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Introduction

The field of eigenvalue problems under shape perturbation has been an active research area for several decades. Several related problems belong to Stokes systems, which are further subdivided by assumptions on the underlying media and on the Dirichlet boundary conditions. The main objective of this paper is to present a schematic way to derive high-order asymptotic expansions for both eigenvalues and eigenfunctions for the Stokes operator caused by small perturbations of the boundary. Also, we rigorously derive an asymptotic formula which is in some sense dual to the leading-order term in the asymptotic expansion of the perturbations in the Stokes eigenvalues due to interface changes of the inclusion. This is inspired from the fact that the Stokes system can be viewed as the incompressible limit [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF]. Thus we rigourously extended, in Section 3.3, some results elaborated in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF] to the Stokes case. The properties of eigenvalue problems under shape deformations have been a subject of comprehensive studies [START_REF] Albert | Genericity of simple eigenvalues for elliptic pde's[END_REF][START_REF] Albert | Topology of the nodal and critical points sets for eigenfunctions of elliptic operators[END_REF][START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF][START_REF] Babuska | Eigenvalue Problems[END_REF][START_REF] Kato | Perturbation Theory for Linear Operators[END_REF][START_REF] Ortega | Generic simplicity of the eigenvalues of the stokes system in two soace dimensions[END_REF] and the area continues to carry great importance [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Kelliher | Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane[END_REF][START_REF] Kohr | The interior Neumann problem for the Stokes resolvent system in a bounded domain in R n[END_REF][START_REF] Medkova | Boundary value problems for the Stokes equations with jumps in open sets[END_REF][START_REF] Jia | Shaoqin Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods[END_REF][START_REF] Khelifi | Asymptotic property and convergence estimation for the eigenelements of the Laplace operator[END_REF]. A substantial portion of these investigations discusses the properties of smoothness and analyticity of eigenvalues and eigenfunctions with respect to perturbations.

Let Ω ⊂ R 3 be a bounded open domain with boundary of class C 2 . We consider the following eigenvalue problem for the Stokes system with homogeneous boundary conditions:

     -µ∆v + ∇p = λv in Ω ∇.v = 0 in Ω v = 0 in ∂Ω.
Here v = (v 1 , v 2 , v 3 ) denotes the velocity field, µ the viscosity while the scalar function p is the pressure. Now, if we suppose that µ is a positive constant, then the first equation in the above system is equivalent to:

-∆v + ∇(p/µ) = ( λ/µ)v in Ω.

Then, if µ is constant we have the following eigenvalue problem

     -∆v + ∇p = λv in Ω ∇.v = 0 in Ω v = 0 in ∂Ω (1.1) 
with p := p/µ and λ := λ/µ. It is well known that this eigenvalue problem admits a sequence of a no decreasing positive eigenvalues 0 < λ 1 ≤ λ 2 ≤ • • • ≤ λ n ≤ • • • tending to infinity as n → +∞. The eigenfunctions {v n } n≥1 ⊂ (H 1 0 (Ω)) 3 and the eigenpressures {p n } n≥1 ⊂ L 2 (Ω) may be taken so that {v n } n≥1 constitutes an orthonormal basis of H(Ω) := {v ∈ (H 1 0 (Ω)) 3 : ∇ • v = 0 in Ω}. The pressure p is determined up to an additive constant. We assume that the boundary ∂Ω is subjected to a small, smooth deformation and that the boundary of the deformed domain Ω δ is given by:

∂Ω δ := {x = x + δh(x)ν(x), x ∈ ∂Ω} (1.2)
where ν(x) is the outward normal vector on ∂Ω and h(x) is a real function in C 2 (∂Ω) that satisfies h(x) C 2 (∂Ω) < 1.

(1.3)

Obviously, the domain Ω δ is of class C 2 and the Dirichlet eigenvalue problem for the Stokes system can be defined in Ω δ as well.

In this paper, we derive the asymptotic of eigenvalues, eigenfunctions and the eigenpressures solutions to the Stokes system:

     -∆v δ + ∇p δ = λ δ v δ in Ω δ ∇.v δ = 0 in Ω δ v δ = 0 in ∂Ω δ .
(1.4)

Here we suppose that the eigenvalue λ 0 is simple. Then the eigenvalue λ δ is simple and is near to λ 0 associated to the normalized eigenfunction v δ .

To the best of our knowledge, this is the first work to rigorously investigate Stokes eigenvalue problem in the presence of the perturbation (1.2) and derive (formally) high-order terms in the asymptotic expansion of λ δ -λ 0 and v δ -v 0 when δ → 0. However, by the same method, one can derive asymptotic formula for the Neumann problem as well. Zuazua and Ortega have proved in [START_REF] Ortega | Generic simplicity of the eigenvalues of the stokes system in two soace dimensions[END_REF] the regularity of the eigenvalues and eigenfunctions of the Stokes system with respect to the perturbation parameter, by using the Lyapunov-Schmidt method. Their proofs are essentially inspired in the work of J.

Albert [START_REF] Albert | Genericity of simple eigenvalues for elliptic pde's[END_REF][START_REF] Albert | Topology of the nodal and critical points sets for eigenfunctions of elliptic operators[END_REF] for the Laplace operator. Our analysis and uniform asymptotic formulas of eigenvalues and eigenfunctions, which are represented by the single-layer potential involving the Green function, are considerably different from those in [START_REF] Kelliher | Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane[END_REF][START_REF] Ortega | Generic simplicity of the eigenvalues of the stokes system in two soace dimensions[END_REF]. In [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF] Ammari et al. have rigorously derived an asymptotic formula for the perturbations in the eigenvalues due to interface changes of an elastic inclusion. Their original work was based on several gradient estimates in Hölder space, and the first correction term is given explicitly. As the Stokes system can be viewed as the incompressible limit (the compression modulus is infinite), the formulas given in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF] for the elastic system may be obtained by taking the limit of those in the mentioned paper as the compression modulus goes to infinity. The same spirit was fixed in [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF]. Taking into consideration the previous claims, we focus our attention in Section 3.3 to determine the asymptotic expansion and so the leading-order term for the Stokes eigenvalues. To benefit from the well known results and to use easily gradient estimates, we may work in Hölder space and we may use general Stokes operator defined by the strain rate tensor. This paper is organized as follows. In Section 1, we describe the main problem in this paper. In Section 2, we develop a boundary integral formulation for solving the eigenvalue problem (1.4), and we present some preliminary results. Finally, Section 3 is dedicated to develop asymptotic expansion of the perturbations in the eigenvalues, in eigenfunctions and in eigenpressures. More precisely, in the Section 3.1, we present some basic results related to shape perturbation and we develop high-order terms in the expansion of the integral operator. In Section 3.2, we (formally) provide by layer potentials an asymptotic expansion for the perturbed eigenvalues if the unperturbed eigenvalue is simple. But in section 3.3, we rigourously derive the leading-order term for the perturbed Stokes eigenvalues in Hölder space and for both simple and multiple eigenvalues. Here the problems to be study are more general than the one introduced in Section 1. In Section 3.4, we end our paper by developing asymptotic expansion of the perturbations in the eigenfunctions and in eigenpressures using the same problem configurations as Section 1.

Integral equations method

We now develop a boundary integral formulation for solving the perturbed eigenvalue problem (1.4). The components of the fundamental Stokes tensor Γ = (Γ ij ) 3 i,j=1 and those of the associated pressure vector P = (P ij ) 3 i,j=1 , which determine the fundamental solution (Γ, P ) of the Stokes system in R 3 , are given by (see for instance [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF][START_REF] Ladyzhenskaya | Mathematical theory of the viscous incompressible[END_REF])

   Γ ij (λ, x) = -1 4π δ ij e i √ λ|x| |x| -1 4πλ ∂ x i ∂ x j ( e i √ λ|x| -1 |x| ) P i (x) = -1 4π x i |x| 3 , (2.1) 
where ∂x i denotes ∂/∂x i for i = 1, 2, 3 and i 2 = -1. We recall that the i th row Γ i of Γ satisfies

-∆Γ i + ∇P i (x) -λΓ i = e i δ(x) in R 3 ∇.Γ i = 0 in R 3 ;
in the sense of distributions and where (e i ; i = 1, 2, 3) is the orthonormal basis of R 3 . Note that we used the Einstein convention for the summation notation omitting the summation sign for the indices appearing twice.

The potential theory for the Stokes system

Let us denote by ϕ = (ϕ 1 , ϕ 2 , ϕ 3 ) a complex vector-valued function with class C 0 (∂Ω).

The hydrodynamic single-layer potential with density ϕ ∈ C 0 (∂Ω) 3 is the vector function S(λ)ϕ(x) defined by

S(λ)ϕ(x) := ∂Ω Γ(λ, |x -y|)ϕ(y) dσ(y), x ∈ R 3 \∂Ω. (2.2) 
The pressure term Q corresponding to the single layer potential is the function given by Qϕ(x) := ∂Ω P (x, y)ϕ(y) dσ(y), x ∈ R 3 \∂Ω.

For a careful study of these potentials, one can refer to [START_REF] Ladyzhenskaya | Mathematical theory of the viscous incompressible[END_REF], [START_REF] Varnhorn | The Stokes equations[END_REF], [START_REF] Kohr | The interior Neumann problem for the Stokes resolvent system in a bounded domain in R n[END_REF].

Taking into account the well known properties of Green function Γ, one obtains the result that the pair (Sϕ, Qϕ) are smooth functions in each of the domains Ω and R 3 \Ω respectively. Also these functions are classical solutions to the Stokes system (1.1).

The continuity and jump relations of the Stokes surface potentials on the boundary ∂Ω are described in the following proposition (see [START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF], [START_REF] Depauw | Solutions des équations de Navier Stokes incompressibles dans un domaine exterieur[END_REF] pp. 41-42 or [START_REF] Varnhorn | The Stokes equations[END_REF] p. 66 ): 3 and let S denotes the surface potential defined in (2.2). Then on the boundary ∂Ω the following continuity and jump relations are satisfied:

Proposition 2.1 Let ϕ ∈ C 0 (∂Ω)
(S(λ)ϕ) + = (S(λ)ϕ)| -= S(λ)ϕ ∂S(λ)(ϕ) ∂ν (x) ± = ± ϕ(x) 2 + ∂Ω ∂Γ(λ, |x -y|) ∂ν(x) ϕ(y) dσ(y).

Boundary integral formulation

In this section, we give a boundary integral formulation in order to solve the eigenvalue problems (1.1) and (1.4).

Proposition 2.2 Suppose h satisfies (1.3). Then, there exists δ 0 > 0 such that the map Ψ δ (x) defined by

Ψ δ (x) = x + δh(x)ν(x) (2.3)
is a C 2 -diffeomorphism from ∂Ω to ∂Ω δ for δ < δ 0 . In addition, the following equality holds

det (∇Ψ δ ) = 1 + tr∇(hν)δ + 1 2 tr∇(hν) 2 -tr ∇(hν) 2 δ 2 (2.4) + det (∇(hν)) δ 3 ,
where tr means the trace of a matrix. Moreover, we have tr∇(hν) = div(hν).

Proof. Recall that the function h(x) is C 2 on ∂Ω, then the map Ψ δ (x) is also C 2 . A simple calculation yields the equality (2.4). Consequently, for δ small enough the map

Ψ δ (x) is a C 2 -diffeomorphism from ∂Ω to ∂Ω δ .
We further denote Ψ -1 δ the reciproque function of Ψ δ (x). Thanks to Ψ -1 δ , we can define the operator A δ (λ) as follows:

A δ (λ)ϕ(x) = S Ω δ (λ)ϕ(Ψ -1 δ ) (Ψ δ (x)), ϕ ∈ (L 2 (∂Ω)) 3 (2.5)
where S Ω δ (λ) is the hydrodynamic single-layer potential given by (2.2) when we have replaced the boundary ∂Ω by ∂Ω δ .

For i, j ∈ {1, 2, 3}, we can define the j th -component of the vector-valued function A δ (λ) as follows:

(A δ (λ)ϕ) j (x) = S Ω δ (λ)ϕ j (Ψ -1 δ ) (Ψ δ (x)), ϕ ∈ (L 2 (∂Ω)) 3 .
(2.6)

The j th -component of the single-layer potential S Ω δ (λ) is given by

S Ω δ (λ)ϕ j (x) := ∂Ω δ Γ ji (λ, |x -ỹ|)ϕ i (ỹ) dσ δ (ỹ), x ∈ R 3 \∂Ω δ , j = 1, 2, 3, (2.7) 
where ϕ i is the i th -component of the vector-valued function ϕ. Using Proposition 2.2, relations (2.6)-(2.7) and the continuity relations given by Proposition 2.1, we obtain for x ∈ ∂Ω that

A δ (λ)ϕ j (x) = ∂Ω Γ ji (λ, |Ψ δ (x) -Ψ δ (y)|) det (∇Ψ δ (y)) ϕ i (y) dσ(y), j = 1, 2 , 3. 
(2.8) Let A 0 the operator defined as in (2.5) by

A 0 φ = S(λ)φ,
where φ ∈ (L 2 (∂Ω)) 3 . Then, we have the following result, which is a slight variation of the Lemma 6.1 due to Ammari et al. [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF] for the scalar eigenvalue problem. 3 is Fredholm of index zero in C\iR -. In addition the Dirichlet eigenvalues of the Stokes system (1.1) are exactly its real zeros.

Proposition 2.3 The operator-valued function

A 0 (λ) : H -1/2 (∂Ω) 3 → H 1/2 (∂Ω)
From Proposition 2.3 we know that if λ 0 is an eigenvalue of (1.1) then λ 0 is a real zero of A 0 (λ). Moreover, for ǫ 0 small enough, the function A -1 0 (λ) is meromorphic in D ǫ 0 (λ 0 ), where D ǫ 0 (λ 0 ) means the disc of center λ 0 and radius ǫ 0 , and λ 0 is its unique pole in D ǫ 0 . Furthermore we have the following Laurent expansion:

A -1 0 (λ) = (λ -λ 0 ) -1 ℓ 0 + R 0 (λ), (2.9) 
where ℓ 0 : KerA 0 (λ 0 ) → KerA 0 (λ 0 ), and R 0 (λ) is a holomorphic function.

Our main results in this section are summarized in the following theorem.

Theorem 2.1 Suppose that the eigenvalue λ 0 of (1.1) is with multiplicity 1. Then, there exist a positive constant δ 0 (ǫ 0 ) such that for |δ| < δ 0 , the operator-valued function λ → A δ (λ) has a real zero λ(δ) in D ǫ 0 (λ 0 ). This zero is exactly the eigenvalue of the perturbed eigenvalue problem (1.4), and is an analytic function with respect to δ in ] -δ 0 , δ 0 [. It satisfies λ(0) = λ 0 . Moreover, the following assertions hold:

A -1 δ (λ) = (λ -λ(δ)) -1 ℓ(δ) + R δ (λ), ℓ(δ) : Ker(A δ (λ(δ)) → Ker(A δ (λ(δ)), (2.10) where R δ (λ) is a holomorphic function with respect to (δ, λ) ∈] -δ 0 , δ 0 [×D ǫ 0 (λ 0 ).
3 Asymptotic formula

High-order terms in the expansion of A δ

We now present some basic results related to shape perturbation. The methods to be used here differ from those in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF], but the expressions deduced are the same. To begin, let (τ 1 (x), τ 2 (x)) be the orthornormal basis of the tangent plan to the surface ∂Ω at a regular point x. Their cross product is then orthogonal to ∂Ω at the point x.

By changing their order, we can assume that τ 1 × τ 2 is a vector pointing towards the exterior of the surface ∂Ω. Then dividing it by its length yields the unit normal vector ν(x), that is:

ν 0 (x) = τ 1 (x) × τ 2 (x) |τ 1 (x) × τ 2 (x)| , (3.1) 
for x ∈ ∂Ω. Evidently ν 0 = ν, where ν was introduced in section 1.

Set

τ δ 1 = grad Ψ δ • τ 1 , and τ δ 2 = grad Ψ δ • τ 2 .
Using Proposition 2.2, we find that:

τ δ 1 = τ 1 + δM τ 1 , and τ δ 2 = τ 2 + δM τ 2 , (3.2) 
where the (3 × 3)-matrix M is given by:

M =   ∂ 1 (hν 1 ) ∂ 2 (hν 1 ) ∂ 3 (hν 1 ) ∂ 1 (hν 2 ) ∂ 2 (hν 2 ) ∂ 3 (hν 2 ) ∂ 1 (hν 3 ) ∂ 2 (hν 3 ) ∂ 3 (hν 3 )   with ν i means the i-th (i = 1, 2, 3) component of the vector ν.
For δ sufficiently small, one can see that the outward unit normal vector to ∂Ω δ is given by

ν δ (x) = τ δ 1 (x) × τ δ 2 (x) |τ δ 1 (x) × τ δ 2 (x)| , (3.3) 
for x ∈ ∂Ω. Then, the following asymptotic expansion holds.

Proposition 3.1 Let ν 0 be given by (3.1). Then, the outward unit normal ν δ (x) to ∂Ω δ at x, can be expanded uniformly as

ν δ (x) = ν (0) (x) + ∞ n=1 δ n ν (n) (x), x ∈ ∂Ω,
where the vector-valued functions ν (n) are uniformly bounded. In particular, for x ∈ ∂Ω:

ν (0) (x) = ν(x), ν (1) = 1 |τ 1 × τ 2 | τ 1 × M τ 2 + M τ 1 × τ 2 -ν 0 • (τ 1 × M τ 2 + M τ 1 × τ 2 ) ν 0 .
Proof.

Considering the expansions (3.2) for δ sufficiently small, the relation (3.3) becomes:

ν δ = a + δb + δ 2 c |a + δb + δ 2 c| , (3.4) 
where a, b, and c are vector-valued functions given by:

a = τ 1 × τ 2 , b = M τ 1 × τ 2 + τ 1 × M τ 2 , and c = M τ 1 × M τ 2 .
So that, by expanding the quotient (3.4) as δ tends to zero, we get the desired results.

Next, one can use Proposition 2.2 to get the uniformly convergent expansion for the surface element as follows: Proposition 3.2 Let ỹ = Ψ δ (y) where Ψ δ (y) is given by (2.3) for y ∈ ∂Ω. Then, the following expansion for the surface element dσ δ (ỹ) holds uniformly for y ∈ ∂Ω:

dσ δ (ỹ) = det (∇Ψ δ ) dσ(y) = σ 0 (y) + σ 1 (y)δ + σ 2 (y)δ 2 + σ 3 (y)δ 3 dσ(y), (3.5) 
where

σ 0 ≡ 1, σ 1 (y) = ∇ • (hν), σ 2 (y) = 1 2 tr∇(hν) 2 -tr ∇(hν) 2 , and σ 3 (y) = det (∇(hν)). Set x = Ψ δ (x), x ∈ ∂Ω (3.6) ỹ = Ψ δ (y), y ∈ ∂Ω, (3.7) 
and define Θ(x, y)

:= 1 δ Ψ δ (x) -Ψ δ (y) -(x -y) for δ = 0. (3.8)
Recall that Ψ δ is a C 2 vector-valued function on ∂Ω, then Θ is also a C 2 function. Moreover, the following holds.

Proposition 3.3 The vector-valued function Θ(x, y) is C 2 on ∂Ω×∂Ω and there exists a constant C > 0 that only depends on Ω and h such that:

|Θ(x, y)| ≤ C|x -y|, |Θ(x, y) • (x -y)| ≤ C|x -y| 2 ,
for all x, y ∈ ∂Ω.

Proof. Expression (3.8) shows that:

Θ(x, y) = h(x)ν(x) -h(y)ν(y).
Since ∂Ω is a C 2 surface, there exists a constant C ′ > 0 such that:

|ν(x) -ν(y)| ≤ C ′ |x -y|, and |ν(x) • (x -y)| ≤ C ′ |x -y| 2 ,
for all x, y ∈ ∂Ω.

The last inequalities and the C 2 regularity of h yield the results of the proposition. Now, by using (3.8) we obtain:

x

-ỹ = x -y + δΘ(x, y), (x, y) ∈ ∂Ω × ∂Ω, (3.9) 
and the following results hold.

Lemma 3.1 Let r > 0 be a fixed real and m ≥ 2 be a fixed integer. The following asymptotic expansions

e i √ λ|x-ỹ| |x -ỹ| m = e i √ λ|x-y| |x -y| m 1 + δT (m) 1 (x, y) + n≥2 δ n T (m)
n (λ; x, y) , (3.10)

∂ xi ∂ xj e i √ λ|x-ỹ| -1 |x -ỹ| = R (ij) 0 (λ; x, y) + δR (ij) 1 (λ; x, y) + n≥2 δ n R (ij) n (λ; x, y) (3.11)
hold uniformly for (λ, x, y) ∈ B r (0)×∂Ω×∂Ω, where B r (0) is a ball in the complex plane of center zero and radius r. In addition the functions

T (m) n (λ; x, y) and R (ij)
n (λ; x, y) are smooth and bounded uniformly on B r (0) × ∂Ω × ∂Ω. The first coefficients are given by:

R (ij) 0 (λ; x, y) := ∂ x i ∂ x j e i √ λ|x-y| -1 |x -y| , and 
R (ij) 1 (λ; x, y) = (x-y)•Θ(x, y) -λ 2 δ ij -3i √ λ δ ij r -iλ 3/2 r i r j r +7λ 2 r i r j r 2 +15i √ λ r i r j r 3 e i √ λr r 5 +(x-y)•Θ(x, y) 4i √ λ δ ij r -15 δ ij r 2 -λ 2 [-5 r i r j r 2 + (r i θ j + r j θ i ) (x -y) • Θ(x, y) -7i √ λ[-6 r i r j r 3 + 1 r (r i θ j + r j θ i ) (x -y) • Θ(x, y) ] +15[-7 r i r j r 4 + 1 r 2 (r i θ j + r j θ i ) (x -y) • Θ(x, y) e i √ λr r 5 +15 (x -y) • Θ(x, y) r 7 δ ij -[-7 r i r j r 2 + (r i θ j + r j θ i ) (x -y) • Θ(x, y) ] ,
where r = |x -y|, r j = x j -y j , θ j means the j th component of Θ, and δ ij means the Kronecker index.

Proof. For m = 2 and x = y we have:

|x -ỹ| 2 = |x -y + δΘ(x, y)| 2 = |x -y| 2 1 + δc (2) 1 (x, y) + δ 2 c (2) 2 (x, y) ,
where

c (2) 1 (x, y) = 2Θ(x, y) • (x -y) |x -y| 2 , c (2) 
2 (x, y) = Θ(x,y)•Θ(x,y) |x-y| 2 . Proposition 3.1 shows that c (2)
1 (x, y) and c

(2) 2 (x, y) are bounded uniformly on ∂Ω × ∂Ω.

For m > 2, we have:

|x -ỹ| m = |x -y + δΘ(x, y)| m = |x -y| m 1 + δ Θ(x, y) |x -y| m ,
where x = y. Using (3.8), Proposition 2.2 and Proposition 3.3, we see that the regular vector-valued function (x, y) → Θ(x,y) |x-y| is well defined on ∂Ω × ∂Ω, and it is independent of δ. Therefore, we can expand:

|x -ỹ| m = c (m) 0 (x, y) + ∞ n=1 δ n c (m) n (x, y) uniformly on ∂Ω × ∂Ω, (3.12) 
where the first coefficients c

(m) 0 (x, y) = |x -y| m , c (m) 1 (x, y) = m < x -y, Θ(x, y) > |x -y| m-2 and c (m) 2 (x, y) = m 2 |x -y| m | Θ(x,y) |x-y| | 2 + (m -2) < x-y |x-y| 2 , Θ(x,y) |x-y| > 2 .
Moreover, if m is even, then c (m) n (x, y) = 0 for n ≥ m + 1. Now combining (3.12) for m = 1 with the well known asymptotic expansion of the exponential function, we immediately get

e i √ λ|x-ỹ| = ∞ n=0 δ n K n (λ; x, y) uniformly on B r (0) × ∂Ω × ∂Ω, (3.13) 
where the first coefficients K 0 (λ; x, y) = e i √ λc

(1) 0

= e i √ λ|x-y| , and the coefficients K n (λ; x, y) can be deduced recursively from c

n . Thanks to relations (3.9), (3.12) and (3.13), we can obtain the desired result given by (3.10) where the coefficients T (m) n can be deduced easily from c (m) n and K n .

To prove relation (3.11), we firstly expand

∂ xi ∂ xj e i √ λ|x-ỹ| -1 |x -ỹ| = 1 |x -ỹ| ∂ xi ∂ xj e i √ λ|x-ỹ| -1 + ∂ xi 1 |x -ỹ| ∂ xj e i √ λ|x-ỹ| -1 (3.14) +∂ xj 1 |x -ỹ| ∂ xi e i √ λ|x-ỹ| -1 + ∂ xi ∂ xj 1 |x -ỹ| e i √ λ|x-ỹ| -1 .
To simplify, let us denote r = |x -y|, r i = x i -y i , r = |x -ỹ|, and rj defined by the relation

∂ xj r = rj r . (3.15)
Then,

∂ xj ( 1 r3 ) = -3 rj r5 , and ∂ xi ∂ xj ( 1 r3 ) = -3 δ ij r5 + 15 ri rj r7 . (3.16)
Now, by using the following result

∂ xj e i √ λ|x-ỹ| -1 = ∂ xj (i √ λr e i √ λr = i √ λ rj r e i √ λr , (3.17) 
we get that

∂ xi ∂ xj e i √ λ|x-ỹ| -1 = i √ λ ∂ xi ( rj r )e i √ λr + rj r ∂ xi e i √ λr = i √ λ δ ij r - ri rj r3 +i √ λ ri rj r2 e i √ λr .
(3.18) To find the desired result in (3.11), we may use (3.16), (3.17) and (3.18) to see that the relation (3.14) verifies:

∂ xi ∂ xj e i √ λ|x-ỹ| -1 |x -ỹ| 3 = i √ λ δ ij r4 -3 δ ij r5 -λ 2 ri rj r5 -7i √ λ ri rj r6 +15 ri rj r7 e i √ λr +3 δ ij r5 -15 ri rj r7 . (3.19)
On the other hand, the components of the vectorial relation (3.9) can be given as

follows xi -ỹi = x i -y i + δθ i (x, y). i = 1, 2, 3 (3.20) 
where θ i (x, y) means the i th component of the vector-valued function Θ(x, y).

Then, by relations (3.15) and (3.20) we deduce that

rj = xi -ỹi = x i -y i + δθ i (x, y) = r i + δθ i (x, y), i = 1, 2, 3. (3.21)
Using both relations (3.9) and (3.21), we get the following expansion ri rj = α

(ij) 0 + α (ij) 1 δ + α (ij) 2 δ 2 , (3.22) 
where the first coefficients: α

(ij) 0 = r i r j , α (ij) 1 
= r i θ j + r j θ i and α

(ij) 2 = θ i • θ j .
Now regarding (3.12) and using the fact that c (m) 0

= 0 for each integer m. Then one can expand

1 rm = κ (m) 0 (x, y) + ∞ n=1 δ n κ (m) n (x, y) uniformly , (3.23) 
where the first coefficients: κ 

(ij) 0,m + δβ (ij) 1,m + ∞ n=2 δ n β (ij) n,m , (3.24) 
where the first coefficients:

β (ij) 0,m (x, y) = α (ij) 0 (c (m) 0 ) -1 (x, y), and 
β (ij) 1,m (x, y) = -α (ij) 0 c (m) 1 (c (m) 0 ) -2 (x, y) + α (ij) 1 (c (m) 0 ) -1 (x, y).
To achieve the proof, we may insert all expansions (3.13), (3.23) (for m ∈ {4, 5}), and (3.24)(for m ∈ {5, 6, 7} into (3.19). We get that

∂ xi ∂ xj e i √ λ|x-ỹ| -1 |x -ỹ| 3 = R (ij) 0 (x, y) + δR (ij) 1 (x, y) + ∞ n=2 δ n R (ij) n (x, y)
where the first coefficient:

R (ij) 0 (λ; x, y) = i √ λδ ij κ (4) 0 -3δ ij κ (5) 0 -λ 2 β (ij) 0,5 -7i √ λβ (ij) 0,6 +15β (ij) 0,7 K 0 +3δ ij κ (5) 0 -15β (ij) 0,7 = i √ λδ ij (c (4) 0 ) -1 -3δ ij (c (5) 0 ) -1 -λ 2 r i r j (c (5) 0 ) -1 -7i √ λr i r j (c (6) 0 ) -1 +15r i r j (c (7) 0 ) -1 e i √ λc (1) 0 +3δ ij (c (5) 0 ) -1 -15r i r j (c (7) 0 ) -1 .
Using the fact that c

(m) 0 = |x -y| m , we find that R (ij) 0 (λ; x, y) := ∂ x i ∂ x j e i √ λ|x-y| -1 |x -y| 3 .
Based on (3.19), we find that

R (ij) 1 (λ; x, y) = i √ λδ ij κ (4) 0 -3δ ij κ (5) 0 -λ 2 β (ij) 0,5 -7i √ λβ (ij) 0,6 + 15β (ij) 0,7 K 1 + i √ λδ ij κ (4) 1 -3δ ij κ (5) 1 -λ 2 β (ij) 1,5 -7i √ λβ (ij) 1,6 + 15β (ij) 1,7 K 0 + 3δ ij κ (5) 1 -15β (ij) 1,7 .
So that, by using the fact that

K 1 = i √ λΘ • (x-y) r e i √ λc (1) 
0 , we get

R (ij) 1 (λ; x, y) = i √ λΘ• (x -y) r i √ λδ ij (c (4) 0 ) -1 -3δ ij (c (5) 0 ) -1 -λ 2 r i r j (c (5) 0 ) -1 -7i √ λr i r j (c (6) 0 ) -1 +15r i r j (c (7) 0 ) -1 e i √ λc (1) 0 + i √ λδ ij (c (4) 0 ) -2 c (4) 1 -3δ ij (c (5) 0 ) -2 c (5) 1 -λ 2 [-r i r j (c (5) 0 ) -2 c (5) 1 + (r i θ j + r j θ i )(c (5) 0 ) -1 ] -7i √ λ[-r i r j (c (6) 0 ) -2 c (6) 1 +(r i θ j +r j θ i )(c (6) 0 ) -1 ]+15[-r i r j (c (7) 0 ) -2 c (7) 1 +(r i θ j +r j θ i )(c (7) 0 ) -1 ] e i √ λc (1) 0 +3δ ij (c (5) 0 ) -2 c (5) 1 -15[-r i r j (c (7) 0 ) -2 c (7) 1 + (r i θ j + r j θ i )(c (7) 0 ) -1 ].
Using the explicit forms of the coefficients c given above, we immediately get the desired expression of R (ij) 1 (λ; x, y). The other coefficients can be deduced easily by the same manner in terms of c (m) n . Now using (3.20), we obtain for i, j = 1, 2, 3 that:

(x i -ỹi )(x j -ỹj ) = ĝ0 (x, y) + δĝ 1 (x, y) + δ 2 ĝ2 (x, y), (3.25) 
where ĝ0 (x, y) = (x i -y i )(x j -y j ), ĝ1 (x, y) = θ i (x, y)(x j -y j ) + θ j (x, y)(x i -y i ), and ĝ2 (x, y) = θ i (x, y) • θ j (x, y). Now, by using (3.5), (3.12) and (3.25), we immediately get

(x i -ỹi )(x j -ỹj ) |x -ỹ| m dσ δ (ỹ) = T0 (x, y) + δ T1 (x, y) + n≥2 δ n Tn (x, y) dσ(y), (3.26) 
where the Taylor coefficients Tn can be given explicitly with the aid of ĝ0 , ĝ1 , and ĝ2 .

Next, the following result holds.

Lemma 3.2

The following uniform expansion holds on R × ∂Ω × ∂Ω:

(x i -ỹi )(x j -ỹj )|x -ỹ|e i √ λ|x-ỹ| dσ δ (ỹ) = E δ (λ; x, y) dσ(y) = ∞ n=0
δ n E n (λ; x, y) dσ(y)

(3.27) with E 0 (λ; x, y) = ĝ0 (x, y)|x -y|e i √ λ|x-y| ,
and the other coefficients E n are deduced from those σ n , c

n , K n and ĝn .

Proof. From the proof of Lemma 3.1 (for m = 1) and from relations (3.5) and (3.25), one can get that

(x i -ỹi )(x j -ỹj )|x -ỹ|e i √ λ|x-ỹ| dσ δ (ỹ) = ĝ0 (x, y) + δĝ 1 (x, y)+ δ 2 ĝ2 (x, y) ∞ n=0 δ n c (1) n ∞ n=0 K n (λ; x, y) σ 0 (y) + δσ 1 (y)+ δ 2 σ 2 (y) + δ 3 σ 3 (y) dσ(y).
By collecting terms of equal powers in the above relation, one can deduce easily the uniform expansion (3.27) with

E 0 (λ; x, y) = ĝ0 (x, y)|x -y|e i √ λ|x-y| .
Now, from (2.1) we have

Γ ij (λ, |x -y|) = e i √ λr 4π δ ij r - xi xj r 3 + e i √ λr 4πλ i δ ij r 4 -4i xi xj r 4 -3irx i xj + 1 4πλ -3 δ ij r 5 + 15 xi xj r 7 + e iλr 4πλ -3 δ ij r 5 + 15 xi xj r 3
, where r = |x -y| and xi = x i -y i . Then, by inserting relations (3.10), (3.25), (3.26) and that given by Lemma 3.2 into above identity, we immediately get the following main results Proposition 3.4 Let the perturbed boundary ∂Ω δ defined by (1.2). Let x and ỹ given by (3.6)-(3.7), and the surface element dσ δ (ỹ) given by (3.5). Then, the components Γ ij , 1 ≤ i, j ≤ 3 of the fundamental Stokes tensor can be expanded uniformly as:

Γ ij (λ, |x -ỹ|) dσ δ (ỹ) = Γ (0) ij (λ, |x -y|) + δΓ (1) ij (λ, |x -y|) (3.28) + n≥2 δ n Γ (n) ij (λ, |x -y|) dσ(y), y ∈ ∂Ω
where the first coefficients:

Γ (0) ij (λ, |x -y|) := δ ij 4π T (1) 0 + i λ T (4) 0 -3 r 0 λ 2 -3 T (5) 0 λ 2 + 1 4π ( 15 λ 2 -1)T (3) 0 ĝ0 - 4i 4πλ T (4) 0 ĝ0 - 3i 4πλ E 0 + 15 4πλ 2 T0 , and 
Γ (1) ij (λ, |x -y|) := δ ij 4π T (1) 1 + i λ T (4) 1 -3 r 1 λ 2 -3 T (5) 1 λ 2 + 1 4π ( 15 λ 2 -1) T (3) 0 ĝ1 + T (3) 1 ĝ0 - 4i 4πλ T (4) 0 ĝ1 + T (4) 1 ĝ0 - 3i 4πλ E 1 + 15 4πλ 2 
T1 . In Proposition 3.4, the coefficients r 0 and r 1 are deduced from (3.12) for m = 5.

Now, introduce a sequence of components of integral operators (A (n)

i ) n≥0 , defined for any ϕ ∈ L 2 (∂Ω) 3 by:

A (n) ϕ i (x) = ∂Ω Γ (n) ij (x, y)ϕ j (y) dσ(y), for i, j ∈ {1, 2, 3} and n ≥ 0.

Using previous results, il is clear that we know explicitly the first terms

A (0) i , A (1) 
i . For any positive integer N , we can by recursive method get the term A (N ) i . Then, the following theorem holds. Theorem 3.1 Let A δ be the operator defined by (2.5). Let Ψ δ (x) be the diffeomorphism defined as in Lemma 2.2. Let N be a positive integer. There exists a positive constant C depending only on N , and h C 2 such that for any φ ∈ L 2 (∂Ω δ ) 3 and i, j ∈ {1, 2, 3}, the i th -component A δ i defined by (2.8) satisfies:

A δ φ i oΨ δ -A (0) ϕ) i - N n=1 δ n A (n) ϕ i L 2 (∂Ω) ≤ Cδ N +1 ϕ L 2 (∂Ω) 3 ,
where ϕ = φoΨ δ .

Asymptotic expansion of the eigenvalues

To develop asymptotic behaviors of eigenvalues and eigenfunctions with respect to the parameter of perturbation δ, we may use the results of Theorem 3.1. Then, the following asymptotic expansion related to the operator A δ appears clearly.

Proposition 3.5 Suppose that we have all hypothesis of Theorem 3.1. Then, the operator A δ (λ) defined by (2.5) can be expanded uniformly for x ∈ ∂Ω as follows:

A δ (λ)ϕ = A (0) (λ)ϕ + δA (1) (λ)ϕ + δ 2 A (2) (λ)ϕ + • • • ; as δ → 0, (3.29)
where ϕ ∈ L 2 (∂Ω) 3 , the i th -component of the first term is given by

A (0) i (λ)ϕ i (x) = ∂Ω Γ (0) ij (x, y)ϕ j (y) dσ(y), for i, j ∈ {1, 2, 3},
and more generally, the i th -component of the term with order n is given by

A (n) (λ)ϕ i (x) = ∂Ω Γ (n) ij (
x, y)ϕ j (y) dσ(y), for i, j ∈ {1, 2, 3} and n ≥ 1.

The coefficients Γ

(n) ij are given by (3.28).

Now, based on the well known works [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF], we tray to give (formally) an asymptotic expansion related to the eigenvalues λ δ if the eigenvalue λ 0 is simple. But, To get an explicit asymptotic formula for λ δ we may develop our analysis in some Hölder space. This will be given in Theorem 3.2. Before that, let a j (δ) denotes:

a j (δ) := 1 2iπ tr ∂Dǫ 0 (λ -λ 0 ) j (A δ ) -1 (λ)∂ λ A δ (λ)dλ. (3.30)
The functions a j (δ) is analytic in a complex neighborhood of 0 and satisfies: a j (δ) = a j (δ). The following main result holds.

Proposition 3.6 Let λ 0 be a simple eigenvalue of the problem (1.1). Let the operator A δ be defined by (2.5). Then, there exists a small positive number δ 0 such that the eigenvalue λ(δ) is analytic in ] -δ 0 , δ 0 [ and satisfies:

λ(δ) = λ 0 + δλ 1 + n≥2 λ n δ n , (3.31) 
where the first coefficients are (formally) given by:

               λ 1 = 1 2iπ tr ∂Dǫ 0 (λ -λ 0 ) (A (0) ) -1 (λ)A (1) (λ)(A (0) ) -1 (λ)∂ λ A (0) (λ) dλ, λ 2 = 1 2iπ tr ∂Dǫ 0 (λ -λ 0 ) (A (0) ) -1 A (1) (A (0) ) -1 ∂ λ A (1) + (A (0) ) -1 A (2) (A (0) ) -1 ∂ λ A (0) + (A (0) ) -1 A (1) (A (0) ) -1 2 ∂ λ A (0) dλ. So, λ δ -λ 0 = 1 2iπ tr ∂Dǫ 0 (λ -λ 0 )(A (0) ) -1 (λ)∂ λ A δ (λ)ϕ dλ+ 1 2iπ tr ∂Dǫ 0 (λ -λ 0 ) ∞ k=1 (A (0) ) -1 (λ) A (0) (λ) -A δ (λ) (A (0) ) -1 (λ) k ∂ λ A δ (λ) dλ
By using (2.9), we find that 1 2iπ tr

∂Dǫ 0 (λ -λ 0 )(A (0) ) -1 (λ)∂ λ A δ (λ) dλ = 0.
This result is a direct consequence of the fact that R 0 (λ) and ∂ λ A δ (λ) are holomorphic in the variable λ.

Now we have:

λ δ -λ 0 = 1 2iπ tr ∂Dǫ 0 (λ -λ 0 )(A (0) ) -1 (λ) A (0) (λ) -A δ (λ) (A (0) ) -1 (λ) ∂ λ A δ (λ) dλ+ 1 2iπ tr ∂Dǫ 0 (λ -λ 0 )(A (0) ) -1 (λ) A (0) (λ) -A δ (λ) (A (0) ) -1 (λ) 2 ∂ λ A δ (λ) dλ+ 1 2iπ tr ∂Dǫ 0 (λ -λ 0 ) k≥3 (A (0) ) -1 (λ) A (0) (λ) -A δ (λ) (A (0) ) -1 (λ) k ∂ λ A δ (λ) dλ.
Inserting expression (3.29) into above relation, we may get:

λ δ -λ 0 = 1 2iπ tr ∂Dǫ 0 (λ-λ 0 )(A (0) ) -1 δA (1) (A (0) ) -1 +δ 2 A (2) (A (0) ) -1 +• • • ∂ λ A (0) +δ∂ λ A (1) +δ 2 ∂ λ A (2) + • • • ϕ dλ + 1 2iπ tr ∂Dǫ 0 (λ -λ 0 )(A (0) ) -1 δA (1) (A (0) ) -1 + δ 2 A (2) (A (0) ) -1 + • • • 2 ∂ λ A (0) + δ∂ λ A (1) + δ 2 ∂ λ A (2) + • • • dλ + • • •
If we collect the same powers of δ, then we get the desired results.

Asymptotic formula in Hölder space

In section we suppose that any shape deformation like (1.2) occurs inside a bounded domain Ω in a Hölder space. Based on the works [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Ammari | A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[END_REF][START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF], we may advance the asymptotic expansions for simple and/or multiple eigenvalues of the Stokes operator and we may give explicitly the fist term correction. Since the Stokes system can be viewed as the incompressible limit and as done in [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF], our method in this section may be deeply based on the ones developed in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF] for the elastic case.

Suppose that in this section that Ω ⊂ R 2 is a bounded domain with C 1,1 boundary.Let D be an open subset of Ω such that dist(∂Ω, D) ≥ d 0 > 0 representing an inclusion made of a different Newtonian fluid material. Assume that the boundary ∂D is of class C 2,1 . We denote by σ 0 and σ 1 the stress tensor fields in Ω\D and D, respectively. We assume that both Ω\D and D are occupied by isotropic and homogeneous Newtonian fluids. Then, the tensors σ 0 and σ 1 may be given by (σ s ) ijlk = µ s (δ ki δ lj + δ kj δ li ) for i, j, k, l = 1, 2 and s = 0, 1, (

where µ 0 and µ 1 are the viscosity constants of the flow in Ω\D and D, respectively. Given two (2 × 2) matrices A and B we denote by A : B the contraction, i.e., A : B = ij a ij b ij . Now, it is useful to introduce the strain rate tensor D for the flow as follows:

D(v) := 1 2 (∇v + (∇v) T ) = 1 2 ( ∂v i ∂x j + ∂v j ∂x i ) 1≤i,j≤3
.

Let σ D := σ 0 χ Ω\D + σ 1 χ D . Then according to [START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF], one can rewrite the eigenvalue problem (1.1) as the generalized one:

           -div(σ D D(v 0 ) -p 0 Id) = λ 0 v 0 in Ω ∇.v 0 = 0 in Ω v 0 = 0 in ∂Ω v 0 = 1 (3.34) where (v 0 , p 0 , λ 0 ) ∈ (H 2 (Ω)) 2 × H 1 (Ω) × R *
+ and Id means the identity. Here we refer the reader to ([10], Theorem IV.5.8) for more details about the regularity properties. On the other hand, if S mens the Stokes operator, it is well know that (see for example, [START_REF] Ammari | Effective viscosity properties of dilute suspensions of arbitrarily shaped particles[END_REF][START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF]) there exist an orthogonal projection (the Leray projection) P such that:

S(v) = P (-∆v), ∀v ∈ (H 2 (Ω)) 2 ∩ H(Ω).
In consequence, the Stokes operator enters the general framework about spectral properties of -∆.

The δ-perturbation, denoted by D δ , of the domain D is given by

∂D δ := {x = x + δh(x)ν(x), x ∈ ∂D} (3.35)
where here h(x) is assumed to be real function in C 1,1 (∂D) that satisfies h C 1,1 (∂D) < c 0 for some positive constant c 0 .

(3.36)

Let σ D δ := σ 0 χ Ω\D δ + σ 1 χ D δ . Therefore, (1.4) can be generalized to the following perturbed eigenvalue problem

           -div(σ D δ D(v δ ) -p δ Id) = λ δ v δ in Ω ∇.v δ = 0 in Ω v δ = 0 in ∂Ω v δ = 1 (3.37) where (v δ , p δ , λ δ ) ∈ (H 2 (Ω)) 2 × H 1 (Ω) × R * + .
Our purpose in this section is to develop a rigourously asymptotic behavior of the eigenvalue of (3.37) assumed to be more precisely. The main result is the following. Theorem 3.2 Suppose that Ω ⊂ R 2 with class C 1,1 . Let λ 0 be a simple eigenvalue of the problem (3.34). Assume that we have (3.36), and the pressure still the same if we have (3.35). Then, the first term correction in the asymptotic expansion of the eigenvalue λ δ is given through the following formula:

λ δ -λ 0 = δ ∂D h(x)V[D(v e 0 )](x) : D(v e 0 (x))ds(x) + O(δ 1+β ),
where β some positif constant and V means the viscous moment tensor (VMT) given by V

[D(v e 0 )] = [ 1 σ 1 (V 1 ∇v e 0 (x)τ ) ⊗ τ + ( σ 0 σ 1 ∇v e 0 (x)ν) ⊗ ν].
Here, we denote by ν, τ respectively the outward normal vector and the tangent vector to ∂D and V 1 a given operator expresses the transmission conditions for v 0 . Proof. To derive the corresponding formulae for the eigenvalues we will use an idea close to Osborn'theorem [START_REF] Osborn | Spectral approximation for compact operators[END_REF] which gives estimates for the convergence of the eigenvalues of a sequence of compact operators. For any f ∈ L 2 (Ω), define the linear operator T ǫ f = u ǫ , where u ǫ is the solution to the problem

-div(σ D δ D(u δ ) -p δ Id) = f in Ω, u δ = 0 on ∂Ω. (3.38)
For the same given function f , we define the linear operator T f = u 0 , where u 0 is the solution to the problem

-div(σ D D(u 0 ) -p 0 Id) = f in Ω, u 0 = 0 on ∂Ω. (3.39)
Clearly T ǫ and T are are compact self-adjoint operators. One may use standard energy estimates based on Korn and Poincar'e inequalities to get these facts. Moreover, it is easy to see that {T δ ; δ ≥ 0} with T 0 = T are collectively compact and that T δ → T pointwise as δ → 0. To get the last result, one may prove that T δ f converges to T f in L 2 (Ω) for every f ∈ L 2 (Ω). By assumption, in the presence of (3.35), there exist a function p such that p δ = p 0 = p. Then, let u δ = T δ f and u 0 = T δ f . For any w ∈ H 1 (Ω), we have:

Ω ∇ • (σ D δ D(u δ ) -pId).w = Ω f.w, so, Ω (σ D δ D(u δ ) -pId) : D(w) = - Ω f.w. Similarly, Ω (σ D D(u 0 ) -pId) : D(w) = - Ω f.w.
Consequently, choosing w = u δ -u 0 and subtracting these two equations we get

Ω (σ D δ D(u δ ) -σ D D(u 0 )) : D(u δ -u 0 ) = 0 which gives Ω σ D δ D(u δ -u 0 ) : D(u δ -u 0 ) = - Ω (σ D δ -σ D )D(u 0 ) : D(u δ -u 0 ).
Hence, by using successively Korn's inequality and Hölder's one, one can get

∇(u δ -u 0 ) L 2 (Ω) ≤ C ∇u 0 L 2 (D δ △D) , and 
I 2 = δ µ 2 0 ∂D∩{h<0} h(x)V[D(v e 0 )](x) : D(v e 0 )(x)ds(x) + O(δ 1+ α 2(α+2) ),
where α > 0 and V[D(v e 0 )] deduced from (3.48). Therefore, with β = inf(η, α 2(α+2) ). To achieve the proof, we recall that

≺ (T δ -T )v 0 , v 0 ≻= I 1 + I 2 = δ µ 2 0 ∂D h(x)V[D(v e 0 )] ( 
λ δ -λ 0 = λ 0 λ δ (1/λ 0 -1/λ δ ) = λ 0 λ δ (μ 0 -μδ )
and we take into consideration that λ

0 λ δ = λ 2 0 + δ(λ 0 λ 1 ) + δ 2 (λ 0 λ 2 ) + • • • .
Now we consider the case of a multiple eigenvalue. Let the operators T and T δ be defined as in the proof of Theorem 3.2. We suppose that μ0 be a nonzero eigenvalue of T with multiplicity m ≥ 1. Then, for δ small, T δ has a set of m eigenvalues μj 

µ 0 -μδ - 1 m m j=1 ≺ (T δ -T )u 0,j , u 0,j ≻ ≤ C (T -T δ )u 0,j 2 L 2 (Ω) , (3.49) 
Moreover, for each j = 1, • • • , m, there is an eigenfunction u δ,j corresponding to μj δ such that u δ,j L 2 (Ω) = 1, and

u δ,j -u 0,j L 2 (Ω) ≤ C (T -T δ )| Ker(T -μ 0 I) . (3.50) 
For more details, we can refer to [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Khelifi | Asymptotic property and convergence estimation for the eigenelements of the Laplace operator[END_REF]. Suppose now that the eigenvalue λ 0 of the problem (3.34) is with geometric multiplicity m and let v 0,j ; j = 1, • • • , m be L 2 -orthonormal eigenfunctions corresponding to λ 0 . Let λ j δ be the eigenvalues of problem (3.37) generated by splitting from λ 0 and let v j δ be the associated eigenfunction (normalized with respect to L 2 ) such that v j δ → v 0,j as δ → 0. Based on (3.49) and (3.50), one can use similar approaches as in the proof of Theorem 3.2 to get the following result.

Corollary 3.1 Suppose that Ω ⊂ R 2 with class C 1,1 . Let λ 0 be an eigenvalue, of the problem (3.34), with (geometric) multiplicity m ≥ 1. Assume that we have (3.36), and the pressure still the same if we have (3.35). Then, there exist m eigenvalues λ j δ , j = 1, • • • , m (repeated according to their multiplicities) such that λ j δ → λ 0 as δ → 0 and the following asymptotic expansion holds:

1 λ 0 - 1 m m j=1 1 λ j δ = δ m m j=1 ∂D h(x)V[D(v e 0,j )](x) : D(v e 0,j )(x)ds(x) + O(δ 1+β ),
where β some positif constant and V given by Theorem 3.2.

Asymptotic formula for eigenfunctions and eigenpressures

This section is dedicated to develop asymptotic expansions for both eigenfunctions and eigenpressures associated to (1.4). Here we suppose that we have all hypothesis and conditions of the Section 1 and Section 2. Define the operator:

B δ (λ)ϕ(x) = (W(λ)ϕ)(Ψ -1 δ )(Ψ δ (x)),
where ϕ ∈ L 2 (∂Ω), Ψ δ given by Section 2.2, and W(λ) is the operator associated to hydrodynamic double layer potential [START_REF] Kohr | The interior Neumann problem for the Stokes resolvent system in a bounded domain in R n[END_REF][START_REF] Ladyzhenskaya | Mathematical theory of the viscous incompressible[END_REF][START_REF] Varnhorn | The Stokes equations[END_REF]. Then, the following main result holds.

Theorem 3.3 Suppose that we have (1.2) and let λ 0 be a simple eigenvalue of (1.1). Let A δ be the operator defined by (2.5), and M δ = A δ + B δ . Let O 0 be a bounded neighborhood of Ω in R 3 . Then there exists a constant δ 1 > 0 smaller than δ 0 such that the eigenfunction v δ corresponding to the eigenvalue, λ δ , in (H 1 (Ω δ )) 3 ∩ H(Ω δ ) can be chosen to depend holomorphically in (x, δ) ∈ O 0 ×] -δ 1 , δ 1 [. Moreover this eigenfunction satisfies the following asymptotic formulae

v δ (x) = v 0 (x) + n≥1 v n (x)δ n , (3.51) 
where the function v 0 is the eigenfunction solution of (1.1) associated to λ 0 . The terms v n are computed from the Taylor coefficients of the operator valued function M δ and of those of the function a(δ) = (a ij (δ)) 1≤i,j≤3 .

Proof. From [START_REF] Kohr | The interior Neumann problem for the Stokes resolvent system in a bounded domain in R n[END_REF][START_REF] Medkova | Boundary value problems for the Stokes equations with jumps in open sets[END_REF] we deduce that there exist a continuous function ϕ(t, δ), which is analytic in R 2 ×] -δ 0 , δ 0 [ and such that 

  2 (x, y). By using (3.22)-(3.23), we get that ri rj rm = β

  x) : D(v e 0 )(x)ds(x) + O(δ 1+ α 2(α+2) ), and by considering the above relation, (3.40) and (3.46) we obtain μ0 -μδ = δ μ2 0 ∂D h(x)V[D(v e 0 )](x) : D(v e 0 )(x)ds(x) + O(δ 1+β )

δ

  (counted according to their multiplicity) such that μj δ → μ0 for eachj = 1, • • • , m as δ → 0. Let μδ = 1 m m j=1 μjδ , and let {u 0,1 , u 0,2 , • • • , u 0,m } is an orthonormal basis for Ker(T -μ0 I), then as written in (3.40) there exists a constant C (independent of δ) such that

v

  δ (x) = S(λ δ )ϕ + W(λ δ )ϕ, x ∈ Ω (3.52) solves the eigenvalue problem(1.4). Moreover, the function given by U (δ)(x) = M(λ δ )ϕ(Ψ -1 , δ) satisfies the eigenvalue problem(1.4) in Ω δ with the boundary conditions:U (δ)| ∂Ω δ = 0. Here, M(λ δ )ϕ(Ψ -1 , δ) = M δ (λ)ϕ. Now, by (3.52), we deduce that v δ (x) = U (δ)(x) = M(λ δ )ϕ(Ψ -1 , δ) is jointly analytic with respect to (x, δ) in { x-Ψ δ=0 (y) ≤ z 0 }×]-δ 0 , δ 0 [,where z 0 is a positive constant. The function v δ (x) is jointly analytic in the variables (x, δ) ∈ O 0 ×] -δ 0 , δ 0 [. We shall now give the asymptotic expansion of the function v δ (x) when δ tends to 0. Integral equation (2.2) gives usv δ (x) = ∂Ω M (λ δ , |x -Ψ δ (y)|)ϕ(y, δ)|∇Ψ δ (y)|dσ(y),where M is the kernel of the operator M δ . The perturbed eigenvalue λ δ is in a small neighborhood of λ 0 for small values of δ. Then we have the following Taylor expansionM (λ δ ), |x -Ψ δ (y)|)|∇Ψ δ (y)| = M (λ 0 , |x -Ψ(y)|)|∇Ψ(y)| + k≥1 δ k M k (x, y),which holds uniformly in x ∈ O 0 and y ∈ ∂Ω. The analyticity of the function ϕ(y, δ) with respect to δ immediately gives ϕ(t, δ) = ϕ 0 (y) + k≥1 δ k ϕ k (y), uniformly in y ∈ ∂Ω. Substituting the last two asymptotic into (3.53) we findv δ (x) = v δ=0 (x) + k≥1 δ k [ k n=1 ∂Ω ϕ k-n (y)M n (x, y)dσ(y)].The next result provide us with the asymptotic expansion of the eigenpressures. Corollary 3.2 Suppose that we have all hypothesis of Theorem (3.3). Then the eigenpressures p δ solution of (1.4) have the following uniform asymptotic expansion:p δ (x) = p 0 (x) + n≥1 p n (x)δ n ,(3.53)where the function p 0 is the eigenpressure solution of (1.1) associated to λ 0 . The terms p n are computed from the Taylor coefficients λ n and v n = (v 1 n , v 2 n , v 3 n ) as follows:p n (.; x i ; .) = ∆v i n dx i + n k=0 λ k v i n-k dx i , where i = 1, 2, 3.Proof. From system (1.4) we have∇p δ = ∆v δ + λ δ v δ .Hence, we can expand the function p δ in powers of δ as we have done for λ δ and v δ . Moreover, we have:∂ i p δ = ∆v i δ + λ δ v i δ , for i = 1, 2, 3. (3.54) To get the Taylor coefficients p n , introduced in the formula (3.53), one can insert both asymptotic expansions (3.31) and (3.51) into relation (3.54), and integrate with the convenable variable.

Proof. Let λ δ be the eigenvalue of the problem (1.4). It is well known that λ δ is also simple such that λ δ → λ 0 as δ → 0. On the other hand, if we take the curl of the first equation in (1.4), we see that there exists a function w = w(v δ ) called vorticity associated to v δ such that:

That is, w is an eigenfunction of the negative Laplacian, but with homogeneous boundary conditions on the velocity v δ . Moreover, let u δ be the stream function for v δ given as in Lemma 2.10 of [START_REF] Kelliher | Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane[END_REF]. Then, w = ∆u δ and ∇u δ = 0 on ∂Ω. Since u δ is determined only up to a constant, we can then assume that u δ = 0 on ∂Ω. Thus, u δ satisfies the following eigenvalue problem for the Dirichlet biharmonic operator:

Note that Temam [START_REF] Temam | Theory and numerical analysis[END_REF] exploits the similar correspondence between the Stokes problem and the biharmonic problem in the proof of the regularity of solutions to the Stokes system and to justify several results. Moreover, as pointed out by Ashbaugh in [START_REF] Ashbaugh | On universal inequalities for the low eigenvalues of the buckling problem[END_REF], there is a similar correspondence between the eigenvalue problems for the Dirichlet Laplacian and system (3.32) with the boundary condition replaced by ∆u δ = 0. Then, one can exploit this correspondence to use the approach used in [START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF] in order to develop an asymptotic expansion for the eigenvalue.

On the other hand, it is well known [START_REF] Ammari | Layer Potential Techniques in Spectral Analysis[END_REF][START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF] that there exits a polynomial-valued function δ → Q δ (λ) of degree 1, analytic in ] -δ 0 , δ 0 [ and of the form:

such that the perturbation λ δ -λ 0 is precisely its zero. For the existence of Q δ one can follow the general approach used, for example, in [START_REF] Ammari | Splitting of resonant and scattering frequencies under shape deformation[END_REF] for the case of Laplace operator. Writing:

Then we have

Therefore, by (3.30) we have

On the other hand, for δ in a small neighborhood of 0, the following Neumann series converges uniformly with respect to λ in ∂D ǫ 0 :

where △ denotes the symmetric difference. It then follows by the Poincaré inequality that

Consequently, using the last inequality and the fact that |D δ △D| → 0 as δ → 0 and that ∇u 0 ∈ L 2 (Ω) we obtain that T δ → T pointwise as δ → 0 in L 2 (Ω).

Hence all hypotheses hold for the theorem of Osborn. Now if we set,

then according to the problem (3.38)(resp. (3.39)) we can see that ( µ δ , v δ ) (resp.( µ 0 , v 0 )) is eigenpair of T δ (resp. of T 0 ). So, a theorem of Osborn [START_REF] Osborn | Spectral approximation for compact operators[END_REF] yields

where C is independent of δ and v 0 is the solution of (3.34). Furthermore, if v δ is the solution to (3.37), then

According to [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF][START_REF] Boyer | Fabrie Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF] we can extend the regularity results obtained by De Giorgi and Nash in the scalar case [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] to get

where C is a positif constant and for d 0 > 0 we have

To compute the term ≺ (T δ -T )v 0 , v 0 ≻ appearing in (3.40), we may firstly recall that T v 0 = µ 0 v 0 and T δ v 0 = ũδ where ũδ is the solution to

From (3.42) and (3.43), we have

Now, as done in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF] we put x t := x+th(x)ν(x) for x ∈ ∂D and t ∈ [0, δ]. It is clearly that the Jacobian determinant of the change of variables (x, t)

for δ small enough, and hence we get

). On the other hand, based on the result of Li and Nirenberg proved in [START_REF] Li | Estimates for elliptic systems from composite material[END_REF], the following gradient estimate holds:

where ũδ is the solution of (3.42), and the positive constant C is independent of δ.

Now using Lemma 2.2 in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF], and the relations (3.43)-(3.46), one may obtain:

On the other hand, we use the gradient estimates (3.42) and (3.43) for ũδ and v 0 , to approximate

for δ sufficiently small. To proceed with our proof we may investigate the transmission conditions of v 0 along the interface ∂D. One can easily see from the equation in (3.34) that v 0 satisfies: v e 0 = v i 0 and (σ 0 D(v e 0 ))ν = (σ 1 D(v i 0 ))ν where v e 0 = v 0 | Ω\D and v i 0 = v 0 | D . Let τ be the unit tangential vector field to ∂D, and following the approach used in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF], one can find that

where

Here I 2 is the (2 × 2) identity matrix, I 4 is the identity 4-tensor and the viscosity constants µ 0 , µ 1 are given in (3.33).

Applying the transmission conditions (3.47) for the function ũδ , one may get

. Now, regarding Lemma 3.2 in [START_REF] Ammari | Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case[END_REF], which still applied to Stokes case, on may approximate