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ABSTRACT
A model-based approach to control system design is developed for regulating the discharge

flows at the outlets of a pipeline network that is supplied by an irrigation channel. The open
channel is also controlled automatically to regulate the supply-point water level. The hydraulic
pressure at the source of the network is therefore dynamic when flow load varies. Regulation
of the piped discharge flows is achieved by adjusting outlet control valves on the basis of the
specified flow demand and sensor measurements. A blend of feedforward and feedback control
is proposed. The steady-state behaviour of a non-linear distributed-parameter model of the net-
work is used to determine the feedforward control action. The feedback control action is used to
compensate for modelling error. The design of the feedback controller is based on a frequency-
domain transfer function model of the system dynamics, and classical loop-shaping ideas. This
model is obtained via the admittance matrix of linearized network equations. The synthesis of
both centralized and decentralized feedback controller configurations is considered. Simula-
tions that involve a non-linear distributed-parameter model of the network dynamics are used
to illustrate controller performance.

INTRODUCTION
Consider a pipeligne network, as illustrated in Figure 1. It is supplied at the down-

stream end of an irrigation channel without the aid of pumping. Suppose that the
supply channel is automated in the sense that a feedback controller adjusts the channel
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Fig. 1. Scheme of the water distribution network.

inflow to regulate the downstream water-level, as described in Cantoni et al. (2007) and
references therein. The pressure head at the source of the pipeline network can there-
fore exhibit transient fluctuations according to the dynamic response of the automated
channel to changes in the flow load. The valves are placed at the outlets of the outflow
pipes and they are used to control the required flow by the fields that are irrigated. The
proposed architecture is inspired by the low energy pipeline technology that is used to
replace open earthen canals in the Murray Darling Basin, in order to improve irriga-
tion water use efficiency by reducing losses due to seepage and evaporation Koech and
Langat (2018).

The aim of the pipeline network control system is to regulate the discharge flows at
end-user outlets, by the automatic adjustment of control valves, in response to changes
of specified flow demand and sensor measurements. Feedback control action based
on measured discharge flows can be used to compensate for transient variations in the
pressure head at the interface with the automated channel dynamics, and for error in
the static model used to set the valve openings that would yield the specified discharge
flows in steady state.

An approach to the design of automatic pipeline network control systems is de-
scribed in this paper. This includes the development of a modelling framework for
the pipeline dynamics, given the automated irrigation channel dynamics at the source
boundary. The design of both decentralized and centralized discharge valve controller
configurations are considered. Understanding the interplay between the channel con-
troller and the pipeline control system, and between the component valve controllers in
the case of a decentralized configuration, is of interest in terms of the extent to which
this may limit performance.

Several recent works are dedicated to modelling for the control of pipeline net-
works. Simplified lumped models of single pipeline systems can be found in Matko
et al. (2000); Bartecki (2016); Reddy et al. (2010); Razvarz et al. (2019). Nonlinear
models for the control of pipeline networks are presented in Kaltenbacher et al. (2017,
2018); De Persis and Kallesoe (2011). Control strategies for regulating hydraulic net-
works using pressure reducing valves are presented in Prescott and Ulanicki (2008);
Bermúdez et al. (2021a); Dai (2021); Galuppini et al. (2020); Bermúdez et al. (2021b).
Flow control of fluid in pipelines using torsional actuator placed on a motor pump is
presented in Razvarz et al. (2020). These models are derived using simplified rigid wa-
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ter column theory Fox (1977), which makes the system easy to analyze. However, this
neglects the dynamic mechanisms that can lead to control system interactions of the
kind mentioned above. Control strategies for hydraulic systems that consist of a single
pipeline and one valve using predictive control based on infinite dimensional control
theory that are using the water hammer equations are already presented in Van Pham
et al. (2014); Pham et al. (2012).

In this paper, models are developed using the elastic water hammer theory. The
corresponding non-linear distributed-parameter dynamics are described by coupled
continuity and momentum equations Chaudhry (1979). The non-linear steady-state
characteristics of this model are used to design the the feedforward control action for
given steady flow demand. Linearization and finite-dimensional approximation based
simplifications of the dynamics are used to design feedback controllers, which com-
pensate for error in the result of the feedforward action. Importantly, the overall mod-
elling framework enables analysis of interactions between the different components in
the network.

A control-oriented model for the complete Multiple-Input and Multiple-Output
(MIMO) pipeline network is developed. The approach is based on Zecchin et al. (2010,
2009); Kim (2008), where the transient model of an arbitrary pipeline network is ob-
tained via the so-called Laplace-domain admittance matrix for a linearization of the
continuity and momentum equations. Here these results are extended and adapted for
control-oriented modelling. The fundamental equations are presented in the form of
matrices with irrational transfer function entries. These transfer function matrices re-
late the controlled inputs and outputs of the network. This model captures the complete
linearized dynamics of all small signal interaction between all the discharge points of
the system and the channel.

To facilitate optimization based synthesis of feedback controllers, a method is de-
veloped for approximating the irrational transfer function MIMO model with a real
rational transfer matrix, via a frequency-domain system identification technique Ljung
and Glad (1994). The result is a model that is appropriate for H∞ loop-shaping McFar-
lane and Glover (1992) based synthesis of a centralzied controller, taking into direct
account the network coupling between the discharge valves. The outcome is com-
pared with a decentralized controller configuration comprising just the proportial plus
integral (PI) compensators used as design weights in the synthesis of the centralized
controller.

Implementation of the decentralized controller is much simpler, in that the dis-
charge flow measurements involved can be processed locally at each outlet, substan-
tially reducing the need to communicate with a central host for controller implemen-
tation. In the decentralized case, only changes in the specified discharge demand and
channel water-level set points need to be communicated globally. By contrast, the cen-
tralized approach requires discharge flow measurements to be gathered by a central
host to determine the feedback control actions, for communication back to each out-
let at a sufficient rate for the duration of transients induced by set point changes. It
is shown that decentralized feedback control yields similar performance to a compa-
rable centralized controller when action is limited to sufficiently low frequencies, as
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elaborated subsequently.
The paper is organized as follows. In the next section, a physics based system

model is developed. Next, the control methodology is first introduced to motivate the
development of simplified models for controller synthesis. The synthesis of central-
ized and decentralized feedback controllers is then described. Finally, a case study of a
pipeline network is presented and this model is used to validate the proposed method-
ology in simulations. Conclusions are given in the final section.

PHYSICAL SYSTEM MODELLING
The system of interest consists of a pipeline network, operating in the pressurized

state (i.e., full). The network is supplied by an upstream automated irrigation chan-
nel. It is used to deliver requested flow to a set of end-users via downstream discharge
control valves. The fundamental equations for the system are outlined below. The
resulting non-linear distributed-parameter physical system model is used in the simu-
lation studies presented in the paper.

Continuity and momentum equations
A model is developed here for the dynamics of a tree network of fluid lines (i.e.,

pipes) Λ = {1, 2, . . . , nΛ} and nodes N = NT ∪ NJ ∪ NV = {1, 2, . . . , nN }. Here NJ

denotes the set of junction nodes where fluid lines are connected,NT = {1} is the ‘top’
(or ‘source’) node where the pipline network is connected to the automated channel,
and NV is the set of nodes associated with the discharge valves.

The dynamics of the fluid in the i-th pipeline is given combining the simplified con-
tinuity and momentum equations, under assumptions of negligible convective changes
in velocity and constant liquid density Chaudhry (1979):

∂hi

∂t
+

c2

gAi

∂qi

∂x
= 0, x ∈ [0, Li],

1
Ai

∂qi

∂t
+ g
∂hi

∂x
+

f qi|qi|

2DiA2
i

= 0, x ∈ [0, Li],
(1)

for i ∈ Λ, where Li (m) is the length of the pipe, hi(x, t) (m) is the pressure head and
qi(x, t) (m3/s) is flow in the pipeline at time t (s) and position x (m) along the pipe, c
(m/s) is wave speed in the fluid, g (m/s2) is the constant of gravitational acceleration,
Ai (m2) is cross-sectional area of the pipe, Di (m) is the diameter of the pipe, and f is
the friction coefficient.

Valve and irrigation channel models at the network boundaries
The homogeneous form for the valve flow equation is derived in White (2011). In

the case when the valve discharges into air, the valve flow relation may be written as
in Chaudhry (1979):

q = γuv

√
2gh, (2)

where uv (m2) is the opening of the valve, which is the controlled input for the network,
and γ is the coefficient of discharge of the valve. The opening of the valves is limited
in the range of

0 ≤ uv ≤ umax
v . (3)
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The uncontrolled dynamics of the upstream open channel that supplies the pipeline
network can be modelled by the Saint-Venant equation (also known as the shallow
water equations.) This set of equations stems from a law of mass conservation and a
law of momentum conservation, and it is given by Chaudhry (2007):

∂Ac

∂t
+
∂qc

∂x
= 0, x ∈ [0, Lc],

∂qc

∂t
+

(gAc

B
−

q2
c

A2
c

)
∂Ac

∂x
+

2qc

Ac

∂qc

∂x
+ gAc

(
S f −S

)
= 0, x ∈ [0, Lc],

(4)

where qc(x, t) (m3/s) is flow in the channel and Ac(x, t) (m2) is the wetted cross-
sectional area at time t (s) and position x (m) along the channel, B (m) is the top
width, S f is the friction slope and S is the mean bed slope.

The channel model above represents its open-loop behavior. Under the operation
of a feedback controller, that automatically adjusts the upstream inflow to regulate the
downstream water level on the basis of online measurements, it is possible to represent
the channel by a much simpler model. Specifically, when feedback control action is
limited to sufficiently low frequencies (i.e., control loop bandwidth limited to one-tenth
of the dominant channel wave frequency), as also required to ensure critical closed-
loop stability properties Cantoni et al. (2007), the behavior of the downstream water
level hT is approximated well by the following integrator-delay model Cantoni et al.
(2007); Weyer (2001) :

dhT

dt
(t) = cin qin(t − τ) − cout (qout(t) + dout(t)). (5)

In this model, the inflow qin is determined by the feedback controller, qout is the down-
stream channel flow load and dout is the flow load associated with the pipe network.
The constants τ, cin and cout are model parameters that can be determined from sys-
tem identification experiments Weyer (2001). While model (5) described the open
loop (uncontrolled) behaviour of the channel, the closed-loop response of hT can be
derived by taking into account the dynamics controller that determines qin depending
on hT . This work involves a proportional plus integral (PI) controller of the kind used
in practice Cantoni et al. (2007). When combined with (5), a model of the dynamic
relationship between dout and hT is obtained. For the design of pipeline valve feed-
back controller and for the simulation, this simplified model is used for the boundary
condition at the source of the network, as discussed further in subsequent sections.

Pipeline and network boundary conditions
Neglecting the losses, using the equation of mass conservation for the flows, and

the energy equation for pressures in pipe ends connected to the same junction, the
following equations hold at each junction node j ∈ NJ Chaudhry (2007):

ql( j)(Ll( j), t) −
∑

i∈Λ( j)

qi(0, t) = 0, (6a)

hl( j)(Ll( j), t) = hi(0, t), i ∈ Λ( j). (6b)
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where l( j) ∈ Λ denotes the index of the upstream fluid line connected to node j (of
which there is only one as the network is tree), and Λ( j) ⊂ Λ is the subset of down-
stream fluid lines connected to node j.

At each discharge valve node j ∈ NV , the following relationship holds, where as
above l( j) ∈ Λ denotes the index of the upstream fluid line that supplies the corre-
sponding valve:

ql( j)(Ll( j), t) = γ juv, j(t)
√

2ghl( j)(Ll( j), t). (7)

Finally, at the nodeNT = {1}, at which the network connects to the automated channel,
the following holds where, as above, Λ(1) ⊂ Λ denotes the subset of downstream fluid
lines connected to the channel supply point:

qi(0, t) = dout(t) and hi(0, t) = hT (t), i ∈ Λ(1). (8)

As already mentioned, it is important to recall that there is an additional relationship
between dout and hT corresponding to the dynamics of the automated channel, as dis-
cussed further in the next section.

CONTROL-ORIENTED MODELLING
As briefly discussed in the introduction, the control problem at hand is to regulate

the network discharge flows to specified values, as required to meet end-user demand.
There are two aspects to the control approach considered. The first corresponds to
a feedforward (open-loop) control action. Specifically, the full non-linear distributed
parameter model is used to determine the discharge control valve openings required in
steady-state. To compensate for modelling error, and the disturbance associated with
changes of the outflow from the automated supply channel, which leads to fluctuations
in the pressure head at the source of the pipeline network, the second part is a feedback
control action. This feeback control is based on flow sensor measurements at the out-
lets. The proposed approach to design the feedback controller is to use linearization
of the full model. This results in a model that is more amenable to classical methods
for feedback control system design. The corresponding steps are detailed in the rest
of this section, as follows: (1) derivation of the equilibrium equations for determining
the feedforward component of the control action; (2) linearization of the dynamics;
(3) derivation of the MIMO transfer function for feedback controller design via the
Laplace-domain admittance matrix of the linearized network model; and (4) rational
approximation via a frequency-domain system identification method. Feedback con-
troller synthesis on the basis of the resulting model is the topic of this work, where
both centralized and decentralized feedback control configurations are considered.

Steady-state equations for feedforward control
Equations characterizing the steady-state are provided here for given constant val-

ues for the pipeline discharge flows qV, j, j ∈ NV , and the reference hT of the irriga-
tion channel controller, which is the steady-state level because of the assumed integral
action Åström and Murray (2010); Cantoni et al. (2007). Using (1), and the above
boundary conditions, the following nonlinear system of steady-state pipeline network
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equations hold at equilibrium, where the notation l( j) ∈ Λ and Λ( j) ⊂ Λ is as defined
in the previous section, for j ∈ NJ ∪ NV , with Λ( j) := ∅ for j ∈ NV :

q1 =
∑

j∈NV
qV, j

ql( j) −
∑

i∈Λ( j) qi = 0, j ∈ NJ

ql( j) = qV, j, j ∈ NV

h1(0) = hT

hl( j)(Ll( j)) − hi(0) = 0, i ∈ Λ( j), j ∈ NJ

hi(Li) − hi(0) + f qi|qi|
2DigA2

i
Li = 0, i ∈ Λ

(9)

These equations are solved for equilibrium flow qi and the pairs (hi(Li), hi(0)), to yield

the equilibrium pressure profile hi(x) = hi(0) − f qi|qi|
2DigA2

i
x, x ∈ [0, Li], for each fluid line

i ∈ Λ. There are various algorithms for solving nonlinear equations. The Leven-
berg–Marquardt method is used for the subsequent simulation studies Powell (1968).
These values are used for the feedforward (open-loop) part of the pipeline discharge
valve control system.

In addition to this, a feedback controller is used to adjust the feedforward control
action using sensor measurements of the end-user outlet flows. The design of this con-
troller is based on a model obtained by linearizing about an equilibrium, as discussed
next. The purpose of the feedback controller is to regulate the incremental flow (i.e.,
the difference between the measurements and the desired flow) at each outlet to zero.
By limiting the range of frequencies up to which good feedback regulation is required,
a simplified model of the infinite-dimensional linearization (which is still a PDE) can
be used for controller synthesis by classical methods. The construction of such a sim-
plified model by frequency-domain system identification is presented further in this
section.

Linear incremental model
The linearized model for each fluid line i ∈ Λ relates the incremental signals h̃i =

hi−hi and q̃i = qi−qi. It is obtained from (1) by first-order Taylor series approximation
of the algebraic equation that specifies the relationship between flow and pressures and
their partial derivatives with respect to time and space. Specifically, the linearized
model takes the following form:

Ci
∂̃hi

∂t
+
∂q̃i

∂x
= 0,

Li
∂q̃i

∂t
+
∂̃hi

∂x
+ Riq̃i = 0,

(10)

where

Ci =
gAi

c2 , Li =
1

gAi
, and Ri =

f qi

gDiA2
i

. (11)
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The coupling conditions encode the interconnection of fluid lines as below:

q̃l( j)(Ll( j), t) −
∑

i∈Λ( j)

q̃i(0, t) = 0,

h̃l( j)(Ll( j), t) = h̃i(0, t), i ∈ Λ( j), j ∈ NJ.

(12)

Furthermore, at the interface with the automated channel, the following hold:

q̃i(0, t) = d̃out(t) and h̃i(0, t) = h̃T (t), i ∈ Λ(1), (13)

where the relationship between d̃out(t) = dout(t) −
∑

j∈NV
qV, j and h̃T (t) = hT (t) − hT

is governed by the dynamics of the automated channel, for which a linear model is
detailed at the end of the next subsection.

The quality of the linear approximation can be made high by ensuring the incre-
mental signals are sufficiently small in magnitude. The purpose of the feedback con-
troller in the proposed approach is to keep the incremental signals small, in particular
q̃V, j, justifying the use of an incremental models for controller synthesis. In this paper,
classical frequency-domain tools are considered for controller design. This involves
transfer function representations of the model, as described next.

MIMO transfer function models in the frequency-domain
The relationships between the incremental pressure head and the incremental flow

at the both ends of a pipe can be expressed in the form of transfer matrices. These can
be derived by using the separation of variable technique to solve (10) and by applying
the Laplace transform Lin and Holbert (2009); Wylie (1965). These matrices can be
written in several forms which differ from each other with respect to the selected model
inputs and outputs. In this work, the following admittance matrix form is used for each
i ∈ Λ: [

Q̃i(0, s)
Q̃i(Li, s)

]
=

1
Zi

[
coth(λi(s)Li) −csch(λi(s)Li)
csch(λi(s)Li) − coth(λi(s)Li)

] [
H̃i(0, s)
H̃i(Li, s)

]
, (14)

where csch(x) = 2/(ex − e−x), coth(x) = (ex + e−x)/(ex − e−x), e is Euler’s number,
λi(s) =

√
sCi(sLi + Ri) is the propagation operator, with Ri, Li,Ci as defined in (11),

Zi =
√

(sLi + Ri)/(sCi) is the characteristic impedance, and s is the complex valued
argument of the Laplace transform, which is denoted in upper case by convention; i.e.,
Q̃i(x, s) =

∫ ∞
0

e−stqi(x, t)dt denotes the Laplace transform of qi(x, t) for s ∈ {σ + jω ∈
C |
∫ ∞

0
e−σt|qi(x, t)|dt < ∞, ω ∈ R}.

The Laplace transform of the boundary conditions (12) and (13) can be collectively
represented as [

H̃(0, s)
H̃(L, s)

]
=
[
Nu Nd

]T
Ψ̃(s), (15)

[
−Nu Nd

] [Q̃(0, s)
Q̃(L, s)

]
= Θ̃(s), (16)
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where

H̃(0, s)=


H̃1(0, s)
...

H̃nΛ(0, s)

, H̃(L, s)=


H̃1(L1, s)
...

H̃nΛ(LnΛ , s)

,
Q̃(0, s)=


Q̃1(0, s)
...

Q̃nΛ(0, s)

, Q̃(L, s)=


Q̃1(L1, s)
...

Q̃nΛ(LnΛ , s)

,
Ψ̃(s)=


H̃T (s)
H̃V(s)
H̃J(s)

, Θ̃(s)=

−D̃out(s)
Q̃V(s)

0

,
H̃V(s) and Q̃V(s) are column vectors of the pressure heads and flows at the valve nodes,
and the matrices Nu and Nd are upstream and downstream link-node incidence matri-
ces, as described further in Zecchin et al. (2009). It now follows from (14) that

Θ̃(s) =

−D̃out(s)
Q̃V(s)

0

 =
YTT (s) YTV(s) YT J

YVT (s) YVV(s) YV J

YJT (s) YJV(s) YJJ



H̃T (s)
H̃V(s)
H̃J(s)


= Y (s)Ψ̃(s),

(17)

where

Y (s) =
[
−Nu Nd

] [diag(µi(s)) diag(−νi(s))
diag(νi(s)) diag(−µi(s))

] [
Nu Nd

]T
, (18)

with µi(s) = 1
Zi

coth(λi(s)Li) and νi(s) = 1
Zi

csch(λi(s)Li), i ∈ Λ.
Resolving the vector of internal junction pressures, H̃V(s), yields the following

model relating on the signals that are relevant to the interface with the automated sup-
ply channel and feedback control design for the pipeline network discharge valves:[

−D̃out(s)
Q̃V(s)

]
=

[
GTT (s) GTV(s)
GVT (s) GVV(s)

] [
H̃T (s)
H̃V(s)

]
, (19)

where [
GTT GTV

GVT GVV

]
=

[
YTT YTV

YVT YVV

]
−

[
YT J

YV J

]
Y −1

JJ

[
YJT YJV

]
. (20)

Now also resolving the relationship H̃T (s) = T (s)D̃out, which corresponds to the
dynamic response of the automated supply channel to variation in the downstream
flow load, results in the transfer function model that relates the discharge valve flows
and corresponding local pressure heads:

Q̃V(s) =
(
GVV(s) −GVT (s)T (s)

(
I +GTT (s)T (s)

)−1
GTV(s)

)
H̃V(s)

= G(s)H̃V(s).
(21)
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Taking the Laplace transform of (5), whereby H̃T (s) = 1
s (cine−sτQ̃in(s) − cout(Q̃out(s) +

D̃out(s)), it follows that for given channel feedback controller Q̃in(s) = −C(s)H̃T (s),

T (s) = −
cout

(s + cine−sτC(s))
. (22)

In subsequent sections the channel controller is taken to be of the form

C(s) =
Kd(TI s + 1)

TI s(TF s + 1)
; (23)

i.e., a proportional plus integral controller with additional lag for steeper roll-off at
high-frequency. Such controllers are used in practice; e.g., see Cantoni et al. (2007).
The control design for irrigation channels in a demand-driven configuration is also
discussed in Litrico and Fromion (2004); Litrico et al. (2007); Cantoni and Mareels
(2020). The transfer function matrix G(s) is irrational. To enable application of clas-
sical feedback controller synthesis tools, a method for constructing a suitable rational
approximation is described next.

Reduced order approximation
The transfer function matrix G(s) in (21) relating the vector of incremental valve

openings ŨV(s) to the incremental flows Q̃V(s) is an irrational function of s. A ra-
tional approximation is required to enable application of the H∞ loopshaping based
procedure for centralized feedback controller synthesis considered in the next section.
The approximation approach followed here involves the application of a standard sys-
tem identification method to match frequency-response samples generated from the
irrational transfer function model to those of a lower order rational transfer function
model Pintelon and Schoukens (2012). This is done element-wise as detailed below.

Given element Gi j(s) on row i and column j of G(s), a rational approximation
Ĝi j(s) = ai j(s)/bi j(s), in which ai j(s) =

∑mi j

k=0 αksk and bi j(s) =
∑mi j

k=0 βksk are poly-
nomials of given degree mi j with βmi j , 0, is obtained by solving an least-squares
optimization problem

min
α0 ,...,αmi j
β0,...,βmi j

N∑
n=1

|W( jωn)(Gi j( jωn) − Ĝi j( jωn))|2 (24)

subject to Ĝi j has no pole with non-negative real part, (25)

for a set of sample frequencies {ωn}
N
n=1 and weight W(s). In this work, the sample

frequencies are selected to ensure good matching at low frequencies, under the premise
that the feedback controller to be designed will roll-off at high frequency (providing
robustness to high-frequency modelling error), and the weight is taken to be W(s) =
1/Gi j(s) so that the measure of error is relative. The resulting optimization problem
is solved using the ’tfest’ function Ozdemir and Gumussoy (2017) from the MATLAB
system identification toolbox. An alternative approach is to identify the entire transfer
matrix of the MIMO system simultaneously, which might be advantageous if there is
a large number of valves. However, the element-wise approach led to a lower-order
model in the example presented in the case study.
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Fig. 2. Discharge valve control system block diagram. The controller consists of a
feedforward component (FF) and a feedback compensator K(s). The block labelled
AC & PN represents the dynamics of the pipeline network (PN) coupled to the au-
tomated channel (AC). The static non-linear change-of-variables (CoV) is defined in
(26).

DISCHARGE VALVE CONTROL SYSTEM DESIGN
The architecture of the proposed control system is shown in Figure 2, in the form

that is ultimately simulated for a full non-linear distributed parameter model of the
automated channel and pipeline dynamics in the block denoted by AC & PN. It can be
seen that the control system comprises two parts; the feedforward controller denoted
by FF, and feedback controller with transfer function K(s). The goal of the feedback
controller is to bring the discharge flows qV to desired reference values, by dynami-
cally compensating for observed error in the response to the purely model-based feed-
forward control action. The feedforward controller solves (9) to yield the steady-state
valve pressure heads h̄V, j = hl( j)(Ll( j)), j ∈ NV , for given desired discharge flow qV, j,
j ∈ NV , and supply-channel water level set-point hT .

The feedback controller determines h̃V, j, the incremental pressure for each valve
j ∈ NV , in response to observed incremental flow signal q̃V, j = qV, j − q̄V, j, where qV, j is
the measured flow at valve j ∈ NV (i.e., in response to the error between measured and
desired flow.) These incremental pressures are added to the feedforward steady-state
pressures h̄V, j. The sum is translated to corresponding valve openings via the following
static non-linear change-of-variables (denoted by CoV in Figure 2):

ûV, j =

qV, j

/
(γ j
√

2 · g · hV, j), hV, j > 0

umax
V, j hV, j ≤ 0

(26)
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where hV, j = h̄V, j + h̃V, j for j ∈ NV is the output of the controller, not the actual valve
head. This non-linear compensation enables the use of a linearized model for feedback
controller design, as discussed further below.

The feedback controller transfer function K(s) is designed using the linearized
dynamics for a suitably chosen steady-state operating point. Both decentralized and
centralized feedback control are considered. The decentralized case corresponds to a
diagonal transfer function matrix K(s), with each component Kii(s) designed using
classical loop-shaping ideas, with only indirect regard for the coupling between outlets
by respecting limits on the control loop bandwidth. With a view to understanding
the potential for improved performance, the centralized controller is designed via the
H∞ loop-shaping method, based these decentralized compensators Kii(s) as weights,
and the rational approximation Ĝ(s) of the linear model G(s) in (21), for a suitable
operating point. The selection of this operating point and design of the decentralized
compensators are elaborated within the context of the case study. The form of the
decentralized compensator and the H∞ loopshaping synthesis method are described in
the next two subsections.

To account for the typical stroking limits of the valve, and to also limit interactions
that can arise from water-hammer, the valve opening command ûV is low-pass filtered,
by the block denoted by LPF in Figure 2, to remove high frequency components of
the command (e.g., arising from step change of the feedforward control action.) The
corresponding diagonal transfer matrix L has non-zero entries of the form

Lii(s) =
ω0,i

s + ω0,i
, (27)

where ω0,i are the filter cutoff frequencies. In the design of the decentralized compen-
sators, the presence of this filter is accounted indirectly by limiting the control loop
bandwidth according. The saturation block in the path to the valve opening uV enables
detection of valve position saturation for the purpose of anti-windup compensation in
the controller implementation Astrom and Rundqwist (1989). Such compensation is
required because the feedback controller K(s) will include integral action. This inte-
gral action robustly ensures zero error (i.e., q̃V = 0) in the steady-state response to step
changes in the discharge flow demand, provided the closed-loop is stable Goodwin
et al. (2001).

Form of the decentralized feedback compensators
The decentralized controller is designed using classical loop-shaping ideas. For in-

troductions to these ideas see Åström and Murray (2010); Skogestad and Postlethwaite
(2007), for example. Each diagonal entry of the decentralized controller takes the form
of a PI (Proportional-Integral) compensator:

Kii(s) = −
kp,is + kint,i

s · (kf,is + 1)
. (28)
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This can be realized with the state-space equations

ẋf,i = −
1

kf,i
xf,i +

1
kf,i

q̃V,i

ẋint,i = xf,i (29)

h̃V,i = −kp,ixf,i − kint,ixint,i.

The parameters kp,i are the proportional gains of the decentralized compensators, kint,i

the integral gains, and kf,i the roll-off filter time-constants.
The values of these gains are tuned to achieve the desired feedback control per-

formance. For the problem at hand, the main objective is to robustly achieve q̃V = 0
in steady-state, with acceptable transients in response to step disturbances associated
with changes in operating point. The integral action in (29) ensures q̃V = 0 in steady-
state provided the closed-loop is stable. Increasing the value of the proportional gain
kp tends to increase the speed of the response when perturbed from steady-state. The
integral gain kint is set to limit the range of low frequencies over which the PI com-
pensator introduces significant phase lag to the control loop. In conjunction with large
proportional gain this phase lag can lead to undesirable oscillations in the transient
response. The proportional gain parameter is also constrained by the requirement that
the compensated loop cross-over frequency, beyond which the loop gain is less than 1,
be limited in line with the aforementioned low-pass filter at the control valves, which
also filters the feed-forward control action. The choice of parameters is guided by the
corresponding diagonal block Gii(s) of the network dynamics, with only indirect con-
sideration of coupling between the outlets. Limits on the proportional gain also provide
robustness to high-frequency model uncertainty of the kind associated with neglecting
the coupling, and the approximate rational model Ĝ(s) of the distributed-parameter
model G(s), which is subsequently used for centralized controller synthesis. The roll-
off filter parameter kf,i in (28) further limits the control loop gain at high frequencies
for promoting such robustness. The selection of compensator parameters is discussed
further within the context of the case studies.

As there are physical limits 0 ≤ uv,i(t) ≤ uv,i,max on the control valve openings
and integral action in the feedback controller K(s), an anti-windup strategy must be
implemented Astrom and Rundqwist (1989). Integral windup occurs when the integral
terms of the controller accumulate a significant error as a result of saturated actuators
when the desired output is not achievable. The accumulated integral error without
anti-windup compensation can lead to large overshoots and undesirable transients in
response to changes/disturbances. In the case studies that follow, a simple clamping
anti-windup strategy, such that the state xint,i corresponding to the integrator in the
implementation (29) of Kii(s), remains fixed at the value saturation occurs until the
value is no longer in saturation; i.e., the right-hand side of (29) is made zero during
saturation.

H∞ loop-shaping synthesis
With a view to more directly accounting for the coupling between the outlets, the

decentralized controller is augmented via the so-called H∞ loop-shaping synthesis
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Parameter SI unit Value
c- wave speed in the water m/s 1200
g- gravity acceleration m/s2 9.81
f - friction coefficient 0.016
D - pipe diameter m D1,D2, ...,D5 = 0.634
Lp - pipe length m L1 = 500; L2, L4 = 300;

L3 = 800; L5 = 700
γ - coefficient of discharge γ = 0.7

TABLE 1. Simulation parameters.

cin cout τ (min) Kd TI (min) TF(min)
0.0174 0.0174 12 0.638 146.78 17.366

TABLE 2. System identification model parameters and the controller parameters for
the irrigation channel.

method of McFarlane and Glover (1990, 1992). The approach involves use the MIMO
system model Ĝ(s), a pre-compensator W1(s), and a post-compensator W2(s), which
form the shaped open-loop

Gs(s) =W2(s)Ĝ(s)W1(s). (30)

Guidance on the design of the weights W1(s) and W2(s) in standard cotrol contexts
can be found in Hyde and Glover (1993); Skogestad and Postlethwaite (2007). In this
work, the pre-compensator W1(s) is taken to be the diagonal transfer function with
non-zero entries set to the transfer functions Kii(s) of the decentralized controller, and
W2(s) is set to the identity matrix.

A stabilizing MIMO feedback controller Ks(s) is synthesized for the shaped open-
loop transfer function Gs(s) to minimize the H∞ norm of the block 2 × 2 transfer
function matrix comprising the ‘gang-of-four’ (in the language of Åström and Murray
(2010)) closed-loop sensitivity transfer matrices. The H∞ norm is the supremum of the
largest singular value of the transfer matrix over all frequencies, and consideration of
the ‘gang-of-four’ transfer functions has important performance and robustness inter-
pretations McFarlane and Glover (1990, 1992); Skogestad and Postlethwaite (2007).
The required synthesis procedure is available as the function ncfsyn in the robust
control toolbox of MATLAB Glover and McFarlane (1992); McFarlane and Glover
(1990). The feedback controller W1(s)Ks(s)W2(s) is implemented. This centralized
controller is denoted by K∞(s) subsequently to distinguish it from the decentralized
feedback controller K(s) = W1(s) described above. Note that K∞(s) is the MIMO
augmentation Ks(s) of the decentralized controller K(s).

CASE STUDY
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The water distribution system shown schematically in Figure 1 is considered for
testing in simulation the developed approaches to pipeline network control. The sys-
tem consist of a network of five pipelines and three control valves at the outlets. The
parameters of the system used in these simulations are given in Table 1, and the param-
eters of the channel that supplies the water to the pipeline system are given in Table 2.
These parameters have been motivated by a prototype pipeline network installed in
the Goulburn Murray irrigation district in Victoria, Australia. The network geometry
and valve locations have been determined based on the location of the existing supply
channel and the fields that are to be irrigated. The tank head is sufficient to provide
a flow rate of approximately 10 megaliters per day to each valve under the power of
gravity. Moreover, a pump is installed at the pipeline inlet, which is inactive most of
the time but can be used to boost the water head if higher flows are required. The
valves are equipped with flow meters and the valve openings are the control inputs that
are determined by the controller as outlined in Figure 2.

Linearized transfer matrices and model reduction
The transfer functions of the pipeline system are determined from (21) by lineariz-

ing the system around multiple equilibrium points, considering a range of output flows.
Plots of the transfer functions for two chosen flow rates are given in Figure 3. The first
model is generated by use of Qv,1 = Qv,2 = Qv,3 = 0.10 m3/s (linear model G1) and
the second one using Qv,1 = Qv,2 = Qv,3 = 0.05 m3/s (linear model G2). The reference
water level of the irrigation channel is fixed at hT = 1.5 m for the both cases. The
remaining parameters of the linearized model are found by solving the steady-state
equations (9) by use of the Levenberg-Marquardt method, using a zero initial guess for
the numerical solver. The steady state solution for the pressure head at the valve open-
ing of the linearized model G1 are Hv,1 = 0.88 m, Hv,2 = 0.47 m and Hv,3 = 0.42 m,
and for the linearized model G2 are Hv,1 = 1.34 m, Hv,2 = 1.24 m and Hv,3 = 1.29 m.

In Figure 3, one can see that the pipeline network is close to steady state for flows
varying with a frequency of up to 5·10−3 rad/s. The slight bumps at around 2·10−4 rad/s
are due to the response of the supplying channel. While close to a static steady-steady
(i.e., low frequency), the diagonal entries of G have 180 degree phase, indicating that
lower pressure corresponds to higher flow. This agrees with intuition, as a higher flow
increases the pressure loss between tank and valve due to friction, resulting in a lower
valve pressure. Whereas the off-diagonal entries have zero phase, indicating that higher
pressure at one valve increases flow through the other valves. The magnitudes at low
frequencies correspond to the frictional head loss through the valve, with the difference
between the linearizations around the two flow rates also being due to differences in the
steady-state frictional head loss. The frequency responses then roll off with higher fre-
quencies until the resonances start at around 2 rad/s. Some of the resonant magnitude
peaks exceed the respective steady state gains.

Feedback controller design
In order to attenuate the resonances starting at approximately 2 rad/s, the cut-off

frequency of the low-pass filter L after the change of variable in Figure 2 is chosen to
be ω0 = 0.2 rad/s; see, (27). This filter can also be set to take into account actuator

16 Bojan Mavkov, August 13, 2022



10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-60

-50

-40

-30

-20

-10

0

T
o
 
Q

v
1

M
a
g
n
it
u
d
e
 (

d
B

)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-180

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-60

-50

-40

-30

-20

-10

0

T
o
 
Q

v
2

M
a
g
n
it
u
d
e
 (

d
B

)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-180

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(rad/s)

-60

-50

-40

-30

-20

-10

0

T
o
 
Q

v
3

M
a
g
n
it
u
d
e
 (

d
B

)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(rad/s)

-180

-90

0

90

180

270

P
h

a
s
e

 (
d

e
g

)

Fig. 3. Plots of the transfer functions in G(s) derived around the reference flows:
Qv,1 = Qv,2 = Qv,3 = 0.10 m3/s (entries g1

i j, i, j = 1, 2, 3) and Qv,1 = Qv,2 = Qv,3 =

0.05 m3/s (entries g2
i j).

limitations. For instance, if there is a limit on the rate at which the physical valve can
open, the low-pass filter can be made so slow that the actual valve opening is able to
follow the signal.

The parameters of the i-th diagonal entry of the decentralized controller K(s) in
(28) are selected as kp,i = 5, kint,i = 0.02 and kf,i = 50 for all three valves i = 1, 2, 3. The
compensator rolls-off time-constant kf,i is chosen one hundred fold slower than that of
the pole of the low-pass filter L in the faster inner change-of-variables loop. This averts
undesirable interactions between the two loops by separation of time scales Kokotović
et al. (1999). It also ensures low control-loop gain at high frequencies, where the error
associated with subsequently using Ĝ(s) for centralized controller synthesis as a model
becomes significant.

The correspondingly compensated open-loop G(s)K(s) is shown in Figure 4. Note
that the cross-over frequency for each diagonal component of around 0.02 rad/s for the
model G2(s) (i.e., operating point 0.05 m3/s.) This is about two decades below the
resonances, and also a decade below the cut-off frequency ω0 of the filter L in the
inner CoV-loop. The model G2(s) is considered to inform the control design because
the corresponding resonances are less damped due to the smaller friction losses at the
lower flow rate.

For synthesis of the centralized controller by H∞ loop-shaping, the rational transfer
function Ĝ is generated using the reduced order approximation previously presented.
The reduced model is optimized to match the original model in the frequency range of
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Fig. 4. The Bode plot of the compensated open-loop GK with decentralized controller
with entries Kii(s) as in (28). Only half of the off-diagonal entries are shown due to
symmetry.
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Fig. 5. Bode plot of the controller Ks synthesized by the H∞ procedure. The solid
lines show the diagonal entries and the dashed lines show the off-diagonal entries.

ω ∈ [0 : 3] rad/s and each entry of the 3 × 3 transfer matrix G is estimated with a 3-rd
order model. A good match match of the two models in the desired frequency range is
achieved with Normalized Root-Mean Square Error (NRMSE) fit of 94 − 98 %.

Sythesis of the centralized feedback controller K∞(s) = Ks(s)K(s) is carried out
as described in the previous section. Bode plots of the MIMO compensator Ks(s) are
given in Figure 5. At low frequencies, it is diagonal-dominant, i.e., very similar to a
decentralized one. The DC gain is slightly smaller than 1. At higher frequencies, at
around cross-over, the off-diagonal components of Ks become more significant.

A reduced-order approximation of the controller K is generated for use in the
simulations using implicit balancing techniques Varga (1991), resulting in a 5 − th
order linear time invariant system from the initially large 29 − th order controller. The
reduced-order and the original controller are nearly identical beyond the cross-over
frequency of around 0.02 rad/s that can be seen in the singular value plots in Figure 6.

Simulation results
The simulations are performed using numerical implementation of the model in the

MATLAB Simulink environment. The simulation model of the water hammer PDEs
(1) is developed using implicit nonlinear finite-difference model presented in Scola
et al. (2018).

Four different implementations are considered for both the decentralized and cen-
tralized controllers:

1. pure feedback control without feed-forward;
2. pure feed-forward without feedback control;
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Fig. 6. Singular values of the compensated open-loop with decentralized and central-
ized controllers.

3. feedback control with feed-forward, where (9) is computed based on the water-
level set-point in the tank, which only requires global “event-triggered” com-
munication of the changes; and

4. feedback control with feed-forward, where (9) is updated continuously based
on the measured channel water level.

The communication overhead varies significantly between these implementations. Pure
decentralized feedback without feed-forward uses only local measurements at each
valve, i.e., no global communication is required. For centralized control, continuous
communication between a central host and all valves is required. If the feed-forward is
based on set-point values of the channel water-level and discharge flow demand, then
only change event-driven communication is required to determine the feed-forward
control action. The continuously updated feed-forward requires communication of the
channel water-level measurements to all valves at all times.

The control performance is tested around different operation points by varying the
desired flow in the range of 0.05− 0.1 m3/s, which lies within the range of the feasible
flows that are set by the reference pressure delivered by the channel and the limited
ranges of the valve openings. In these simulations the feed-forward signal is generated
based on a model with 10% error in the friction term for each pipeline.

The performance of the different control schemes are compared in Figure 7, for
implementations 1 and 2, and Figure 8 for implementation 3 and 4. In the case where
only feed-forward control is used, the error in friction leads to significant steady-state
error. The variations in the water level in the channel causes additional slow (over
the course of hours) fluctuations in the valve flows if the feed-forward is only updated
when there is a change in the reference flow. The plots of the evolution of the valve
pressure heads and openings for the implementation 4 are given in Figure 9.

For the schemes involving feedback control, the integral action robustly brings the
valve flows to the demand set-point in steady state. Desired performance, including
transient response, is observed for a broad ranges of operating points. Thus, for the
operating range considered, there is no apparent need to schedule different controllers.
There is also no clear value in continuous update of the feedforward control based on
channel water-level measurements. The performance of all shown feedback control
schemes is comparable, which suggests the decentralized feedback with event-driven
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Fig. 7. Plots of the valve flows using pure feedback control (left) and pure feed-forward
(right).
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Fig. 8. Plots of the valve flows using both feedback and feedforward control where the
feed-forward signal is computed based on the reference (left) and actual (right) water
level in the supply channel.
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feedback and feedforward control, where the feed-forward signal is computed based
on the actual water level in the supply channel.
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Fig. 10. Plots of the valve flows with measurement noise.

feedforward would be most suitable for this network in light of the significantly lower
communication overhead.

The dynamic coupling between the valves is clearly visible in Figures 7 and 8.
For instance, in the left column of Figure 7, the drop in flow through valve 3 at time
10 hours causes a spike in the flows through valves 1 and 2. This is similar to the trans-
fer functions G in Figure 3 (note that G were open-loop transfer functions whereas the
simulations show the response of the controlled closed-loop system), in that a reduction
in flow 3 corresponds to a pressure increase at valve 3, which causes a flow increase
at the other valves. After a brief transient spike, the feedback controller compensates
and the flows return to reference. In the simulations with feedforward in Figure 8, the
coupling is still visible but less significant because the feedforward term pre-emptively
adjusts the other valve openings.

The attenuation of high-frequency measurement noise is investigated in Figure 10,
at the example of the feedback controller with feed-forward that is only updated when
there are changes in the reference flow. The noise signal is constructed by passing
a random white noise signal through a high-pass filter with frequency response s

ωhp+s
with ωhp = 0.2 rad/s. The noise signal is assumed proportional to the actual flow and is
scaled such that the noise amplitude amount to approximately 10% of the actual flow.
As shown in Figure 10, the feedback control scheme and, in particular the low-pass
filter in the inner loop adjusting the valve opening (see Figure 2) effectively dampens
the effect that the noise has on the actual valve flows. The sensitivity with respect to
measurement noise depends on the frequency range of the noise, as determined by the
parameter ωhp. In general, higher frequency noise is dampened more effectively by the
low-pass filter, whereas lower-frequency noise can be compensated by reducing ω0 in
(27) if required.
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The difference in performance between the centralized and decentralized controllers
tends to become more significant if performance is pushed further, e.g., if the crossover
frequency is designed close to the first resonance. Whether performance should be
pushed that much depends on considerations such as practical performance require-
ments and actuator limits. For instance, in extremely long pipelines, the resonant
frequencies are lower and might get closer to the frequency range over which flow
tracking is required, although in long pipes friction also tends to weaken the coupling
between the valves. The framework for modelling and control developed in this paper
nonetheless provides scope for exploring exploration of design trade-offs as in the case
study presented.

CONCLUSION AND FUTURE WORK
In this work a control-oriented model of irrigation-channel supplied pipeline net-

works is developed and used to devise automatic controllers for regulating discharge
flows to specified demand. The model is developed by linearizing continuity and mo-
mentum equations and determining the transfer functions which capture coupling from
each controlled input of the system to each output. The presented modeling framework
permits quantitative examination of the whole network and the coupling between all
individual discharge outlets and the supply channel. These models are straightforward
to be use for control design. In principle, a wide variety of different feedback control
methods can be considered on the basis of such models.

Compensating the nonlinearity of the valve equation via a change-of-variables, en-
ables the design of a single linear feedback controller that can be used for a range of
operating points (flow demands). In the case when the nonlinear nature of the system
is more significant due to an even wider range of flows, it is possible to extract dif-
ferent models around multiple operation points and schedule the controllers Rugh and
Shamma (2000).

Different control configurations using decentralized and centralized feedback con-
trol have been compared. The decentralized controller with no feedforward, which re-
quires no information exchange between the valves or the supplying channel, achieves
satisfactory tracking of reference flows. The centralized controller based on the model
of the coupling between the valves yield modest improvement in performance, at the
cost of substantially higher communication overhead. The addition of feedforward
based on the static nonlinear model and set-point change driven update at low com-
munication and computation overhead, improves performance significantly for both
centralized and decentralized controllers.

The structure of the control models could significantly increase in order when the
approaches is used for a large number of pipelines and control valves. This would raise
the complexity of the centralized controller synthesis method. In such situations, and
if performance of the fully decentralized controller is not sufficient, it could be worth
to investigate the possibility of applying partly decentralized control in parts of the
network where the coupling is weak.

The models used in this works are developed for pressurized flow pipeline net-
works. In future work these models can be extended by considering the case when the
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pipelines are not fully pressurized. For this aim the models could be modified using
models for transient-mixed flows Bousso et al. (2012).
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