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Exact enumeration of local minima for k-
medoids clustering in a 2D Pareto Front

Nicolas Dupin,*

L Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, Gif-
sur-Yvette, France, nicolas.dupin@universite-paris-saclay.fr

Abstract K-medoids clustering is solvable by dynamic programming in O(N?)
time for a 2D Pareto Front (PF). A key element is a interval cluster-
ing optimality. This paper proves this property holds also for local
minima for k-medoids. It allows to enumerate the local minima of
k-medoids with the same complexity than the computation of global
optima for k=2 ou k=3. A pseudo-polynomial enumeration scheme
is designed, for small values of k. This allows to understand results
obtained by local search approaches in a 2D PF.
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1. Problem statement, notation

Definition 1. A 2D PF is defined as a set E of N points in R?, indexed with E =
{(zk, Yr) }repi, Ny such that k € [1, N] +— xy, is increasing and k € [1, N] — yg
is decreasing.

Let Ik (E) the set of partitions of E in K subsets. K-medoids clustering
is a combinatorial optimization problem indexed by Il (E). It minimizes
the sum for all the K clusters of the dissimilarity measure minimizing the
sum of the squared distances from one chosen point of P, the medoid, to the
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Combinatorial optimization problem (1) defines global optimums. For
this paper, local minima are defined using neighborhoods of the PAM (Par-
titioning Around Medoids) heuristic for k-medoids, adaptation of seminal
Lloyd’s heuristic for the k-means problem [6].

Definition 2 (Local minima of K-medoids). For all K € N*, local minima
of K-medoids (for PAM) are characterized by the encoding of partitioning subsets

Py, ..., Pk and their respective medoids c, . . ., cx, with the property:
Vk € [1;K],Yp € P VK £k, |p—cil < Ip— curl @)
2. Local optimality and interval clustering

A global minimum of optimization problem (1) can be computed in a 2D
PF by dynamic programming in O(N?) time [1]. A key element is a neces-
sary condition: interval optimality as in 1D clustering problems [3, 5]. The
interval clustering property holds also for local minima for k-medoids:

Theorem 3. We suppose that points (x;) are sorted as in Definition 1. Each
local minimum of K-Medoids in a 2dPF is only composed of clusters C; ;; =
{2j}jenin = {z € E13j € [i,i'], x = x;}. As a consequence, there is at
most () local optima for K-Medoids in a 2d PF of size N.

Note that this optimality property is specific for k-medoids clustering.
For k-center problems, global minima exist with nested clusters [2]. For the
k-means problem, we can give a counter example of local minima which
do not fulfill the interval clustering property.

3. Enumeration algorithms of local optima

Theorem 3 allows to enumerate the (%) possible local minimums. Lemmas
help to decrease the complexity of such operation. Enumeration schemes
require to prove that a candidate solution is a local minimum fulfilling 2,
which can be checked easily using properties related to interval clustering:

Lemma 4. Interval clustering Ci ¢,,Cti41,f25- - Chu—at1,fr—1>Chu_1+1,N With
medoids c1, . .., cx is a local minimum if and only if both properties are fulfilled:

vk € [1;K 1], 27, — el
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For enumeration schemes, it requires to compute the medoids ¢; ;- for
each cluster C; ;» with j < j/. Lemmas 5 and 6 allows to do it efficiently for
our enumeration schemes:

Lemma 5. Computing medoids (and costs) of clusters C; ; for all j’ € [1; j] for
a given j € [1; N| runs in O(j2) time and uses O(j) memory space.

Lemma 6. Computing medoids (and costs) of clusters C; j for all j' € [j; N for
a given j € [1; N] runs in O((N — j)?) time and uses O(N — j) memory space.

For K =2 and K = 3, straightforward enumeration of local minima has
the same complexity than computing only a global optimum:

Proposition 7. Enumerating the O(N) local minima of 2-Medoids in a 2d PF of
size N runs in O(N?) time using O(N) additional memory space.

Proposition 8. Enumerating the O(N?) local minima of 3-Medoids in a 2d PF
of size N runs in O(N3) time using O(N) additional memory space.

For a general algorithm, we use O(N?) additional memory space, com-
puting first the medoids ¢; ;; of each interval cluster C; j; in O(N?) time.
Then, a backtracking algorithm enumerates only partial feasible solutions
for Lemma 4: if Ci,7,,Ct,41,f55---+Chy_ot1,f0_1>Cfr_1+1,7 With medoids
c1,...,cx partially fulfills ( 3) and ( 4), the next point f;+1 > fi induces
anew medoid ¢y, _, 41,5, such that ||z, — ¢, 17, || < |25 = Crorti o
and | 2145, — ¢t o | < 2140 — €¢fei41.5. |- The following recursive
algorithm calls ENUMLOCMIN(0, [], [],0) to print all the local minimums.
We use functional programming notations, as in OCaml, x :: [ pop first
element x intop of list [, ' =z : I = (hd l') :: (t1 V'), [] is empty list.

4. Conclusions and perspectives

If k-medoids clustering in a 2D PF is solvable by dynamic programming
in O(N?®) time with an interval clustering property, this paper proves that
this property holds also for local minima for k-medoids. It allows to enu-
merate the local minima of k-medoids with the same complexity than the
computation of global optima for £ = 2 ou k = 3. A pseudo-polynomial
enumeration scheme is designed, for small values of k. Perspectives are
to understand results obtained by local search approaches in a 2D PF and
why local minima of a poor quality can be found by PAM local search in
a 2D PF [4]. This problem and these properties are also an interesting for
landscape analysis approaches.
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Algorithm : Exhaustive search of Local Minima of K-Medoids
Input: N pointsof a2DPE E = {z1,...,2n5}, K < N
The medoids ¢, ;- of each interval cluster C; ;» are computed in pre-processing

EnumLocMiN(last, ptList, medList, k)
ifk==K -1
¢ :=hd medList
if ”Zlast - C" < ”Zlast - Clast+1,N|| && Hzl+last - Clast+1,N|| < ”Zl-Hast - CH
then print(pt List)
end if
else
fornext =1+ lasttoN - K +k+1
= Cl+last,next
if k==0 then ENUMLOCMIN (next,next:[],c:[],1)
else
c:=hd medList
if Hzlast - C” < Hzlast - C, ” && ”Zl+last - C, ” < ||Zl+last - C"
then ENUMLOCMIN (next, next:ptList, ¢’ :medList, 1 + k)
end if
end if
end for
end if
end
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