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Exact enumeration of local minima for k-
medoids clustering in a 2D Pareto Front

Nicolas Dupin,1
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Abstract K-medoids clustering is solvable by dynamic programming in O(N3)
time for a 2D Pareto Front (PF). A key element is a interval cluster-
ing optimality. This paper proves this property holds also for local
minima for k-medoids. It allows to enumerate the local minima of
k-medoids with the same complexity than the computation of global
optima for k=2 ou k=3. A pseudo-polynomial enumeration scheme
is designed, for small values of k. This allows to understand results
obtained by local search approaches in a 2D PF.
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1. Problem statement, notation

Definition 1. A 2D PF is defined as a set E of N points in R2, indexed with E =
{(xk, yk)}k∈[[1,N ]] such that k ∈ [[1, N ]] 7→ xk is increasing and k ∈ [[1, N ]] 7→ yk
is decreasing.

Let ΠK(E) the set of partitions of E in K subsets. K-medoids clustering
is a combinatorial optimization problem indexed by ΠK(E). It minimizes
the sum for all the K clusters of the dissimilarity measure minimizing the
sum of the squared distances from one chosen point of P , the medoid, to the
other points of P :

min
π∈ΠK(E)

∑
P∈π

min
c∈P

∑
x∈P
||x− c||2 (1)
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Combinatorial optimization problem (1) defines global optimums. For
this paper, local minima are defined using neighborhoods of the PAM (Par-
titioning Around Medoids) heuristic for k-medoids, adaptation of seminal
Lloyd’s heuristic for the k-means problem [6].

Definition 2 (Local minima of K-medoids). For all K ∈ N∗, local minima
of K-medoids (for PAM) are characterized by the encoding of partitioning subsets
P1, . . . , PK and their respective medoids c1, . . . , cK , with the property:

∀k ∈ [[1;K]],∀p ∈ Pk,∀k′ 6= k, ||p− ck|| 6 ||p− ck′ || (2)

2. Local optimality and interval clustering

A global minimum of optimization problem (1) can be computed in a 2D
PF by dynamic programming in O(N3) time [1]. A key element is a neces-
sary condition: interval optimality as in 1D clustering problems [3, 5]. The
interval clustering property holds also for local minima for k-medoids:

Theorem 3. We suppose that points (xi) are sorted as in Definition 1. Each
local minimum of K-Medoids in a 2dPF is only composed of clusters Ci,i′ =
{xj}j∈[[i,i′]] = {x ∈ E | ∃j ∈ [[i, i′]], x = xj}. As a consequence, there is at
most

(
N
K

)
local optima for K-Medoids in a 2d PF of size N .

Note that this optimality property is specific for k-medoids clustering.
For k-center problems, global minima exist with nested clusters [2]. For the
k-means problem, we can give a counter example of local minima which
do not fulfill the interval clustering property.

3. Enumeration algorithms of local optima

Theorem 3 allows to enumerate the
(
N
K

)
possible local minimums. Lemmas

help to decrease the complexity of such operation. Enumeration schemes
require to prove that a candidate solution is a local minimum fulfilling 2,
which can be checked easily using properties related to interval clustering:

Lemma 4. Interval clustering C1,f1 , Cf1+1,f2 , . . . , CfK−2+1,fK−1
, CfK−1+1,N with

medoids c1, . . . , cK is a local minimum if and only if both properties are fulfilled:

∀k ∈ [[1;K − 1]], ||zfk − ck|| 6 ||zfk − ck+1|| (3)
∀k ∈ [[1;K − 1]], ||z1+fk − ck+1|| 6 ||z1+fk − ck|| (4)
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For enumeration schemes, it requires to compute the medoids cj,j′ for
each cluster Cj,j′ with j 6 j′. Lemmas 5 and 6 allows to do it efficiently for
our enumeration schemes:

Lemma 5. Computing medoids (and costs) of clusters Cj′,j for all j′ ∈ [[1; j]] for
a given j ∈ [[1;N ]] runs in O(j2) time and uses O(j) memory space.

Lemma 6. Computing medoids (and costs) of clusters Cj,j′ for all j′ ∈ [[j;N ]] for
a given j ∈ [[1;N ]] runs in O((N − j)2) time and uses O(N − j) memory space.

For K = 2 and K = 3, straightforward enumeration of local minima has
the same complexity than computing only a global optimum:

Proposition 7. Enumerating the O(N) local minima of 2-Medoids in a 2d PF of
size N runs in O(N2) time using O(N) additional memory space.

Proposition 8. Enumerating the O(N2) local minima of 3-Medoids in a 2d PF
of size N runs in O(N3) time using O(N) additional memory space.

For a general algorithm, we use O(N2) additional memory space, com-
puting first the medoids cj,j′ of each interval cluster Cj,j′ in O(N3) time.
Then, a backtracking algorithm enumerates only partial feasible solutions
for Lemma 4: if C1,f1 , Cf1+1,f2 , . . . , Cfk−2+1,fk−1

, Cfk−1+1,fk with medoids
c1, . . . , ck partially fulfills ( 3) and ( 4), the next point fk+1 > fk induces
a new medoid cfk−1+1,fk such that

∣∣∣∣zfk − cfk−1+1,fk

∣∣∣∣ 6 ∣∣∣∣zfk − cfk+1,fk+1

∣∣∣∣
and

∣∣∣∣z1+fk − cfk+1,fk+1

∣∣∣∣ 6 ∣∣∣∣z1+fk − cfk−1+1,fk

∣∣∣∣. The following recursive
algorithm calls EnumLocMin(0, [], [], 0) to print all the local minimums.
We use functional programming notations, as in OCaml, x :: l pop first
element x in top of list l, l′ = x :: l = (hd l′) :: (tl l′), [] is empty list.

4. Conclusions and perspectives

If k-medoids clustering in a 2D PF is solvable by dynamic programming
in O(N3) time with an interval clustering property, this paper proves that
this property holds also for local minima for k-medoids. It allows to enu-
merate the local minima of k-medoids with the same complexity than the
computation of global optima for k = 2 ou k = 3. A pseudo-polynomial
enumeration scheme is designed, for small values of k. Perspectives are
to understand results obtained by local search approaches in a 2D PF and
why local minima of a poor quality can be found by PAM local search in
a 2D PF [4]. This problem and these properties are also an interesting for
landscape analysis approaches.
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Algorithm : Exhaustive search of Local Minima of K-Medoids
Input: N points of a 2D PF, E = {z1, . . . , zN}, K 6 N
The medoids cj,j′ of each interval cluster Cj,j′ are computed in pre-processing

EnumLocMin(last, ptList,medList, k)
if k == K − 1

c := hd medList
if ||zlast − c|| 6 ||zlast − clast+1,N || && ||z1+last − clast+1,N || 6 ||z1+last − c||

then print(ptList)
end if

else
for next = 1 + last to N −K + k + 1

c′ := c1+last,next

if k == 0 then EnumLocMin (next, next::[], c′::[], 1)
else

c := hd medList
if ||zlast − c|| 6 ||zlast − c′|| && ||z1+last − c′|| 6 ||z1+last − c||

then EnumLocMin (next, next::ptList, c′::medList, 1 + k)
end if

end if
end for

end if
end
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