. Databases like PubMed contain thousands of bibliographic resources (conferences, journal articles), including images and their textual captions illustrating clinical cases and pathologies. Such data constitute real masses of knowledge [START_REF] Examode | Extreme-scale analytics via multimodal ontology discovery & enhancement[END_REF] that we propose to exploit for the training of deep learning algorithms, with the ultimate goal to integrate CBIR systems in PACS. We adapt a contrastive learning approach, which is usually used to learn representation from pairs of positive images in an unsupervised manner (e.g., two different transformations applied on a same image create a positive pair), initially proposed for natural images [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF], to deal with the medical / clinical domain. Using the same principle, we view images and associated captions as positive pairs such as with the state of the art ConVIRT [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF] and CLIP [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] frameworks. In order to train deep learning models, we used the open-access dataset ROCO [START_REF] Pelka | Radiology objects in context (ROCO): A multimodal image dataset[END_REF] which is a large dataset composed of (80k) figures extracted from PubMed articles with their corresponding captions but without any label. We are therefore getting rid of any label constraint to use imagetext pairs that are naturally produced by medical experts in their routine workflow. The visual features and the deep models learned in this way, can be considered in CBIR systems as coarse-grained information which can then be fine-tuned in PACS, with more specific images (particular modalities or pathologies).

In Sec. II, we will present our contributions to learn image representation relying on contrastive learning enabling efficient feature extraction. This approach is then integrated in a CBIR framework and the latter is evaluated in the context of medical image retrieval on different settings and datasets (Sec. III). Discussions and perspectives are finally presented (Sec. IV).

II. TEXT-GUIDED REPRESENTATION LEARNING FOR

MEDICAL CBIR The general architecture of our CBIR pipeline is composed of two phases: 1) Indexation (offline) phase where we extract features from all available images to be stored in a feature database; 2) Search (online) phase where we extract features from a given query image; The query features are then compared to the features of the database using a similarity Fig. 1: A simple framework for contrastive learning of visual representations. Two separate data augmentation operators are sampled from the same family of augmentations (t ∼ T and t ′ ∼ T ) and applied to each data example to obtain two correlated views. A base encoder network f (•) and a projection head g(•) are trained to maximize agreement using a contrastive loss. Once training is completed, we throw away the projection head g(•) and use encoder f (•) and representation h for downstream tasks [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF]. measure, in order to rank the images based on their feature similarity relatively to the query image. Finally, we retrieve the K most similar images in decreasing order of similarity.

The relevance of the retrieved images is thus heavily reliant on the similarity score computation which is dependent on two key aspects: The similarity measure and the feature extraction. For the similarity measure, we use the classical cosine similarity. In the following, we will present our methods to learn image representation, relying on contrastive learning from text supervision.

A. Contrastive learning of image representation

A way to learn fine-grained visual representations in an unsupervised manner was introduced with Siamese networks [START_REF] Wang | Learning fine-grained image similarity with deep ranking[END_REF] by capturing the inter-class and intra-class similarities. A variation of this approach relies on Triplet networks [START_REF] Hoffer | Deep metric learning using triplet network[END_REF] which use an anchor, a positive and a negative image. The network thus tries to find the optimal visual representation by maximizing the distance between the negative and anchor images, while minimizing the distance between the positive and anchor images. More recent approaches require only positive pairs of images as introduced by Hinton et al. [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF] with the SimCLR framework. As illustrated in Fig. 1, positive pairs are obtained by applying two different transformations (e.g. crop, flip, rotation, etc.) to a same image. The extracted representations h i and h j are then projected in a shared latent space where the network maximizes the agreement between these two images. Once training is completed, we throw away the projection head and use encoder f (•) and representation h for downstream tasks, such as image description in our CBIR context.

However, such approaches are intrinsically restricted to the transformations applied to the original images to learn fine-grained visual features. What tends to naturally occur in clinical routines are pairs of image and text, as medical images are often associated with a text report including descriptive Fig. 2: Overview of the ConVIRT framework [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF]. The blue and green shades represent the image and text encoding pipelines, respectively. information about the image. We then propose to consider the additional descriptive semantic information hidden in text reports to learn more fine-grained visual representation, capturing intrinsically more subtle radiological concepts.

B. Learning medical visual representation from text supervision

Based on the SimCLR framework introduced in [8], Zhang et al. [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF] introduced the ConVIRT framework which uses positive pairs of image and text instead of positive pairs of images (Fig. 2). The architecture of this framework is composed of two branches: 1) Image features: A first branch uses an image encoder to extract features from images. In the original paper, the authors used ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] with ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] and random initializations; 2) Text features: A second branch uses a text encoder to extract features from reports. The authors used BERT with the Clinical BERT initialization [START_REF] Alsentzer | Publicly available clinical BERT embeddings[END_REF] (pretrained on MIMIC-III [START_REF] Johnson | Mimic-iii, a freely accessible critical care database[END_REF]).

Since no implementation of the model is publicly available, we adapted and implemented it according to our needs. The extracted representations h v and h u are in disjoint latent spaces. It would thus be incorrect to directly compare these two representations. Therefore, we add a non-linear projection function with learnable parameters on each branch, g v and g u , to project the two representations in a shared latent space. The representations pairs (v, u) of a minibatch of N input pairs

(x v , x u ) are thus expressed as v = g v (f v ( ∼ x v )) and u = g u (f u ( ∼ x u )), where ∼
x v is a transformation (e.g., crop, flip, etc.) of the input minibatch of images x v and ∼ x u is a minibatch of sampled captions extracted from each text in the input minibatch x u . f v and f u are the image and text encoders, respectively.

In this shared latent space, the network then tries to maximize the agreement between the two projected representations. To do so, it maximizes the correct pairing of (image, text) in the batch by minimizing the weighted summation of two bidirectional losses functions expressed as:

L = 1 N N i=1 λℓ (v→u) i + (1 -λ)ℓ (u→v) i
where N is the batch size and λ ∈ [0, 1] an hyperparameter (λ = 0.5 in our experiments to give equal importance to the two directions, as done in [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF]). ℓ (v→u) i and ℓ

(u→v) i are two contrastive losses optimizing the image-to-text and textto-image retrieval of the i-th pair, respectively. These losses are expressed as:

ℓ (v→u) i = -log exp (⟨v i , u i ⟩/τ ) N k=1 exp (⟨v i , u k ⟩/τ ) and ℓ (u→v) i = -log exp (⟨u i , v i ⟩/τ ) N k=1 exp (⟨u i , v k ⟩/τ
) where ⟨•, •⟩ is the cosine similarity and τ > 0 is a temperature parameter (τ = 0.1 in our experiments, as done in [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF]). In the case of CLIP, this is a learnable parameter as described in [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF].

C. Transferring natural images representation to medical images

Radford et al. [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF] introduced CLIP which uses a global architecture similar to the architecture of ConVIRT but trained on a dataset of 500 million natural image-text pairs thus providing robust text inspired visual features. Compared to ConVIRT, the image projection head is replaced by an attention pooling mechanism and the text projection head by a tensor with learnable parameters.

The major difference is in the loss implementation. It follows the same idea of predicting the correct pairings of a batch of (image, text) but by optimizing the matrices of cosine similarities between the image and text features to obtain the identity matrix as illustrated in Fig. 3. As mentioned above, the CLIP framework also uses a two-branches architecture with: 1) Image encoder: Two types of architecture for the image encoder; the first one being the ResNet-D improvements of ResNet-50 [START_REF] He | Bag of tricks for image classification with convolutional neural networks[END_REF], the second one being a Vision Transformer (ViT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]; 2) Text encoder: A Transformer [START_REF] Vaswani | Attention is all you need[END_REF] with the architecture modifications described in [START_REF] Radford | Language models are unsupervised multitask learners[END_REF] for the text encoder. Four pretrained models are publicly available: RN50, RN101, RN50x4 and ViT-B/32. RN50x4 being a model with the EfficientNet architecture [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF]. We will use these pretrained models as baseline methods.

As contributions, we propose to fine-tune these models on a medical dataset so that we would split our learning task into two parts: learning visual representation from text supervision, and learning medical visual representation. The first part would be "solved" using the CLIP framework which provides a robust text supervised (general) visual representation trained on millions of pairs of images / text captions. The remaining task would then be to adapt this representation to a medical context by using images with their associated medical reports. The main limitation of the available pretrained models is that they were trained on small general captions. We thus propose to improve this architecture by using a different in-domain (medical) text encoder, and to consider it for CBIR.

D. Towards Clinical CLIP

Methodologically, we replace the text encoder of the CLIP framework by the pretrained Clinical BERT, inspired from the ConVIRT framework, thus getting rid of the context limitation Fig. 3: Overview of the proposed Clinical CLIP model where we replace the text encoder of CLIP by the pretrained Clinical BERT. Adapted from [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF] and [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF].

imposed by the pretrained Transformer in the CLIP framework (Fig. 3). In addition, Clinical BERT was trained on MIMIC-III clinical notes [START_REF] Johnson | Mimic-iii, a freely accessible critical care database[END_REF] thus offering an in-domain initialization for this new architecture. We use the default Clinical BERT pooler instead of the [EOS] pooler proposed in CLIP as the default Clinical BERT pooler was performing better in our study. The number of unfrozen layers in Clinical BERT is optimized for each image encoder based on the validation loss.

For the image encoder, we use the publicly available and pretrained CLIP image encoders and replace the text encoder by the pretrained Clinical BERT. For both branches, we keep the same projection strategies mentioned previously. We will refer to the proposed improvement as "Clinical CLIP".

III. EXPERIMENTAL STUDY

As an experimental study, we evaluate the interest of considering our (in-domain) text-guided representation learning methods for a medical CBIR task.

A. Data for pretraining

As mentioned previously, our ultimate goal is to benefit from imaging data and radiological reports stored in PACS for pretraining our models for the extraction of image representations. However, due to obvious data privacy concerns and the "locked" access to data from commercial PACS used in hospitals, such an approach can be difficult to implement. As an alternative and proof of concept, we propose to exploit information extracted from medical scientific literature to benefit from the richness and diversity of this "dormant" mass of knowledge. We consider the Radiology Objects in COntext (ROCO) dataset for pretraining [START_REF] Pelka | Radiology objects in context (ROCO): A multimodal image dataset[END_REF]. This dataset is composed of 81,825 radiology images extracted from PubMed open access papers with their corresponding caption thus providing us with a dataset of positive image-text pairs. The main advantage of such a dataset is that it includes all sorts of imaging data (Fig. 4), with all types of modalities (e.g., CT, X-Ray, etc.), organs or pathologies. Therefore, we could try to learn a general visual representation using ROCO to pretrain the methods presented previously.

ROCO contains 65,420/8,175/8,176 images in the training, testing and validation splits. We do not do any processing on the training set apart from resizing images to a 224 × 224 format. Similarly to [START_REF] Radford | Learning transferable visual models from natural language supervision[END_REF], we remove the text and image transformation functions from [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF], t u and t v respectively, as Fig. 4: Examples of images from the ROCO dataset [START_REF] Pelka | Radiology objects in context (ROCO): A multimodal image dataset[END_REF]. the captions are short text annotations and as we want to avoid introducing any incoherent data for medical images.

B. Evaluation task

Once our models have been pretrained on the ROCO dataset, we evaluate them in an image-image retrieval setting with different evaluation strategies.

Using ROCO CUIs ROCO does not come with any label to evaluate the dataset. However, keywords were extracted from the captions and mapped to the corresponding CUIs (Concept Unique Identifiers) from UMLS (Unified Medical Language System) [START_REF] Bodenreider | The unified medical language system (umls): integrating biomedical terminology[END_REF]. Therefore, we use the CUIs to evaluate the quality of the image-image retrieval task. We use the test set for the evaluation. We exclude all images associated with less than one CUI or unreadable. We are left with a dataset of 8,000 images with their associated CUIS.

As an evaluation metric, we first compute the Jaccard index between the set of CUIs associated to the query and the set of CUIs associated with each retrieved image. To evaluate a ranking result, we then compute the CU I@K metric in a NDCG (Normalized Discounted Cumulative Gain) fashion (K the number of retrieved images). For the global evaluation, we will compute the CU I@K metric for each of the 8,000 images and take the average value. Note that this metric might not be optimal as it can give importance to non-pertinent CUIs. Indeed, when increasing K, we tend to consider more irrelevant images associated to irrelevant CUIs that will still match the irrelevant CUIs associated with the query thus increasing the final score.

Using a custom retrieval dataset A standard evaluation for CBIR is to search for images of a particular category using a representative image as a query. As we do not have any label in the ROCO dataset, we create our own dataset from the test set as follows: 1) We generate labels by mapping CUIs to their SemTypes (Semantic Types) in the UMLS library [START_REF] Bodenreider | The unified medical language system (umls): integrating biomedical terminology[END_REF]. We only keep CUIs associated to the SemTypes T060 "Diagnostic Procedure" and T023 "Body Part, Organ". 2) With additional expert annotations from the Hôpital Européen Georges Pompidou (HEGP), we create a retrieval evaluation dataset composed of about 200 images, similar to CheXpert 8 × 200 [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF]. We thus evaluate the methods using three (i.e., "Organ", "Modality", "Organ and modality") retrieval settings.

To evaluate the performance on this custom retrieval dataset we use the Precision at K (P @K) metric with K the number of retrieved images. The relevant images are defined depending ROCO Custom retrieval dataset CheXpert 8 × 200 CU I@K P @K P @K Method @5 @10 @50 @5 @10 @30 @5 @10 @30 @5 @10 @30 @5 @10 @50 General init. methods on the three tasks defined previously. The final evaluation metric is the average performance for each setting.

Modality

Using CheXpert 8 × 200 retrieval dataset This dataset was created by Zhang et al. [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF] to evaluate ConVIRT in a zeroshot image-image retrieval setting using CheXpert [START_REF] Irvin | Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison[END_REF], a large dataset composed of 224,316 annotated chest radiographs from 65,240 patients. The CheXpert 8 × 200 dataset [START_REF] Zhang | Contrastive learning of medical visual representations from paired images and text[END_REF] was created using a protocol similar to the protocol described for the custom retrieval dataset. It is composed of 8 × 10 queries for 8 independent categories: atelectasis, cardiomegaly, edema, fracture, pleural effusion, pneumonia, pneumothorax and no finding. For each of the category, we also have 200 candidate images. We use the P @K metric to evaluate the performance.

Baseline methods We compare the results provided by our approach to the ones obtained with the following standard methods: 1) Random initialization: We use a ResNet-50 initialized randomly; 2) ImageNet initialization: We use a ResNet-50 initialized with weights pretrained on ImageNet; 3) CLIP: We use CLIP with its pretrained weights (we will compare the four available pretrained image encoders: RN50, RN101, RN50x4 and ViT-B/32).

C. Results

Fig. 5 provides visual examples of retrieval results using ConVIRT with ImageNet init., CLIP-RN50, CLIP-RN50 with ROCO init. and Clinical CLIP-RN50.

In a first setting we evaluate the relevance of the retrieved images with the CUIs of the ROCO dataset (Table I, left). We find that on this fine-grained visual task the methods pretrained on the ROCO dataset tend to outperform general initialization methods. In particular, we notice that our proposed improvement, Clinical CLIP, achieved the best results in this task thus demonstrating the additional value of a clinical initialization of the text encoder in the pretraining on ROCO. In addition, we find that the pretrained CLIP models outperform the ResNet-50 with ImageNet initialization. However, as mentioned previously this evaluation is not perfect as we use all CUIs including non-clinical ones.

Therefore, we evaluate our methods in a second setting where we assess the retrieval performance by using our custom retrieval dataset (Table I, center). We also find the in-domain initialization methods tend to outperform general initialization methods such as ImageNet and CLIP. Clinical CLIP-RN50x4 achieves the best results in six out of nine settings, thus confirming our observation. However, these two retrieval tasks are still different from the final use case of a case-based retrieval which is an even more fine-grained visual task.

Finally, we evaluate the proposed methods on CheXpert 8 × 200 which is similar to a case-based retrieval setting as we are retrieving specific pathologies (Table I, right). We also find our proposed improvements perform substantially better than the general initialization methods. We also notice that our implementation of the ConVIRT framework outperforms the CLIP models pretrained on ROCO. Indeed, in this setting, CLIP pretraining does not seem to confer a significant advantage over the ImageNet initialization when comparing the performance of ImageNet initialization and of the pretrained CLIP image encoders. The common element with the proposed Clinical CLIP is the use of Clinical BERT for their text encoder in the pretraining on ROCO. The results of this evaluation task thus highlight the significant advantage of using an in-domain (medical) text encoder in the visual representation pretraining.

IV. DISCUSSIONS AND PERSPECTIVES

We evaluated different methods to learn image representations on several medical CBIR tasks. We do find that contrastive methods pretrained on the ROCO dataset do perform substantially better than general initialization methods such as a standard ResNet-50 with ImageNet initialization or pretrained CLIP model, thus confirming that we were able to learn fine-grained visual features guided from text supervision with the proposed approaches. We also observe that approaches using an in-domain text encoder such as Clinical BERT in the pretraining tend to outperform the CLIP models fine-tuned on the ROCO dataset. More specifically, we find that our proposed improvement Clinical CLIP achieves the best results in the retrieval tasks, thus highlighting the benefit of both using Clinical BERT for the text encoder, as it provides an in-domain initialization for the visual representation pretraining, and of using a text supervised pretrained visual representation such as CLIP, as it tends to offer a better initialization than a standard one such as ImageNet to learn fine-grained visual features.

As perspectives, we plan to evaluate the performance of our methods in more specific retrieval tasks such as CheXpert 8 × 200 but by fine-tuning the methods to the specific domain as originally intended. In addition, we are only performing CBIR with 2D images. However, our ultimate goal is to be able to perform pathologic cases retrieval in PACS and thus being able to perform queries with multimodal / multiparametric data to retrieve similar cases. To do so, there are several paths to explore such as training a specific neural network for each sequence / modality, or use multimodal variational autoencoders (MVAE) to learn a joint representation of multiple modalities [START_REF] Wu | Multimodal generative models for scalable weakly-supervised learning[END_REF], [START_REF] Antelmi | Sparse multi-channel variational autoencoder for the joint analysis of heterogeneous data[END_REF]. Finally, this study highlighted the importance of input data and the potential of contrastive learning approaches in learning fine-grained visual features in an unsupervised manner. Therefore, in more ambitious thoughts, we could use "dormant" data stored in PACS to train such approaches.

  (a) ConVIRT with ImageNet initialization. (b) CLIP-RN50. (c) CLIP-RN50 with ROCO initialization. (d) Clinical CLIP-RN50.

Fig. 5 :

 5 Fig. 5: Retrieval results for the same query image (left image) associated with the caption "Coronal plain computed tomography image showing multiple large tumor masses with edge enhancement inside the abdominal cavity and liver" executed with four different models.

TABLE I :

 I Zero-shot image-image retrieval results on the ROCO test set using CUIs (left), on the custom retrieval dataset (center) and on CheXpert 8 × 200 (right). Random shows results from a random guess. We used a fixed batch size of 16 and the Adam optimizer with a learning rate of 3e-5 for ConVIRT approaches and of 3e-6 for all other approaches.
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