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Abstract
Specific heat of phonon cavities is investigated in order to analyse the effect of phonon

confinement on thermodynamic properties. The specific heat of free standing very thin SiN

membranes in the low dimensional limit is measured down to very low temperatures (from 6 K

to 50 mK). In the whole temperature range, we measured an excess of specific heat orders of

magnitude bigger than the typical value observed in amorphous solids. Below 1 K, a cross-over

in cp to a lower power law is seen, and the value of specific heat of thinner membranes becomes

larger than that of thicker ones demonstrating a significant contribution coming from the surface.

We show that this high value of the specific heat cannot be explained by the sole contribution

of 2D phonon modes (Lamb waves). The excess specific heat, being thickness dependent, could

come from tunneling two level systems (TLS) that form in low density regions of amorphous solids

located on the surfaces. We also show that the specific heat is strongly tuned by the internal stress

of the membrane by orders of magnitude, giving unprecedentedly high values, making low stress

SiN very efficient for energy storage at very low temperature.

The thermal properties of low-dimensional amorphous material nanowires, membranes

etc... are at the heart of essential questions for many subjects such as bolometry, temperature

sensing, or simply the understanding of phonon physics at very low temperature in dielectric

nanosystems [1]. Even if the thermal transport in low-dimensional dielectric nanostructures

has recently been the subject of numerous although difficult experiments at sub-kelvin

temperatures [2–5], the specific heat, or the capacity of a body to rise in temperature

following a supplied external energy, remains very poorly understood and experimentally

almost unexplored [6].

At very low temperatures, two significant physical effects are expected to impact the

thermal properties of thin membranes, driving away the specific heat far from the one of

a conventional 3D solid material. The first is the effect of the confinement of the phonon

modes in nanostructures thinner than the wavelength of phonons. In that kind of free

standing membranes, it is expected that new phonon modes will appear having quadratic

and not linear dispersion relations, modes whose contribution to the specific heat at low

temperature is linear in T [6–12]. Such modes have been experimentally observed in the

thermally relevant hypersonic frequency range [13]. Note that simple arguments would have
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naively predicted that the specific heat of a confined phonon gas in the low temperature

limit should scale with T δ, δ being the effective dimension of the considered system (for a

suspended membrane δ = 2 at low enough temperature).

Secondly, it is well known that the thermal behaviour of amorphous (glassy) materials

differs significantly from their crystalline counterparts. For more than forty years, thermal

properties of such glassy materials have been explained by the possible presence of dynamic

defects acting like tunneling two-level-systems (TLS) [14–16]. Below a certain temperature,

usually around 1 K, these defects add a sizeable contribution to the specific heat through

additional degrees of freedom providing also a linear variation of cp in temperature. These

dynamic defects are expected to scatter phonons, thus acting on the thermal transport of

such low dimensional structures [4, 5].

Consequently, very particular behaviour of the phonon specific heat is expected at

very low temperature in quasi-2D self-suspended amorphous materials. Such systems

should thus allow to address the question of the main mechanism governing the thermal

properties of confined glassy material when it moves from a standard system described by

nuumnuum elastic theory to a system dominated by TLS, or the question of how the internal

characteristics of an amorphous material such as stress can influence thermal properties

[17–19]. Apart from the fundamental aspect of differentiating between both theoretical

models, since specific heat governs the characteristic time scales of low temperature thermal

detectors which often employ suspended ultra-thin membranes, it is essential to solve this

controversy by doing direct experiments on them.

Here, we report highly sensitive specific heat measurements of thin membranes in the

quasi-2D limit. They were performed on thin silicon nitride suspended structures at sub-

Kelvin temperatures using zeptoJoule calorimetry. By comparing results obtained for two

different thicknesses (100 nm and 300 nm), it is shown that above 1 K the specific heat is

dominated by 3D bulk contributions whereas for T < 1 K surface contributions dominate.

Moreover, even if we observe a close to linear behaviour of the specific heat as a function

of the temperature below 1 K, we show that the ‘standard’ elastic continuum model (Lamb

modes) cannot explain even the order of magnitude of the measured specific heat. The

presence of TLS in the amorphous dielectric is the most probable scenario to explain this

anomalously high specific heat. The absolute value of the specific heat measured in our

experiment is up to five orders of magnitude larger than that measured in a crystalline bulk
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FIG. 1. Suspended membrane-based zeptoJoule nanocalorimeter. (a) A top view of the 2D

nanocalorimeter made of amorphous SiN that is functionalized with two transducers: a heater and

a thermometer. (a), (b), and (c) are the angled views of the nanocalorimeter that is suspended

by eight suspension beams.

material, making the used SiN thin membranes the system with the largest specific heat in

this range of temperatures.

Specific heat of suspended thin membranes of silicon nitride has been measured down to

very low temperatures using a highly sensitive technique. Various types of silicon nitride

films have been used to fabricate the sensors: stoichiometric Si3N4 having a high internal

tensile stress of 0.95 GPa, and two non-stoichiometric silicon nitrides, one low stress

(0.2 GPa) and one super low stress (< 0.1 GPa). We used 100 nm and 300 nm thick

SiN films commercially available deposited by low pressure chemical vapor process on top

of a Si substrate. The thicknesses have been chosen to be of the same order of magnitude

as the dominant phonon wavelength to ensure that only the 2D phonon modes are occupied

in the membrane. Here we define the dominant phonon wavelength λdom to correspond to

the wavelength at which the Planck distribution (spectral energy density per volume) for

bosons is maximum [20]. For 3D phonons, the dominant phonon wavelength is given by:
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λdom =
hvs,i

2.82kBT
(1)

with vs,i the velocity of sound for mode i, h is the Planck constant and kB the Boltzmann

constant; for SiN vs = 10000 m s−1, λdom = 100 nm around 1 K. By fabricating 100 nm

thick membranes, the 2D phonon regime for thermal properties should be accessible at the

lowest temperature of the experiment (below 0.1 K).

The thermal sensor is made of a self-supported SiN membrane of size 40 µm by 40 µm

defining the dimensions of the quasi-2D phonon cavity suspended by eight arms (6 µm wide

and 100 µm long). The long suspending arms lead to a very good thermal insulation of

the membranes from the Si frames [5]. These arms serve also as mechanical support for

the electrical leads of the transducers (see Fig. 1). A copper heater and a niobium nitride

thermometer (NbN) are structured by laser lithography on the SiN membrane as shown

in Fig. 1 a, the electrical leads are made with superconducting materials (NbTi). The

temperature coefficient of resistance of the NbN calculated through α = 1
R

dR
dT

can be higher

than −1 K−1, a particularly high value for thin film technology [21].

An example of a measurement of heat capacity is presented in Fig. 2. It is measured

using an ac-calorimetry technique, a dynamic method based on modulating the temperature

being efficient and highly sensitive especially at low temperatures. In recent papers [23–26],

we have demonstrated on these sensors a sensitivity for specific heat measurement of 2 ×

10−16 J K−1
√
Hz

−1, for an oscillation of temperature of 3 mK, giving an unprecedented

sensitivity in energy of ±10−19 J
√
Hz

−1, i.e. ± 100 zeptoJoule per
√
Hz

−1 at 100 mK. The

sample holder is installed in a vacuum chamber (< 2× 10−6 mbar before cryopumping) on

a stage regulated with a precision better than 20 µK at a temperature of 100 mK measured

using a calibrated Speer carbon thermometer [21]. This set-up allows the measurement of

the specific heat of 2D phonon cavities from below 100 mK to above 7 K as it can be seen

in Fig. 2.

Specific heat measurements done on two sets of membranes of high-stress SiN of

thicknesses 100 nm and 300 nm are presented in Fig. 3 in different units: 1-in units

normalized by the surface area J m−2 K−1 highlighting the surface effects in panel (a),

and 2-in the regular units J g−1 K−1 for volumetric specific heat highlighting bulk effects in

panel (b). As expected, the specific heat (surface or volumetric) decreases when lowering the

temperature as less and less degrees of freedom are excited. The total heat capacity signal
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FIG. 2. Heat capacity of a 100 nm thin membrane made out of high-stress Si3N4. The measurement

of the heat capacity is shown over a temperature range of 0.07 K to 7 K. The noise has been

measured at 100 mK as shown in inset. The full width at half maximum shows that the

measurement is done with a sensitivity in energy of ± 100 zeptoJoule.

is dominated by the SiN membrane contribution, as the heat capacities of the copper heater

and the NbN thermometer are at least two orders of magnitude smaller over the whole

temperature range of the experiments and will be neglected in the following discussion.

If we focus first on the low temperature part, one clearly sees that below 1 K, both

thin and thick membranes have approximately the same surface specific heat (see Fig. 3a),

whereas in the high temperature limit (above 1 K), it’s the specific heat per unit volume

which is almost identical for both types of samples (see Fig. 3b). This indicates that in the

low temperature range, the specific heat of the samples seem to be governed by the surfaces,

whereas at higher temperatures, the specific heat is dominated by volumetric effects. One

basis for interpretation resides in comparing the thickness of the samples with the dominant

wavelength of the phonons. Indeed, a possible change between a 3D volume effect and a

2D surface effect arises when the phonon dominant wavelength becomes bigger than the

membrane thickness. As mentioned earlier, by using Eq. 1, we obtained that λdom is on the

order of few hundreds of nanometer around 1 K. One can conclude that at temperatures
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FIG. 3. The specific heat of thin membranes made of high-stress Si3N4. (a) The heat capacity

normalized by the surfaces area of the membranes, in comparison to the predicted specific heat for

2D phonon cavity for two sets of membranes of thicknesses 100 nm and 300 nm. The green lines

are the prediction of elastic continuum theory, and the red line is the 2D Debye model. The two

black straight lines are guides to the eyes for the temperature power laws T and T 2 (b) The heat

capacity normalized by volume, same data as in (a). The blue line is the excess of specific heat Cex

from Eq. 6, the green dashed line is the specific heat of TLSs CTLS ∝ T , and the red line is the

total estimated specific heat from the sum of Eq. 5 and Eq. 6 for an amorphous solid from which

the TLS density is extracted. The black line is the predicted specific heat from the de Debye 3D

model. The green and orange dots are the specific heat of amorphous SiN of thickness 50 nm and

200 nm respectively, measured by Queen et al [29] plotted for comparison.
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lower than that the phonon specific heat is dominated by the lowest 2D phonon modes,

as their wavelength is much larger than the thickness of the sample. As the temperature

increases, λdom decreases and one recovers the standard three dimensional behaviour for the

specific heat. Considering these two limits, we can infer that we expect a 2D-3D dimensional

cross-over in the specific heat in this system, the cross-over temperature being below 1 K.

Then, the following questions need to be addressed: can we attribute the change of specific

heat with temperature to a phonon dimensionality effect? does it appear with the correct

order of magnitude? In the following, we will estimate the Debye 3D, Debye 2D and elastic

continuum model (ECM) of specific heat and compare the different orders of magnitude

obtained to sort out the various physical mechanisms at play.

The Debye 3D model of specific heat is characterized by its temperature variation

following a cubic power law C ∝ T 3 as given by the formula [22]:

cDebye3D =
2π2k4

B

ρ15~3

(
2

v3T
+

1

v3L

)
T 3 (2)

where ρ is the mass density in g m−3, ~ is the reduced Planck constant, and kB is the

Boltzmann constant, vT and vL the transversal and longitudinal speeds of sound respectively

6200 m s−1 and 10300 m s−1 for silicon nitride [7]; the specific heat cDebye3D is in J g−1 K−1

. This model has demonstrated over the years its great ability to fit cp experimental values

of crystalline electrically insulating materials [27, 28]. It can be adapted to 2D systems

by integrating over the wavevectors parallel to the membrane surface in a planar geometry

(keeping the regular longitudinal and transverse 3D bulk phonon modes):

cDebye2D =
3ζ(3)k3

B

π~2

(
2

v2T
+

1

v2L

)
T 2 (3)

where ζ is the Riemann zeta function. This area dependent specific heat in J m−2 K−1

does not depend on the thickness of the 2D membrane and has a lower temperature exponent

as compared to the Debye 3D model, the power law being given by the dimension of the

system. This Debye 2D model is compared to the experimental surface specific heat as

measured on SiN membranes in Fig. 3a. Even if the Debye 2D specific heat is larger than

the Debye 3D one, significant discrepancies still exist. Indeed, the measured absolute value

of cp is in strong disagreement with the calculated ones, being few orders of magnitude

bigger.

8



A refinement of the model seems necessary. This is done by taking into account the

modified phonon modes present in thin membranes. In the following, the specific heat

of thin free-standing membranes at low temperature is obtained through the calculation of

phonon modes of a phonon cavity using the elastic continuum model [7, 9–12]. In this model,

some bulk polarizations will couple together at the surfaces generating new set of vibrational

modes: dilatational waves (or symmetric Lamb waves), flexural waves (or asymmetric Lamb

waves) and horizontal shear waves [10, 11, 30]. The modified 2D dispersion relations of

these modes have important consequences on the low temperature specific heat. Again,

by integrating over the wavevector parallel to the membrane surface q||, the total surface

specific heat can be written as:

cECM =
A

kBT 22π

∑
σ

∞∑
m=0

∫ ∞

0

dq||
q||(~ωm,σ)

2 exp(β~ωm,σ)

[exp(β~ωm,σ)− 1]2
(4)

where β = (kBT )
−1, σ represents the different modes and

∑
m is the summation over all

the branches of a mode.

According to the calculations at low enough temperature, for membranes much thinner

than λdom, the contribution of the flexural waves becomes dominant. In contrast to the

Debye 2D model, the elastic continuum theory then predicts a linear variation of specific

heat (not quadratic) with temperature at very low temperature [7, 9, 11]. This linear

dependence comes from the quadratic dispersion relation of the dominant flexural modes.

The temperature at which this 3D-2D cross-over appears depends on the thickness of the

phonon cavity via the dependence on temperature of the dominant phonon wavelength. The

surface specific heat, as evaluated by ECM, is shown in Fig. 3a only above 0.5 K due to its

very low value. The measured cp(T ) and the calculated one by ECM have very dissimilar

absolute values showing that the elastic continuum model do not give a good account of

what has been measured by few orders of magnitude.

All we have considered so far are in principle valid only for crystalline systems. As SiN

thin films are amorphous and disordered, some specific thermal properties may be expected.

One of the most important properties of non-crystalline materials is that they contain a large

amount of two-level systems. Two level systems are atoms or groups of atoms that have

two metastable configurations in their energy landscape. At low enough temperature these

atoms or groups of atoms can switch between these two states only by quantum tunneling.
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An important ingredient when considering the physics of these TLS is that a uniform and

broad spectral distribution for time constants or equivalently barrier heights is assumed.

The exact origin of these two level systems is still heavily debated, though they can be

seen as extra degrees of freedom in the solid [19, 31–37]. At low temperature, phonons can

interact strongly with the TLSs, having not only consequences on the specific heat but also

on the phonon thermal transport [4, 5, 16]. The contribution of the TLSs to the specific

heat is given by [15, 19, 32]:

cTLS =
π2

6

n0

ρ
k2
BT = αT (5)

with ρ the mass density in g m−3 of the material and n0 the density of TLS; α is in

J g−1 K−2. cTLS is the specific heat linked to low energy excitation specific to glassy

materials, it will dominate the cp signal at low temperature. Another contribution to

specific heat in amorphous solids can come from extra non-propagating modes; this is usually

modeled by an excess specific heat having a cubic power law [32]:

cex = γ T 3 (6)

γ being a factor determined experimentally. For most disordered materials, γ lies in

the range 1 to 10×10−7 J g−1 K−4. This excess specific heat has been observed in most

disordered materials [16, 32]. Non-propagating modes and TLS are both associated with

low density regions specific to disordered materials where voids or floppy bonds are present.

The total specific heat of amorphous materials will be given by the relation ctot = cTLS+cex =

αT + γT 3.

We can now compare the contribution of these two different mechanisms in disordered

solids to the measured specific heat. In Fig. 3b, we have reported our experimental data

for the volumetric specific heat and plotted the theoretical contributions to cp, the excess

specific heat and the specific heat due to two level systems, as obtained from Eq. 5 and Eq. 6;

the prefactors γ in Eq. 6 and the density of two level system n0 in Eq. 5 being the adjustable

parameters. We have also plotted data taken by other groups on 50 nm and 200 nm thick

SiN membranes [16, 29]. By comparing the different experimental data, we can first notice

that the specific heat we observe is larger by more than two orders of magnitude than the

one measured on a-SiN membranes .

10



In order to reproduce the experimental data using the TLS model, we have to consider

the specific heat due to localized soft modes (cex, Eq. 6) as well as the specific heat due to

two level systems (cTLS, Eq. 5), taking for the adjustable parameters γ ≈ 10−4 J g−1 K−4

and n0 ≈ 1.5× 1049 J−1 m−3. Using these parameters, we can reproduce quantitatively the

experimental data as shown in Fig. 3b with the red line fit. The membrane specific heat is

dominated over the whole temperature range of the experiment by the amorphous nature of

the SiN: above 1 K, the specific heat is interpreted to be dominated by localized soft modes,

whereas in the low temperature range, the specific heat is almost entirely due to the presence

of two level systems. The density of TLS in the 100 nm thick membrane is n0 ≈ 1.5× 1049

J−1 m−3 a relatively high value as for 300 nm n0 ≈ 1.5× 1048 J−1 m−3, lying slightly above

the measured range in amorphous silicon n0 ≈ 1044 J−1 m−3 to n0 ≈ 1048 J−1 m−3 [32].

To confirm this scenario of TLS dominated cp, it is interesting to try to control the density

of the two level systems in the material; this can be done by changing the mass density of the

material by the following mechanism: when the composition of SiN is changed this affects

the internal stress along with the mass density. Since the TLS are thought to result from

dangling bonds arising from voids or surfaces, varying the mass density and stress should

affect the TLS density and with it the specific heat. We consequently expect a higher

TLS density in lower mass density materials having lower mechanical stress. Therefore, we

decided to reproduce the same cp experiments on high-stress (HS), low-stress (LS) and super

low-stress (SLS) amorphous silicon nitride membranes to probe the effect of various TLS

density on the specific heat.

The temperature dependence of the specific heat of the different 100 nm thick SiN

membranes is depicted in Fig. 4. Using Eq. 5 we can extract from our measurements an order

of magnitude for the concentration of TLS in our membranes, summarized in the Table I.

This table displays the composition, the mass density, the TLS density and the stress for

each composition as given by the supplier [38]. The composition and the mass densities were

determined by Rutherford Backscattering Spectrometry (RBS).

The main observation from Fig. 4 is that by decreasing the stress and the mass density

between HS and SLS SiN, the specific heat is increased by two orders of magnitude.

These values are surprisingly high in comparison to what has been measured until now

on amorphous dielectric materials [19, 32, 39]. We suppose that such high value of the

specific heat can be attributed to the presence of two level systems and localized modes
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FIG. 4. The temperature dependence of the specific heat for different internal stress of SiNx. The

samples have all the same geometry with a thickness of 100 nm. The specific heat measurements

have been done for two sets of membranes of each kind of SiN: blue, red and green dots are

respectively the specific heat of high-stress (HS), low-stress (LS) and super low-stress (SLS)

amorphous silicon nitride. In (a) the specific heat vs T is plotted in a log-log scale and in (b)

cp/T versus T 2 to highlight the α (intercept with y axis) and γ (the slope of the linear fit) values

for each internal stress. The unit of α is J g−1 K−2 and for γ J g−1 K−4.
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SiNx HS LS SLS

composition Si43N57 Si46N54 Si48N52

ρ (g cm−3) 3.2 2.9 2.4±0.2

n0 (J−1 m−3) 1.5×1049 3.6 ×1049 3.3 ×1050

stress (GPa) 0.85 0.2 <0.1

TABLE I. Parameters for high-stress (HS), low-stress (LS), and super low-stress (SLS) SiNx. ρ

is the mass density of material measured by Rutherford Backscattering Spectrometry, n0 is the

TLS density of states as extracted from the measurements using Eq. 5, and the stress for each

composition, as given by the supplier [38].

in amorphous SiN. One remarkable feature appears when inspecting Table I: it seems that

there is a correlation between the density of TLS and the mass density. Indeed, there is a

factor of twenty between the density of TLS in HS and SLS a-SiNx. In between these two

samples, the mass density varies by more than 30%. We guess that this variation of mass

density is due to the appearance of low density regions in the amorphous SiN located on the

surface; it is precisely these low density regions which are favourable for the formation of

TLS; this could explain the difference by orders of magnitudes of specific heat between SLS

and HS SiN through a much higher TLS density. Such a behaviour has never been reported

before; more investigations will be required to elucidate its true origin.

In conclusion, we have measured specific heat of thin SiN membranes from 6 K down

to very low temperature (50 mK) to investigate the heat capacity of 2D phonon cavities.

In the whole temperature range, the specific heat does not exhibit a single power law as a

function of temperature but a cross-over between two different regimes around 1 K. As it

has been suggested first by Gusso et al. [9], this cross-over could have been correlated to a

3D-2D transition when the phonon wavelength becomes of the order of the thickness of the

membrane. However, first, the position of the cross-over in temperature is not in agreement

with the ECM model, it is at too high temperature and second the absolute value of the

measured specific heat is much larger than that predicted from our ECM analysis in terms

of surface specific heat. This is ruling out that, in SiN membranes, the contribution of

the Lamb modes to cp can explain such very high values of specific heat. Rather, we have
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demonstrated that the exceptionally high magnitude of the specific heat likely results from

the presence of a large density of two level systems, as expected for the amorphous disordered

systems as the ones used in this work (SiN membranes). Our modeling indicates that above

1 K the specific heat is dominated by an excess bulk-like contribution, possibly due to non-

propagating modes, and by two-level systems at lower temperatures. Using different SiN

compositions, we have also shown that by changing the density of two-level systems through

the mass density of the SiN material, unprecedentedly high values of specific heat can be

reached [19, 39, 40]. The formation of TLS is enhanced by to the presence of low-density

regions in the SiN, and the presence of large surfaces due to the membrane geometry of the

samples. These results will have a significant impact on the performances of low temperature

sensors.
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