
HAL Id: hal-03695130
https://hal.science/hal-03695130

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Generation of Requirements for the Highly
Fault-Tolerant System Behaviour of a Distributed and

Integrated Avionics Platform
Robert Wipperfürth, Thorben Hoffmann, Christoph Kurz, Tim Belschner,

Reinhard Reichel

To cite this version:
Robert Wipperfürth, Thorben Hoffmann, Christoph Kurz, Tim Belschner, Reinhard Reichel. Auto-
mated Generation of Requirements for the Highly Fault-Tolerant System Behaviour of a Distributed
and Integrated Avionics Platform. ERTS2022 11th European Congress Embedded Real Time System,
Jun 2022, Toulouse, France. �hal-03695130�

https://hal.science/hal-03695130
https://hal.archives-ouvertes.fr

Automated Generation of Requirements for the
Highly Fault-Tolerant System Behaviour of a
Distributed and Integrated Avionics Platform

Robert Wipperfürth∗†, Thorben Hoffmann∗, Christoph Kurz∗, Tim Belschner∗ and Reinhard Reichel∗
∗ Institute of Aircraft Systems

University of Stuttgart
Stuttgart, Germany

† robert.wipperfuerth@ils.uni-stuttgart.de

Abstract—Fully autonomous Unmanned Aerial Vehicles, Re-
motely Piloted Aircraft, Air Taxis, as well as advanced CS-23
aircraft require numerous complex and safety-critical system
functions, such as vehicle management and utility functions,
automatic take-off and landing or flight control. The development
and qualification of the related avionics systems are characterised
by a very high effort. The Institute of Aircraft Systems at
the University of Stuttgart, in close cooperation with Aviotech
GmbH, aims at a highly automated development and verification
process for such fault-tolerant avionics systems to significantly
reduce development effort, time, and risk and thus costs. For
this reason, the Flexible Avionics Platform was developed. It
enables the implementation of integrated fly-by-wire platform
instances and is characterised by the following key aspects. (1) A
platform-based development approach featuring an integrated,
distributed, and highly redundant avionics architecture. (2) The
platform management, a high-level abstraction layer providing a
full abstraction towards integrated applications regarding the
distribution, fault-tolerance, and redundancy of a fly-by-wire
platform instance including redundant peripherals. (3) The AAA
process, a comprehensive automation process for the highly auto-
mated generation of development and qualification artefacts, such
as an instance of the Platform Management, the corresponding
specification at the system and software level, and related test
cases and test scripts. This paper presents the basics for the
automated requirements generation at the system level with a
focus on the specification of the highly fault-tolerant system
behaviour of fly-by-wire platform instances based on the Flexible
Avionics Platform.

Index Terms—Flexible Avionics Platform, AAA process,
platform-based development, model-driven development, auto-
matic requirements instantiation, requirements reuse

I. INTRODUCTION

A. Motivation

Future aircraft require numerous complex and safety-critical
system control functions. This is especially true for fully
autonomous Unmanned Aerial Vehicles (UAVs) and Remotely
Piloted Aircrafts (RPAs) that are certified and operated in non-
segregated airspace. Such aircraft must be able to react in a
semi- or fully-automated manner to all critical situations as, for
instance, the loss of the command and control data link or the

This research was funded by the German Federal Ministry for Economic
Affairs and Energy (BMWi) within the LuFo V-2 and LuFo V-3 program.

loss of an engine. Furthermore, standard operational functions
like take-off and landing or the entire vehicle management and
utility functions must be automated as well.

Accordingly, the implementation of the related avionics
systems is characterised by a very high effort. An imple-
mentation based on avionics platforms with highly integrated
architectures is a first step to reduce system costs. While this
approach enables the integration of a high number of systems
within a single instance of such an avionics platform, adequate
safety, up to failure rates of 10−9/h, has to be ensured. To
enable an affordable usage of such integrated avionics plat-
forms, especially within the CS-23 domain, a new approach
is required that reduces development and qualification effort
significantly while maintaining a high safety level.

B. State of the Art

In the avionics domain, Integrated Modular Avionics (IMA)
represents the state of the art regarding platform-based de-
velopment approaches as well as integrated and distributed
architectures [1], [2], [3]. The hardware is based on standard-
ised modules connected via an Avionics Data Communication
Network (AFDX®). Concerning the software architecture, the
hardware and communication are abstracted towards integrated
applications (see Fig. 1). This includes inter-partition com-
munication, even if the partitions are allocated to different
hardware modules. There are comprehensive automation ap-
proaches for the automated instantiation of these IMA abstrac-
tion layers [4], [5], [6], [7].

Due to these features, IMA represents a significant advance
in the realisation of avionics systems, their development, and
their qualification. However, despite all process automation
approaches, the development and qualification of avionics sys-
tems based on IMA still require a high effort. The reason for
this is the low abstraction level provided by IMA. IMA does
not provide an abstraction of system management aspects such
as the management of redundant sensors, redundant actuators,
and the failure and redundancy management of distributed
modules ensuring consistency in a distributed architecture.
Thus, this extremely complex part of the system management,
especially with highly redundant avionics systems, has to be

network

I/O-module
Computing-
Module I/O-module

RTOS

Drivers

App.
A

App.
B

RTOS

Drivers

App.
C

App.
D

RTOS

Drivers

App.
E

App.
F

sensors,
A/C-systems

sensors,
actuators

Fig. 1. Integrated Modular Avionics architecture.

implemented as part of the integrated applications. Conse-
quently, the most challenging tasks of the system management
are not part of the IMA development automation. This is
the key difference to our approach of the Flexible Avionics
Platform with its associated process automation.

C. The Flexible Avionics Platform [8]

The Flexible Avionics Platform (apf) is a platform-based
development approach in the sense of Di Natale et al. [9]
and features an integrated, distributed, and highly redundant
architecture. It consists of standardised hardware components
as well as a library of generic software components, i.e. a Real
Time Operating System (RTOS), drivers, and small software
bricks called basic services. Each specific avionics system is
generated as an instance of this Flexible Avionics Platform.

The apf is characterised by a high-level abstraction layer
realised as a middleware, the so-called Platform Management
(plama) (see Fig. 2). It covers the entire system management
for all distributed and redundant modules (internal and exter-
nal) as well as redundant peripherals, for example, redundant
sensors and redundant actuators. Thus, it manages tasks such
as fault-tolerant intra-module and inter-module communica-
tion, communication to other systems, the redundancy of all
modules and peripherals, and reconfigurations in the event
of failure. Furthermore, it controls the system-wide operation
phases such as normal operation, pre-flight built-in test, and
interactive system operation during maintenance. These sys-
tem management tasks are handled by plama in a distributed
manner and are executed on all modules of a Flexible Avionics
Platform Instance (apfi). Each plama instance is implemented
as a composition of specialised basic services.

Due to the high degree of abstraction provided by plama,
integrated applications are executed in a failure-free virtual
simplex environment and are not required to perform any
system management tasks. Hence, applications are reduced to
their cybernetic control law.

D. The AAA Process

The apf is complemented by a comprehensive automation
process for the development and qualification of an apfi, the
AAA process. It consists of the following subprocesses:

• Axx subprocess – Automated design and parameter in-
stantiation [10]: Based on a high-level system specifica-
tion a high-level system design model is implemented

network

I/O-module
Computing-
Module I/O-module

RTOS

Drivers

law
A

law
B

RTOS

Drivers

law
C

law
D

RTOS

Drivers

law
E

law
F

sensors,
A/C-systems

sensors,
actuators

plama plama plama

Fig. 2. Flexible Avionics Platform architecture.

manually. It is expressed with a domain-specific mod-
elling language developed by the Institute of Aircraft
Systems (ILS). This model describes the basic hardware
structure, connected sensors and actuators, interfaces to
other systems, a placeholder for the applications, the
degree of redundancy, the basic reconfiguration strategy,
and the scheduling of the apfi-wide operation phases.
In a first automation step, the implemented system design
model is refined by synthesis rules into a software archi-
tecture model containing the key software components
and their coupling. In a subsequent automation step,
the software architecture model is further refined into
a model of the software components’ Parameter Data
Items (PDIs). The PDI model defines the selection of
suitable basic service, their functional specialisation, and
their data and control coupling. In addition, it defines
the configuration data for all drivers and the RTOS. As
a last step, this model is automatically transformed into
source code. This PDIs source code together with the
source code of the selected basic services, drivers, and
the RTOS as well as the hardware modules form an apfi.

• xAx subprocess – Automated document generation [11]:
The approach of the automatic generation of requirements
is based on requirement classes describing characteristic
behaviour that can be realised with the apf. Require-
ment classes are modelled once in terms of character-
istic patterns, defining aspects such as their instantiation
condition, representation, and the structure of possible
instances. The corresponding models are automatically
transferred into synthesis rules. Executing these synthesis
rules, the xAx tool suite automatically analyses the apfi
design models, generated in the Axx subprocess, with
regard to the characteristic patterns of each requirement
class. The match of a single or a group of patterns leads
to the automatic generation of a requirement instance, i.e.
the specialisation of the related requirement class with the
apfi specific information of this match.
In this way, all apfi requirements are generated automat-
ically for system-level, software high-level and software
low-level. In general, a requirement instance is expressed
in the form of a natural language representation and a
formal representation. The natural language representa-
tions are human-readable descriptions of the requirements
and include information on traceability and versioning.

They conform to the relevant aeronautical standards
ARP4754A and DO-178C and represent a large part of
the entire apfi specification documents that are used for
an apfi certification process. The formal representations
feature corresponding and consistent models of the apfi
behaviour and are further processed by the xxA subpro-
cess.

• xxA subprocess – Automated generation of verification
artefacts [12], [13]: Based on the formal representations
the xxA tool suite automatically generates associated
test cases and test procedures respectively test scripts
using a dedicated test oracle. During the integration and
verification processes for an apfi, these test scripts can be
automatically executed on an apfi-in-the-loop testrig.

E. Automated Requirements Generation for Plama’s High-
Level Management Layer

A first approach for the automated generation of require-
ments focused on plama’s communication layer (low-level
management) which manages the fault-tolerant intra-module
and inter-module communication as well as the monitoring
and data fusion [11].

This paper presents the enhancement of the approach for
the system specification of the high-level management layer
of plama, i.e. the layer managing reconfigurations and the
operation moding of an apfi. The strategy for an automated
generation of requirements is based on the following consid-
erations. The automatically generated instances of the require-
ment classes have to enable a meaningful apfi specification that
can be used for validation processes and that is comparable
to a manual specification. In addition, the set of existing
requirement classes has to cover the entire usage domain of the
apf. Especially at the system level, these requirement classes
should describe the main characteristics. Furthermore, the
effort considering the manual implementation of requirement
classes must be justifiable.

For this reason, the behaviour of an apfi at the system
level must be characterised by a limited number of generic
requirement classes valid for all apfis. The central question
resulting from this is how these requirement classes are to be
defined. This is the focus of our article.

F. Paper Structure

First, we set the context by showing central architectural
and operational aspects of an apfi in section II. While section
III analyses what must be specified for an apfi at the system
level, section IV elaborates on how the system-level behaviour
is specified using requirement classes. Finally, section V
summarises the key results and provides an outlook on our
ongoing and future research.

II. FLEXIBLE AVIONICS PLATFORM

The section is intended to clarify the framework of the apf.
For this purpose, the architecture of the apf is presented and
important operation principles are explained.

iom(R,1)
net(R)

net(B)

motor

clutch
S

S

co
n

tr
o

l s
u

rf
ac

e

motor

clutch
S

S

SSS

SS

SS

SSS

 cpm core processing module
 iom input output module
 sam smart actuator module
 s sensor

dual-lane
module

dual-lane
module

sam(B,1)

sam(R,1)

iom(R,2)

iom(B,2)

iom(B,1)

cp
m

(R
,1

)

cp
m

(B
,1

)

cp
m

(R
,2

)

cp
m

(B
,2

)

Fig. 3. Hardware structure of an exemplary instance of the apf.

A. Architecture

Figure 3 shows the hardware structure of an exemplary
instance of the apf consisting of input output modules (ioms),
core processing modules (cpms), smart actuator modules
(sams), as well as the networks (net). An iom provides
necessary input/output interfaces to connect system-specific
peripheral units such as sensors, actuators, human-machine in-
terfaces, or other systems. Measured Signals are preprocessed
and transmitted to the cpms. A cpm is a dual-lane module.
Each lane operates cyclically and all tasks are executed in
parallel and frame synchronously with the other lane. A cpm
features a fail/passive behaviour. This is realised by the cross-
comparison mechanisms of plama, which ensure the required
consensus [14] between the lanes. Cpms have two main
tasks. First, they plan and execute the central management
decisions within an apfi. Second, they execute the laws of
integrated applications, i.e. integrated system function laws.
Control commands for the operation of the control surfaces of
an aircraft are transmitted to the sams. A sam operates and
monitors a control surface. It features a dual-lane architecture
including the power electronics for an electric actuator with an
optional clutch. All modules communicate via two indepen-
dent networks, which can provide further internal redundancy.
As shown, each module is logically assigned to one network
side red S(R) or blue S(B). For example, cpm(R,1) with
module ID 1 is assigned to network side S(R).

B. Apfi Operation

The apfi including connected peripherals and all integrated
system functions must operate correctly in numerous operation
phases as well as numerous apfi configurations. Here, an
apfi configuration describes the state of an apfi regarding the
dynamic configuration of the resources taking part in the apfi
operation. It is not to be confused with the PDI generated
by the Axx tool suite. If the apfi operation is affected by a
failure, apfi reconfiguration measures are required. Likewise,
the operation phase must be adjusted if the apfi operation con-
ditions change. The decision making regarding such actions is
designed strictly hierarchically [15], [16]. The corresponding
decision hierarchy is as follows:

1) Determination of the membership (membership determi-
nation).

2) Allocation of multi-application (mapp allocation).

3) Allocation of the master-slave engagement (master-slave
allocation).

4) Scheduling of the operation phases (operation moding).
In general all apfi modules, as well as the connected peripheral
units, are considered within this hierarchy. However, the
following sections focus on the apfi core which comprises all
cpms of the distributed apfi.

1) Membership Determination: The basis for consistent
distributed decisions of the cpms is the so-called membership.
It ensures that only non-faulty cpms participate in the apfi
operation.

The membership determination is a two-step process. First,
each cpm determines the membership of its own module
locally (module membership). Based on this, each cpm de-
termines the membership of the other cpms (inter-cpm mem-
bership). For the inter-cpm membership consensus between all
correct cpms is required.

2) Mapp Allocation: The apfi features a dynamic in-flight
reallocation of integrated system function laws (sfls) between
cpms thus allowing for an efficient use of the cpm hardware.
For this, several sfl of the same criticality level are grouped to a
multi-application (mapp). Mapps are prioritised according to
their criticality. For example, mapp(1) contains the absolute
safety-critical system functions flight control, braking, and
steering while mapp(2), with the lower priority, comprises
functions such as flight guidance or flight management. Al-
though each cpm has loaded the software for all mapps, it
executes only a single mapp at a time.

The assignment of which cpm executes which mapp is
called mapp allocation. Mapps are allocated only to such cpms
for which membership is given. The mapp allocation is based
on apf generic mapp allocation rules. If the rules are met,
the mapp allocation is correct. If the rules are violated, the
corresponding incorrect mapp allocation is changed to a new,
correct mapp allocation. This mapp reconfiguration may take
place in flight. For the mapp allocation, consensus is required
between all cpms with a given membership.

3) Master-Slave Allocation: If the same mapp is allocated
to multiple cpms, i.e. if there are multiple replicas of a mapp,
an active-hot-standby replication strategy is applied. Only data
provided by the active mapp-replica, i.e. the mapp engaged
as master, is processed by other mapps, ioms, or sams. The
data provided by the hot-standby mapp-replica, i.e. the mapp
engaged as slave, is transmitted via the network but is ignored
by all recipients1. If there are further mapp-replicas, these are
operated as cold-standby replicas. In our article, this so-called
shadow engagement is not considered any further.

The selection of which mapp-replica is to be operated as
master or slave is called master-slave allocation. As with the
mapp allocation, the master-slave allocation is also based on
an apf generic ruleset. These rules ensure that the mapp-
replica with the best performance execution level2, regarding

1If the master-slave allocation changes, this enables a transient-free usage
of data from the new master by the recipients.

2The performance level accounts for the state of sensors and actuators being
part of the execution of the system functions.

the implemented sfls of a mapp, is selected as the master. For
the master-slave allocation, consensus between all replicas of
a mapp is required.

4) Operation Moding: During a mission, the system of
integrated systems, i.e. the apfi with all its integrated system
functions including connected peripheral units, undergoes var-
ious operation phases. For each operation phase, the required
behaviour can change. Examples are the normal operation
during flight, the execution of all test steps of a pre-flight
built-in test before dispatch, or the interactive activation of
built-in tests during maintenance.

Each operation phase is associated with an apfi specific
set of hierarchically structured operation modes that can be
specified in the high-level system design model for the Axx
subprocess. These operation modes define the behaviour of
the entire system of integrated systems. The scheduling of the
operation modes, which mainly depends on the apfi operation
conditions, is performed centrally by the master replica of
mapp(1) (mapp(1,ma)). Other replicas of mapp(1) simply
adopt the current operation modes determined by mapp(1,ma)

which ensures consensus.
5) Examplary Apfi Reconfiguration: To provide an insight

into the apfi operation, a failure induced mapp and master-
slave reconfiguration is presented exemplarily. The initial state
is shown in Fig. 4(a). The module membership of each cpm,
as well as the inter-cpm membership on all other cpms, is set
to ON. Thus, membership is given for all cpms. The shown
mapp and master-slave allocation is correct.

Starting from this state, there is a failure in one lane of
cpm(R,1). Due to the dual-lane architecture, this failure is
detected by the other correct lane of cpm(R,1), which then
passivates the cpm. To do this, the correct lane changes its
module membership to OFF and stops the transmission of
messages over the network.

The passivation of cpm(R,1) which executed mapp(1,ma)

affects the other cpms of the apfi. They cannot communicate
with cpm(R,1) any more. Hence, the remaining correct cpms
consistently set the inter-cpm membership about cpm(R,1) to
OFF. However, the mapp and master-slave allocation of the
cpms with given membership violate the allocation rules:

1) Although the priority of mapp(1) is higher than the
priority of mapp(2), it is allocated to only one cpm.

2) There is no master replica of mapp(1).
Consequently, the mapp allocation and the master-slave al-
location have to be reconfigured. In a first step, cpm(B,1)

reconfigures from mapp(1,sl) to mapp(1,ma). In a second step,
cpm(R,2) reconfigures from mapp(2,sl) to mapp(1,sl). The
state illustrated in Fig. 4(b) represents the resulting, correct
allocation. Since the apfi operation condition did not change,
the new mapp(1,ma) maintains the operation modes adopted
from the previous master-replica.

III. OVERVIEW OF THE SPECIFICATION OF AN APFI AT
SYSTEM LEVEL

This section aims to illustrate what must be specified at
the system level. For this purpose, the classification of the

iom(R,1)
net(R)

net(B)

motor

clutch
S

S

co
n

tr
o

l s
u

rf
ac

e

motor

clutch
S

S

SSS

SS

SS

SSS

 ma master
 sl slave

dual lane
module

dual lane
module

sam(B,1)

sam(R,1)

iom(R,2)

iom(B,2)

iom(B,1)

cp
m

(R
,1

)

cp
m

(B
,1

)

cp
m

(R
,2

)

cp
m

(B
,2

)

mapp
(1,ma)

mapp
(1,sl)

iom(R,1)
net(R)

net(B)

motor

clutch
S

S

co
n

tr
o

l s
u

rf
ac

e

motor

clutch
S

S

SSS

SS

SS

SSS

dual lane
module

dual lane
module

sam(B,1)

sam(R,1)

iom(R,2)

iom(B,2)

iom(B,1)

cp
m

(R
,1

)

cp
m

(B
,1

)

cp
m

(R
,2

)

cp
m

(B
,2

)

a) b)

mapp
(1,ma)

mapp
(2,ma)

mapp
(2,sl)

mapp
(2,ma)

mapp
(1,sl)

Fig. 4. Mapp and master-slave reconfiguration due to a failure in cpm(R,1).

specification is explained and details on each specification
domain are provided.

A. Basics

Most of the time, the apfi operates in a steady-state. A
steady-state is characterised by a steady apfi configuration
and a steady operation phase. Hence, all allocation rules are
met and the required behaviour of the system of integrated
systems is stationary. However, failures or changes in the
aircraft operation condition can lead to the transition of one
steady-state to another. Based on this, the apfi specification
at the system level is divided into the following specification
domains:

1) The specification of the steady-state operation.
2) The specification of transitions between steady-states.

B. Specification of the Steady-State Operation

The requirements of this domain specify the correct opera-
tion of an apfi for all steady-states. A correct operation of a
steady-state is characterised by

• the data flow,
• the operation features.

Considering the data flow, data required for the execution of a
system function must be correctly transferred from the input of
the apfi (e.g. sensors) to the application programming interface
of the sfls integrated on each cpm. Furthermore, data must be
transferred between sfls and from an sfl to the output of the
apfi (e.g. actuators).

Regarding the operation, key features such as the cyclic
operation, synchronicity, and consensus, have to be ensured.

C. Specification of Transitions between Steady-States

This specification domain defines the system-level transi-
tions from one steady-state to a new steady-state, due to fail-
ures or changes in the aircraft operation condition. Thus, the
requirements of this domain specify the reconfigurations and
operation moding of an apfi at the system level. Based on the
decision hierarchy presented in section II-B, the specification
domain is further divided into subdomains.

• The intra-module subdomain specifies the reconfiguration
behaviour of single modules.

• The inter-module subdomain specifies the reconfiguration
of sets of modules. This includes reconfigurations of
the inter-cpm membership, the mapp allocation, or the
master-slave allocation.

• The peripheral subdomain specifies reconfigurations af-
fecting the operation of sensors and actuators as part of
the execution of system functions.

• The operation moding subdomain specifies the scheduling
of operation modes for the system of integrated systems.

For each of these specification subdomains, there is a dedicated
set of requirement classes, which together cover all possible
aspects of that subdomain. This facilitates a focused and
expressive specification of the related behaviour. The sum
of all requirement classes covers the overall reconfiguration
and operation moding behaviour for all possible apfis. In the
following, exemplary requirement classes for an apfi reconfig-
uration are presented.

IV. REQUIREMENT CLASSES AT SYSTEM LEVEL

This section exemplarily describes how the requirement
classes of apfi reconfigurations at the system level are defined.
For this, the basic reconfiguration principle of the apf is shown.
This is followed by exemplary requirement classes covering
different aspects of a reconfiguration.

A. Basic Reconfiguration Principle

Figure 5 illustrates the basic reconfiguration principle valid
for each apfi. An apfi features a large number of possible
failure events such as a power interruption, CPU failures,
or sensor failures. If a failure event evi is monitored by
a dedicated failure detection mechanism, the corresponding
particular indication zI,i is set. Particular indications are then
fused to so-called categorical indications zCI,x which are
confirmed in time. While the events and the particular indica-
tions are mostly apfi specific, the set of possible categorical
indications is generic for the apf. Because of the large usage

fusion

reconfiguration

measuring

monitor1

monitor2

monitor3

1ev

2ev

3ev

,2Iz

,3Iz

fusion1

fusion2

fusionn-1

monitor3

1

,1

,2

,

,

CI

CI

CI

CI n

n

z

z

z

z

fusionn
,4Iz

reconfiguration
step

,1Iz

4ev

apfi
specific

apf
generic

 apfis

Fig. 5. Illustration of the basic reconfiguration principle of the apf.

domain of the apf, in general, only a subset of all possible
categorical indications is needed for a specific apfi3.

Necessary reconfiguration steps for the current apfi configu-
ration sapfi are planned exclusively based on these categorical
indications. The steps are executed over a short period until the
overall reconfiguration is completed, i.e. until a new steady-
state of the apfi configuration is re-established. As each apfi
reconfiguration is associated with a categorical indication,
the set of all possible reconfigurations is generic for the
apf as well. In the following, the requirement class for the
fusion of particular indications is introduced, which enables
the specification of the categorical indications as the basis for
each apfi reconfiguration4. Then, the requirement class for the
mapp reconfiguration is presented.

B. Requirement Class for the Fusion of Particular Indications

The requirement class related to the fusion of particular
indications describes transformations of the type

ffusion : {zI,i} → {zCI,x} (1)

within a single module. Using an if-then-else construct, the
requirement class can be expressed as follows5. Values that
need to be specialised during instantiation are coloured and
marked with #.

REQ - fusion of particular indications
Let ZI,#nameCI#,(#M(x)#) := {zI,#nameI#}(#M(x)#).

If there is a zI,i,(#M(x)#) ∈ ZI,#nameCI#,(#M(x)#)

with zI,i,(#M(x)#) = true for #confirmTime# ms,
then zCI,#nameCI#,(#M(x)#) = true.

Else, zCI,#nameCI#,(#M(x)#) = false.
EndOfREQ

3The apfi specific subset is defined in the high-level system design model
for the Axx subprocess.

4Although, strictly speaking, this requirement class does not describe a
reconfiguration, it serves to clarify basic mechanisms.

5In addition to the actual requirement text, a requirement class comprises
further attributes, such as a rationale, assumptions or the allocation to apfi
functions assigned to a specific Design Assurance Level (DAL).

Here, ZI,#nameCI#,(#M(x)#) is the set of all particular
indications zI,#nameI#,(#M(x)#) that are mapped to the cat-
egorical indication zCI,#nameCI#,(#M(x)#) within a specific
module #M(x)#.

The basic pattern for the instantiation condition related to
the requirement class is illustrated in Fig. 6(a) using an UML
syntax6. The pattern corresponds to the generic structure of
ffusion extended by the confirm time.

Specific instances of this pattern are searched for in the
generated apfi design models, which result from the Axx sub-
process. These models comprise the information about every
existing instance of ffusion for a specific apfi. Figure 6(b)
exemplifies the relevant part of the design model for cpm(R,1).
The matches of the instantiation pattern are outlined with a
dashed line.

All matches with the same categorical indication are
grouped at which each group triggers the instantiation of
a corresponding requirement. With regard to the example
in Fig. 6(b), two requirement instances are generated. The
requirement instance or its textual representation7 for the
categorical indication zCI,BIT

8 is as follows:

REQ - fusion of particular indications
Let ZI,BIT,(cpm(R,1)) :=

{zI,Partition(1)Fail, zI,CrossCompareFail}(cpm(R,1)).

If there is a zI,i,(cpm(R,1)) ∈ ZI,BIT,(cpm(R,1)) with
zI,i,(cpm(R,1)) = true for 20 ms,

then zCI,BIT,(cpm(R,1)) = true.
Else, zCI,BIT,(cpm(R,1)) = false.

EndOfREQ

6For the implementation into the xAx tool suite, the patterns are modelled
using a dedicated domain-specific language. Details can be found in [11].

7The formal representation of the requirement classes is not considered in
this paper but will be part of future publications.

8zCI,BIT leads to the execution of a module built-in test (BIT). If a fatal
failure is found during this BIT, the module is passivated for the rest of the
mission.

+name : string

categorical indication

+name : string

particular indication

+confirm time

confirm

a) basic instantiation pattern

b) apfi design model

+name: string = Xlane
Synchronism Failure

particular indication

+name: string =
Partition(1) Failure

particular indication

+name: string = Cross-
Comparison Failure

particular indication

+name: string = restart

categorical indication

+name: string = BIT

categorical indication

Match 1

Match 2

Match 3

+name : string

module

+name: string = cpm(R,1)

module

+name: String
Synchronism Failure

Particular Indication

+name: String =
Partition(1) Failure

Particular Indication

+name: String = Cross-
Comparison Failure

Particular Indication

+name: String = BIT

Categorical Indication

+Confirm Time:
20 [ms]

Confirm

Match 2

Match 3

+name: String = cpm(R,1)

Module

+confirm time: 10[ms]

confirm

+confirm time: 20[ms]

confirm

Fig. 6. (a) Basic instantiation pattern for the requirement class of the fusion
of particular indications as well as (b) the relevant part of an exemplary apfi
design model.

C. Basics of the Reconfiguration Requirement Classes

Compared to the requirement class of the fusion of par-
ticular indications, the following has to be considered for the
reconfiguration requirement classes. While all reconfigurations
are based exclusively on categorical indications, these categor-
ical indications are only software-based quantities. However,
states such as a power-off of all lanes of a module cannot be
detected by the affected module and thus cannot be expressed
by its categorical indications. For this reason, the physical
health state zs of each apfi hardware resource is introduced.
Within the scope of the specification, the categorical indica-
tions are extended with these physical health states to so-called
extended categorical indications. The vector of the extended
categorical indications is defined as zECI := (zs, zCI)

T
ECI .

Based on the presented reconfiguration principle and the
extended categorical indications, all possible system-level re-
configurations of each apfi can be generically described by the
transformation:

freconfig :

sapfi(
zs
zCI

)
ECI

 → {sapfi}. (2)

Consequently, freconfig is the basis for all reconfiguration

requirement classes at the system level. As an example, the
requirement class related to the mapp reconfigurations of apfis
with two mapps and up to four cpms is presented in the
following section.

D. Requirement Class for the Mapp Reconfiguration

The requirement class in Fig. 7 describes mapp reconfigura-
tions due to the passivation or activation of cpms9. Therefore,
it enables the specification of each transition from a mapp
allocation for q correct cpms to the mapp allocation for r
correct cpms. A correct cpm implies that the membership
is given for this cpm. For a passivation transition, there is
q ∈ {2, 3, 4} and r = q−1. In contrast to this, for an activation
transition q ∈ {1, 2, 3} and r = q + 1.

To express the requirement class based on freconfig, the
vectors sxcpm,mapp,q and sxcpm,mapp,r as well as the vector
zECI,xcpm,mapp,q 7→r are introduced.

• sxcpm,mapp,q describes the initial steady-state apfi config-
uration, i.e. the apfi-wide mapp allocation for q correct
cpms.

• Starting from q correct cpm, zECI,xcpm,mapp,q 7→r de-
scribes the apfi wide view of the passivation or activation
of an arbitrary cpm to r correct cpms.

• sxcpm,mapp,r describes the resulting steady-state mapp
allocation for r correct cpms.

Using these vectors, the mapp reconfiguration requirement
class is illustrated in Fig. 7. The used variables can be
described as follows:

• smapp,(cpm(i)) describes the mapp currently allo-
cated to an arbitrary cpm(i), with smapp,(cpm(i)) ∈
{mapp(1),mapp(2), nil}. Nil is a state in which cpm(i)

failed passive and thus no mapp is allocated.
• zs,(cpm(j)) is the physical health state of an arbitrary

cpm(j). It applies that zs,(cpm(j)) ∈ {c, fp}, where c is a
correct state of cpm(j) and fp is a state in which cpm(j)

failed-passive. Accordingly, zs,(cpm(j)) is used to describe
the passivation or activation of a cpm(j).

• Such a passivation or activation can be monitored by
other, correct cpm(i) using the categorical indication
zCI,comm,(cpm(i),cpm(j)). It describes the opinion of
cpm(i) about cpm(j) regarding their overall communi-
cation, with zCI,comm,(cpm(i),cpm(j)) ∈ {ok,¬ok}. For
example, if a cpm(j) failed-passive no messages are
transmitted via any communication network to other
cpm(i) which thus set zCI,comm,(cpm(i),cpm(j)) = ¬ok.

For the indices that define the assignment of these variables
to the cpms the following applies.

• Considering sxcpm,mapp,q , the network side indices
x, y ∈ {R,B}, with x ̸= y. For the corresponding
module ID indices, there is i, j, k, l ∈ {1, 2}, with i ̸= j
and k ̸= l.

• Analogously, considering zECI,xcpm,mapp,q 7→r and
sxcpm,mapp,r, the network side indices a, b ∈ {R,B},

9Note that the temporal aspects of this requirement class are neglected in
the context of the paper.

REQ - Mapp reconfiguration due to a change from #q# to #r# correct cpms(
#sxcpm,mapp,q#

#zECI,xcpm,mapp,q 7→r#

)
7→ (#sxcpm,mapp,r#)

=

#

(
smapp,(cpm(S(x),i)) smapp,(cpm(S(x),j))

smapp,(cpm(S(y),k)) smapp,(cpm(S(y),l))

)
q

#

#

zs,(cpm(S(a),m))

zCI,comm,(cpm(S(a),m),cpm(S(a),n))

zCI,comm,(cpm(S(a),m),cpm(S(b),o))

zCI,comm,(cpm(S(a),m),cpm(S(b),p))

zs,(cpm(S(a),n))

zCI,comm,(cpm(S(a),n),cpm(S(a),m))

zCI,comm,(cpm(S(a),n),cpm(S(b),o))

zCI,comm,(cpm(S(a),n),cpm(S(b),p))

zs,(cpm(S(b),o))

zCI,comm,(cpm(S(b),o),cpm(S(a),m))

zCI,comm,(cpm(S(b),o),cpm(S(a),n))

zCI,comm,(cpm(S(b),o),cpm(S(b),p))

zs,(cpm(S(b),p))

zCI,comm,(cpm(S(b),p),cpm(S(a),m))

zCI,comm,(cpm(S(b),p),cpm(S(a),n))

zCI,comm,(cpm(S(b),p),cpm(S(b),o))

q 7→r

#

7→

(
#

(
smapp,(cpm(S(a),m)) smapp,(cpm(S(a),n))

smapp,(cpm(S(b),o)) smapp,(cpm(S(b),p))

)
r

#

)

EndOfREQ

Fig. 7. Requirement class for the mapp reconfiguration due to the passivation or activation of cpms.

with a ̸= b. Furthermore, the related module ID indices
m,n, o, p ∈ {1, 2}, with m ̸= n and o ̸= p.

There is a major difference between the instantiation of the
requirement class for the fusion of particular indications and
the requirement class for the mapp reconfiguration. Here, the
aforementioned mapp allocation rules for apfis with two mapps
and up to four cpms are a part of the requirement class. All
correct cpms have to meet these rules, which are as follows:

1) The number of replicas of mapp(i) per network side is
at most 1: i ∈ {1, 2}, x ∈ {R,B} : Nmapp(i),(S(x)) ≤ 1.

2) The number of replicas of mapp(1) is equal to or at
most greater than 1 compared to the number of replicas
of mapp(2): Nmapp(1) − 1 ≤ Nmapp(2) ≤ Nmapp(1).

The first rule is based on a design decision related to the
communication architecture of the apf. The second rule en-
sures that each mapp is executed for as long as possible while
taking into account the mapp prioritisation.

Using these rules, the requirement class itself generically
describes each mapp reconfiguration due to a passivation or
activation. Consequently, the number of mapps and cpms is
the only characteristic required for the generation of the re-
quirement instances. The associated basic instantiation pattern
is shown in Fig. 8(a). If an apfi does show this characteristic,
all requirement instances of this class are generated, i.e. one
requirement instance for each possible specific activation and
passivation transition for the apfi specific number of cpms and
mapps. The instantiation is illustrated in the following.

The apfi design model contains the information about the
number of mapps and cpms of an apfi. An exemplary model
for an apfi with two mapps and four cpms is illustrated in
Fig. 8(b). The depicted mapp to cpm relation results in a
single match for the class’s instantiation pattern. Accordingly,
requirement instances for the activation transitions q 7→ r ∈
{1 7→ 2, 2 7→ 3, 3 7→ 4} have to be generated. Furthermore,
requirement instances for the passivation transitions q 7→ r ∈
{4 7→ 3, 3 7→ 2, 2 7→ 1} have to be generated. In the following,
the instantiation steps carried out for each requirement instance
are described using the example of a passivation transition
from q = 4 to r = 3 correct cpms.

First, the value of sxcpm,mapp,q is determined based on q =
4 and the apf generic mapp allocation rules. The resulting

a) basic instantiation pattern

b) apfi design model

+name: string = cpm(R,1)

cpm

+name: string = afcs
+priority: int = 1

mapp

Match 1

+name: string = cpm(R,2)

cpm

+name: string = cpm(B,1)

cpm

+name: string = cpm(B,2)

cpm +name: string = utility
+priority: int = 2

mapp

+name : string
+priority: int

mapp

+name: string

cpm

Ncpm ≤ 4 Nmapp = 2

Fig. 8. (a) Basic instantiation pattern for the requirement class of the mapp
reconfiguration as well as (b) the relevant part of an exemplary apfi design
model.

correct mapp allocation for four correct cpms is

sxcpm,mapp,4 =

(
mapp(1) mapp(2)
mapp(1) mapp(2)

)
4

. (3)

Second, the apfi-wide view on the passivation of a cpm
is expressed using zECI,xcpm,mapp,q 7→r. In our example, the
passivation of an arbitrary cpm(S(b),p) is represented by

zECI,xcpm,mapp,47→3 =

c
ok
ok
¬ok

c
ok
ok
¬ok

c
ok
ok
¬ok

fp
−
−
−

4 7→3

. (4)

REQ - Mapp reconfiguration due to a change from 4 to 3 correct cpms

(
smapp,(cpm(S(x),i)) = mapp(1) smapp,(cpm(S(x),j)) = mapp(2)
smapp,(cpm(S(y),k)) = mapp(1) smapp,(cpm(S(y),l)) = mapp(2)

)
4

zs,(cpm(S(a),m))

zCI,comm,(cpm(S(a),m),cpm(S(a),n))

zCI,comm,(cpm(S(a),m),cpm(S(b),o))

zCI,comm,(cpm(S(a),m),cpm(S(b),p))

 =

c
ok
ok
¬ok

zs,(cpm(S(a),n))

zCI,comm,(cpm(S(a),n),cpm(S(a),m))

zCI,comm,(cpm(S(a),n),cpm(S(b),o))

zCI,comm,(cpm(S(a),n),cpm(S(b),p))

 =

c
ok
ok
¬ok

zs,(cpm(S(b),o))

zCI,comm,(cpm(S(b),o),cpm(S(a),m))

zCI,comm,(cpm(S(b),o),cpm(S(a),n))

zCI,comm,(cpm(S(b),o),cpm(S(b),p))

 =

c
ok
ok
¬ok

zs,(cpm(S(b),p))

zCI,comm,(cpm(S(b),p),cpm(S(a),m))

zCI,comm,(cpm(S(b),p),cpm(S(a),n))

zCI,comm,(cpm(S(b),p),cpm(S(b),o))

 =

fp
−
−
−

47→3

7→

(
smapp,(cpm(S(a),m)) = mapp(1) smapp,(cpm(S(a),n)) = mapp(2)
smapp,(cpm(S(b),o)) = mapp(1) smapp,(cpm(S(b),p)) = nil

)
3

EndOfREQ

Fig. 9. Requirement instance for the mapp reconfiguration due to the passivation of an arbitrary cpm, from q = 4 to r = 3 correct cpms.

Third, with r = q − 1 the value of sxcpm,mapp,r is deter-
mined based on the aforementioned mapp allocation rules, i.e.

sxcpm,mapp,3 =

(
mapp(1) mapp(2)
mapp(1) nil

)
3

. (5)

The resulting requirement instance for the passivation of an
arbitrary cpm from one of q = 4 correct cpms is shown in
Fig. 9.

Note that a single requirement instance specifies the pas-
sivation transition from q = 4 to r = 3 correct cpms for
all possible permutations. Here, a permutation is a specific
configuration of how the mapps are allocated to the cpms
of an apfi as well as of the cpm that failed-passive. Thus,
a permutation is a specific selection of the indices that define
the assignment to the cpms10.

Regarding the verification of such a requirement instance,
the following has to be considered. First, the transition must be
verified for all specific permutations for a complete verification
of the required behaviour. Second, to our understanding,
performing the related tests based on the stimulation of the
categorical indications is not sufficient for a verification at the
system level. In order to verify the entire end-to-end system
behaviour, the composed transformation

fmoni ◦ ffusion ◦ freconfig (6)

is considered, with fmoni : {evi} → {zI,i}. This means that
to verify a reconfiguration, not the categorical indication is
stimulated but an actual exemplary failure event associated
with the categorical indication. In the given example, such a
failure event could be the power interruption of a cpm.

V. CONCLUSION

For a significant reduction of the costs related to the devel-
opment of fault-tolerant real-time avionics systems, the Flexi-
ble Avionics Platform (apf) and an associated comprehensive
automation process, the AAA process, were developed. The
apf is characterised by a high-level abstraction layer, the Plat-
form Management, providing a full abstraction of distribution,
fault-tolerance, and redundancy towards integrated system
functions. The associated AAA process combines the high
flexibility of this platform-based approach with a high degree
of automation. Therefore, the generation of the development

10The passivation transition illustrated in Fig. 4 is a specific permutation
of this requirement instance, with x = R, y = B, i = k = 1, j = l = 2,
a = B, b = R, m = p = 1, and n = o = 2.

and qualification artefacts of each Flexible Avionics Platform
Instance (apfi), such as the system-level specification and the
verification artefacts, is largely automated.

This paper focused on the automatic generation of the
system-level specification for the high-level Platform Man-
agement. The presented approach with its specification subdo-
mains is made possible by the systematic and clear structuring
of the apf [15]. Each of the named subdomains is dedicated
to specific apfi behaviour. These are the intra-module recon-
figurations, inter-module reconfigurations, peripheral reconfig-
urations, and an apfi’s entire operation moding. Our article
describes the definition of the requirement classes for the
apfi reconfigurations which can be expressed based on an apf
generic set of categorical indications that classify all possible
failure events of an apfi. On this basis, a limited number
of requirement classes were defined. They are sufficiently
generic to cover the apf’s entire usage domain while still
being expressive and comprehensible. This facilitates a manual
validation as part of a certification process. In addition to the
presented actual requirement text of a requirement class, other
attributes can of course be added according to the applied
requirements standard. The developed requirement classes for
the high-level Platform Management were integrated into the
AAA tool suite and thus enable the automatic instantiation
of reconfiguration and operation moding requirements. This
further completes our overall approach for a cost-efficient
development and qualification of fault-tolerant, distributed and
integrated avionics systems such as fly-by-wire systems.

The apf approach was successfully demonstrated within
multiple projects up to an in-flight demonstrator featuring
automatic take-off and landing [17], [18], [19]. Our ongoing
research in the LuFo V-3 research project Secured System
for Manned Multicopter (SESYMM) focuses on optimising
the generated artefacts with regard to DAL A conformity.
Moreover, the AAA tool suite is used for the development of
a fly-by-wire platform for a remotely piloted aircraft system
based on a CS-23 aircraft for operation in the non-segregated
airspace without an onboard safety pilot.

GLOSSARY

apf The Flexible Avionics Platform is a platform-based
development approach featuring an integrated, dis-
tributed, and highly redundant architecture. It is
characterised by a high-level abstraction layer, the

Platform Management, enabling integrated applica-
tions to be executed in a failure-free virtual simplex
environment. Thus, applications can be reduced to
their cybernetic control law.

apfi An instance of the Flexible Avionics Platform.

cpm Core processing modules plan and execute the central
management decision within an apfi. In addition, they
execute the applications for the integrated system
function laws.

mapp A multi-application comprises several integrated sys-
tem function laws of the same criticality level. A
dynamic in-flight mapp reallocation between cpms
enables an efficient use of the cpm hardware.

REFERENCES

[1] J.-B. Itier, “A380 integrated modular avionics—the history, objectives
and challenges of the deployment of ima on a380,” in Proceedings of the
ARTIST2 Meeting on Integrated Modular Avionics, Roma, Italy, 2007,
pp. 12–13.

[2] B. Annighöfer and E. Kleemann, “Large-scale model-based avionics
architecture optimization methods and case study,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3424–3441,
2019.

[3] T. Gaska, C. Watkin, and Y. Chen, “Integrated modular avionics-past,
present, and future,” IEEE Aerospace and Electronic Systems Magazine,
vol. 30, no. 9, pp. 12–23, 2015.

[4] B. Kornek-Percin, B. Petersen, M. Reichle, and J. Bader, “New ima
architecture approach based on ima resources,” in 2015 IEEE/AIAA 34th
Digital Avionics Systems Conference (DASC). IEEE, 2015, pp. 6A2–1.

[5] M. Halle and F. Thielecke, “Evaluation of the ashley seamless tool-chain
on a real-world avionics demonstrator,” in 2017 IEEE/AIAA 36th Digital
Avionics Systems Conference (DASC). IEEE, 2017, pp. 1–9.

[6] B. Annighoefer, M. Brunner, J. Schoepf, B. Luettig, M. Merckling, and
P. Mueller, “Holistic ima platform configuration using web-technologies
and a domain-specific model query language,” in 2020 AIAA/IEEE 39th
Digital Avionics Systems Conference (DASC). IEEE, 2020, pp. 1–10.

[7] J. Yin, B. Lawler, and H. Jin, “Application of model based system
engineering to ima development activities,” in 2017 IEEE/AIAA 36th
Digital Avionics Systems Conference (DASC). IEEE, 2017, pp. 1–7.

[8] S. Görke, Eine flexible Plattform für Fly-by-Wire-Systeme-
Spezialisierbarkeit als Schlüssel zur effizienten Entwicklung
sicherheitskritischer Avionik. Verlag Dr. Hut, 2013.

[9] M. Di Natale and A. L. Sangiovanni-Vincentelli, “Moving from fed-
erated to integrated architectures in automotive: The role of standards,
methods and tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–
620, 2010.

[10] F. Kraus, Verfahren zur weitgehend automatisierten Erzeugung der
Middleware für hoch ausfallsichere, integrierte Avioniksysteme mittels
Model-Integrated Computing. Verlag Dr. Hut, 2018.

[11] T. Belschner, A Method for the Automated Generation of Requirements
and Traceability for a Distributed Avionics Platform. Verlag Dr. Hut,
2020.

[12] P. Müller, Automated Test Artifact Generation for a Safety-Critical
Integrated Avionics Platform. Verlag Dr. Hut, 2021.

[13] C. Block, S. Dikmen, and R. Reichel, “Automated test case generation
for the verification of system and high-level software requirements for
fly-by-wire platforms,” in AIAA SCITECH 2022 Forum, 2022, p. 0254.

[14] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Cornell University, Tech. Rep., 1994.

[15] T. Hoffmann, R. Wipperfürth, and R. Reichel, “Enabling the automated
generation of the failure and redundancy management for distributed
and integrated fly-by-wire avionics,” in 2021 IEEE/AIAA 40th Digital
Avionics Systems Conference (DASC). IEEE, 2021, pp. 1–10.

[16] F. Cake, Supervisor für eine komplexe verteilte Avionikplattform. Verlag
Dr. Hut, 2016.

[17] L. Dalldorff, R. Luckner, and R. Reichel, “A full-authority automatic
flight control system for the civil airborne utility platform s15-lapaz,”
Euro GNC, 2013.

[18] R. Kueke, P. Mueller, S. Polenz, R. Reichel, F. Pinchetti, J. Stephan,
A. Joos, and W. Fichter, “Fly-by-wire for cs23 aircraft-core technology
for general aviation and rpas,” in Aviation in Europe Innovation for
Growth-7th European Aeronautics Days, 2015.

[19] S. Görke, R. Riebeling, F. Kraus, and R. Reichel, “Flexible platform
approach for fly-by-wire systems,” in 2013 IEEE/AIAA 32nd Digital
Avionics Systems Conference (DASC). IEEE, 2013, pp. 2C5–1.

