Mohamed Irfanulla

Mohamed Abdulla

Audrey Queudet
email: audrey.queudet@ls2n.fr

Maryline Chetto
email: maryline.chetto@ls2n.fr

Lamia Belouaer
email: l.belouaer@e-cobot.com

Real-time Resource Management in Smart Energy-Harvesting Systems

Keywords: Energy Harvesting, ED-H, DPCP, Shared resource, Schedulability test

. However, this algorithm has been proved to be optimal for independent tasks only (i.e., without considering any shared resources), thus preventing its confident deployment into computing infrastructures in which tasks are mostly interdependent. In this paper, we first derive worst-case blocking times and worst-case blocking energy for tasks sharing resources managed by the DPCP protocol[2] and scheduled under the ED-H scheme. Then, we provide a sufficient schedulability test for ED-H-DPCP guaranteeing off-line that both timing and energy constraints will be satisfied, even in the presence of shared resources.

I. INTRODUCTION

Battery-operated Cyber-physical systems (CPSs) have to address the problem of energy scarcity. These system can additionally benefit from energy harvesting mechanism to deal with energy constraints. In this paper, we consider Real-time Energy Harvesting (RTEH) systems as defined in [START_REF] Chetto | Optimal scheduling for real-time jobs in energy harvesting computing systems[END_REF]. Such smart energy systems in charge of collecting and processing the raw data gathered from sensors, must satisfy timing constraints through a smart real-time scheduler which usually relies on a preemptive priority-based algorithm. We are interested in smart energy-harvesting systems that consist of an energy harvester that scavenges energy from ambient sources and stores it in an energy storage unit such as a battery or super-capacitor. Fig. 1 presents the system architecture of a typical real-time energy harvesting system. As an autonomous system, a smart energy-harvesting system should embed a This work is partially supported by a French grant from the Isite NExT (Project entitled "Optimisation et Gestion en Temps Réel de la Consommation Energétique d'un Système Cobotique") within the New Partnerships framework.

smart energy management mechanism so as to optimize the use of the energy retrieved from the environment and guarantee an energy neutrality operation to the system (i.e., the system never consumes more energy than harvested). Most of real-time systems are controlling ones and consequently, they implement periodic tasks. The online Earliest Deadline First (EDF) scheduler [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF] that executes first the task with the closest deadline has been proved optimal when energy is not limited. A variant of EDF, namely ED-H [START_REF] Chetto | Optimal scheduling for real-time jobs in energy harvesting computing systems[END_REF], was more recently proposed so as to provide an optimal strategy to schedule real-time tasks under energy harvesting settings. An exact feasibility test was also given with robustness properties.

Motivation. For a large number of embedded real-time systems, applications exhibit resource constraints sharing both virtual and physical objects such as data structures, variables, main memory area, file, set of registers, I/O devices or database. Many shared resources do not allow simultaneous accesses and require mutual exclusion. The underlying system must then be able to ensure mutually exclusive access to these shared resources, otherwise data inconsistency will appear. To achieve mutual exclusion, the shared resources subject to mutual exclusion constraints must be serially executed, causing additional delays due to priority inversion. Indeed, a higher-priority task requesting a shared resource already used by a lower-priority task can be blocked, thus delaying the completion time of the task and leading eventually to a deadline miss. The ED-H scheduling algorithm has been proved optimal under the assumption that all tasks are independent (i.e., their executions do not depend on the execution of other tasks). However, this is not a realistic assumption. In the case of smart systems like mobile robots, tasks implicitly or explicitly synchronize through resource sharing. Up to now, the ED-H scheduling algorithm could not satisfactorily be implemented in applications with shared critical resources.

978-1-6654-9792-3/22/$31.00 ©2022 IEEE Contributions. This paper is concerned with a less restrictive model in which the application tasks need to access critical resources. We consider a set of tasks which are scheduled by ED-H while concurrent accesses to critical shared resources are managed by DPCP [START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF]. Our contribution is threefold: (i) we show that the ED-H feasibility test is not applicable anymore in the presence of shared resources, (ii) we determine the worst-case blocking times and the worst-case blocking energy of the tasks when jointly using the ED-H scheduler and the DPCP protocol for managing the accesses to shared resources and (iii) we propose a new sufficient schedulability test in order to take into account blocking delays incurred by the resources in the offline analysis of the system. To the best of our knowledge, this is the first work that studies the problem of resource sharing when a real-time energy-harvesting scheduling scheme is considered.

Paper organization. The paper is organized as follows. In section II we review some related work and present some requirements for smart energy-harvesting systems. In section III, the system model is described by focusing on the resource-related concerns. We review some background material related to ED-H and DPCP in section IV. In section V, the schedulability analysis under ED-H is detailed and we show its non-applicability to systems with shared resources. In section VI we give new formulas for computing the worst-case blocking computation of tasks from both timing and energy points of view, and we derive the feasibility test for the ED-H scheduling algorithm under resource sharing. Examples are given for illustrative purpose. Finally, we conclude the paper and give some future works in section VII.

II. RELATED WORK

Dynamic Voltage Scaling (DVS) [START_REF] Burd | Dynamic voltage scaled microprocessor system[END_REF] and Dynamic Power Management (DPM) [START_REF] Schmitz | System-level design techniques for energy-efficient embedded systems[END_REF] are famous techniques for minimizing the processor energy consumption. In the DVS approach, the minimization of the energy consumption is performed by slowing down the operating voltage and clock frequency of the processor. As regards DPM techniques, they consist in switching the processor to a low-power state (i.e., sleep mode) during idle time intervals (i.e., periods of time during which there is no tasks to execute). Although used in various energy-aware scheduling algorithms proposed for both uniprocessor and multicore systems (see [START_REF] Chen | Energy-efficient scheduling for real-time systems on dvs platforms[END_REF] for a survey), relatively few studies have considered task synchronization issues. Synchronization access protocols are the well-know mechanisms for supporting data consistency. Resource sharing protocols are independent mechanisms that can be combined with base scheduling algorithms including the well-known priority driven ones such as RM (Rate Monotonic), DM (Deadline Monotonic) and EDF (Earliest Deadline First) [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. They not only enforce mutually exclusive accesses to shared variables to avoid race conditions. They also avoid deadlocks, starvations and priority inversions. For uniprocessor preemptive real-time systems, protocols such as the so-called PCP (Priority Ceiling Protocol) [START_REF] Sha | Priority Inheritance Protocols: An Approach to Real-Time Synchronization[END_REF] (and its dynamic-priority based version -DPCP [START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF]) and SRP (Stack Resources Protocol) [START_REF] Baker | A stack-based resource allocation policy for realtime processes[END_REF] have been proposed.

The problem of determining whether a real-time task set with resource constraints is schedulable or not has been proved as NP-hard [START_REF] Mok | Fundamental design problems of distributed systems for the hard-real-time environment[END_REF]. Some papers have addressed the problem of scheduling task sets that share resources in exclusive mode [START_REF] Lam | Priority ceiling protocol with dynamic adjustment of serialization order[END_REF]- [START_REF] Kim | Pessimistic deadline ceiling protocol: A concurrency control protocol under earliest deadline first scheduling[END_REF]. They mainly focus on enhancing the schedulability analysis to provide tighter schedulability conditions. However, no energy constraints are considered in the schedulability analysis.

Some works addressed the impact of energy when scheduling dependant tasks [START_REF] Wu | Energy-Efficient Scheduling of Real-time Tasks with Abortable Critical Sections[END_REF]- [START_REF] Jejurikar | Energy aware non-preemptive scheduling for hard real-time systems[END_REF]. Above works use the classical resource access protocols to ensure mutual exclusion w.r.t shared resources. Some recent work [START_REF] Wägemann | A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities[END_REF] present an operating system kernel named ENOS for energy-neutral real-time systems. Depending on the energy level, the system switches between different energy modes which also changes the task set to execute according to the available energy. However, this approach deals only with independent tasks and mainly relies on hardware interrupt handling routines.

To the best of our knowledge there are no existing works that take into consideration energy-harvesting constraints in the scheduling problem of dependent real-time tasks.

III. SYSTEM MODEL

Our system model is divided into three sub-models: (i) a task model which gathers the key parameters of the tasks, (ii) a resource model which describes the characteristics of the resources concurrently accessed by tasks, and (iii) the energy model which defines how the energy is produced, stored, and consumed in the system.

A. Task model

We consider a set of n periodic tasks denoted by τ = {τ 1 , τ 2 , .., τ n }, on a uniprocessor architecture. Each task τ i is characterized by its initial release time φ i , its worst-case computation time C i , its period T i , its relative deadline D i (with D i ≤ T i), and its worst-case energy consumption E i which is not necessarily proportional to C i . We consider a synchronous task set (i.e. all offsets are set equal to 0). The periodic task τ generates a (potentially infinite) sequence of jobs that inherit timing parameters from the periodic tasks, denoted by ω. Each job J k in ω is assigned a release time r k = φ i + j × T i (with j ≥ 0) and an absolute deadline d k = r k + D i . Let d Max be the greatest absolute deadline among all active jobs. The processor Fig. 2. Blocking time caused by a shared critical section [START_REF] Buttazzo | Hard Real-Time Computing Systems[END_REF] utilization factor is defined as

U p τ = ∑ n i=1 C i T i .
The average energy consumption of task set τ per unit time is defined as

U e τ = ∑ n i=1 E i
T i . Thus U p τ cannot exceed one and U e τ cannot be greater than the average power drawn from the energy source during one unit time.

B. Resource model

We consider a set Ω = {R 1 , ..., R p } of p shared resources in the system. Each periodic task may access one or several of these critical resources. Each resource R j is guarded by a distinct semaphore S j a task must lock (resp. unlock) when entering (resp. leaving) a critical section. It uses the two classical primitives wait() and signal() for requesting and releasing the access to the resource respectively, as illustrated in Fig. 2. All tasks blocked on the same resource are kept in a queue associated with the semaphore. When a running task executes a wait on a locked semaphore, it enters a blocked state, until another task executes a signal primitive that unlocks the semaphore (see Fig. 2). σ i denotes the set of semaphores used by τ i . We denote the blocking set of task τ i as Z i (i.e. the set of semaphores that can block τ i). The duration (resp. the energy consumption) of the longest critical section of task τ i guarded by S k is denoted by δ i,k (resp. ε i,k). The instant at which a task τ i accesses the resource R k is denoted by a i,k .

C. Energy model

The energy harvested from the ambient source is converted into electrical power with an instantaneous charging rate

P p (t). E p (t 1 ,t 2) = t 2 t 1 P p (t)

IV. BACKGROUND MATERIALS

A. The ED-H scheduler

An optimal dynamic priority scheduling algorithm, namely ED-H [START_REF] Chetto | Optimal scheduling for real-time jobs in energy harvesting computing systems[END_REF] was proposed in 2014 to take into account both real-time and energy harvesting constraints. ED-H is a variant of the famous Earliest Deadline First (EDF) scheduling algorithm [START_REF] Liu | Scheduling algorithms for multiprogramming in a hard-real-time environment[END_REF]. It is a dynamic priority-driven scheduler that makes its decisions online considering both timing and energy constraints. It requires an accurate prediction of the near future of both the harvested energy and the energy consumed by the tasks. ED-H is semi-online, more exactly online with lookahead-D [START_REF] Chetto | Clairvoyance and online scheduling in real-time energy harvesting systems[END_REF]. The scheduler manages the idle or busy state of the processor dynamically, depending on two key parameters: the slack time (i.e., the maximum continuous processor time that could be available from current time while still guaranteeing the deadlines of all the jobs) and the slack energy (i.e., the maximum amount of energy that could be consumed from any time instant while still satisfying all the energy and timing constraints of all the jobs). In other words, the scheduler executes the active jobs in view of their absolute deadline, their energy consumption, the remaining energy in the storage unit, and the energy produced by the source. While the storage unit is empty, the processor must be inactive. On the contrary, if there is a ready job waiting for execution and if the energy level in the storage unit is maximum, the processor must be busy executing the ready job so as not to waste energy.

Let L p (t c) be the list of jobs ready for execution at current time t c . The scheduler ED-H algorithm can be described by the following rules:

• Rule 1: The order of priority of EDF is used to select the future running job in L p (t c).

• Rule 2: The processor is imperatively idle in [t c ;t c + 1) if L p (t c) = / 0. • Rule 3: The processor is imperatively idle in [t c ;t c + 1) if L p (t c) ̸ = / 0 and one of the following conditions is satisfied: 1) E(t c) ≈ 0 2) PreemptionSlackEnergy(t c) ≈ 0 • Rule 4: The processor is imperatively busy in [t c ;t c +1) if L p (t c) ̸ = /
0 and one of the following conditions is satisfied:

1) E(t c) ≈ C 2) SlackTime(t c) ≈ 0 • Rule 5:
The processor can equally be idle or busy if L p (t c) = / 0, 0 < E(t c) < C, SlackTime(t c) > 0 and PreemptionSlackEnergy(t c) ≈ 0. Clearly, ED-H implements a smart dynamic power management procedure that specifies when to put the processor busy (resp. idle) so as not to waste energy (resp. not to consume energy too greedily). Optimality of ED-H means that if a task set cannot be feasibly scheduled on a given RTEH platform, this task set cannot be feasibly scheduled by any other scheduler on the same platform.

B. DPCP protocol

In real-time systems, tasks may exchange data through shared memory and concurrent accesses may lead to data inconsistency. Without any resource access protocol, tasks may be blocked many times before the completion of their jobs, thus leading to deadline violations.

We focus here on DPCP (Dynamic Priority Ceiling Protocol) [START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF]. DPCP associates a ceiling value Ceil(S i) with every semaphore S i associated to resource R i , which is equal to the maximum of the priority values of all jobs that might manipulate R i . An additional variable called CurCeil(t) represents, at any time instant, the maximum ceiling value of A task in a critical section can be preempted by a higher priority task that is not waiting to enter the same critical section. However, due to conflicts w.r.t shared resources, a high-priority job may have to wait for the execution of a low-priority job holding the resource. Such waiting time is referred to as worst-case blocking time. Authors in [START_REF] Sha | Priority Inheritance Protocols: An Approach to Real-Time Synchronization[END_REF] have shown that, in the worst-case, each job has to wait for at most one lower-priority job in critical section. Consequently, for any job of task τ i , the worst-case blocking length B i is equal to the duration of the longest critical section among the set of lower-priority tasks that may block τ i .

Example 1. Let us consider three periodic tasks τ 1 , τ 2 and τ 3 with two semaphores S 1 and S 2 protecting the access to shared resources R 1 and R 2 respectively. The task set τ i = (C i , T i , D i) parameters are the followings : τ 1 = (2, 6, 5) τ 2 = (2, 8, 6) and τ 3 = (8, 24, 20). Task τ 1 manipulates R 1 at time a 1,1 = 1, task τ 2 manipulates R 2 at time a 2,2 = 0. Task τ 3 requests R 1 at time a 3,1 = 1 and R 2 at time a 3,2 = 5.

Fig. 3 shows how the periodic task set is scheduled by EDF using DPCP for managing shared resource accesses. The ceiling priority of S 1 is Ceil(S 1) = 1 and S 2 is Ceil(S 2) = 2. Worst-case blocking times that tasks may experience are B 1 = 3, B 2 = 3 and B 3 = 0 (see [START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF] for computation). First, higher priority task τ 1 starts its execution and accesses the resource R 1 at time t = 1. When task τ 2 starts at time t = 2 the resource R 2 is available. Next, task τ 3 executes and at time t = 5, locks the semaphore S 1 which is available. At time t = 6, job J 2 of task τ 1 is released. As τ 1 priority is higher, it preempts task τ 3 and executes. When τ 1 requests the resource at time t = 7, it is blocked as S 1 has already been locked by τ 3 , the ceiling priority is increased to 1 and τ 3 continues using S 1 until the resource is released by τ 3 . τ 1 completes its execution right after the semaphore S 1 is available. Likewise, at time t = 16, when τ 2 requests semaphore S 2 , it is blocked until τ 3 releases the resource.

V. SCHEDULABILITY ANALYSIS UNDER ED-H

The schedulability analysis at the design phase of a real-time system aims at checking whether the tasks can consistently meet their deadlines when scheduled by a given scheduling algorithm. For RTEH systems, such an analysis requires an accurate knowledge of the profile of the energy source and that of all the characteristics of both the real-time workload and the hardware platform. The analysis should be performed off-line whenever possible so as to guarantee a priori any deadline missing caused by energy and/or time starvation. When the scheduling algorithm A considered for the analysis is optimal, a schedulability test reduces to a feasibility test, a stronger condition guaranteeing that any feasible task set can be scheduled by A. A task set is referred to as schedulable according to a given scheduling algorithm if all of its jobs are schedulable. A jobset ω is feasible if and only if it is time-feasible (i.e., timing constraints are met for all tasks without considering energy constraints) and energy-feasible (i.e., energy constraints are satisfied for all tasks without considering timing constraints).

A. Terminology and Notation

We first recall basic definitions for real-time scheduling concepts introduced in [1] used for checking the schedulability of a jobset under ED-H.

Definition 1. The processor demand of jobset ω on the time interval

[t 1 ,t 2) is h ω (t 1 ,t 2) = ∑ t 1 ≤r k ,d k ≤t 2 C k (1)
When the processor utilization factor associated to a given jobset ω is less than 100%, the processor is idle from time to time, hence the notion of slack time.

Definition 2. The static slack time of jobset ω on the time interval

[t 1 ,t 2) is SST ω (t 1 ,t 2) = t 2 -t 1 -h ω (t 1 ,t 2) (2)
Definition 3. The static slack time of jobset ω is

SST ω = min 0≤t 1 <t 2 ≤d Max SST ω (t 1 ,t 2) (3)
Similarly, in order to analyse the the schedulability of a jobset from the energy point of view, we recall hereafter how the energy demand and the slack energy are defined.

Definition 4. The energy demand of jobset ω on the time interval

[t 1 ,t 2) is g ω (t 1 ,t 2) = ∑ t 1 ≤r k ,d k ≤t 2 E k (4)
Definition 5. The static slack energy of jobset ω on the time interval

[t 1 ,t 2) is SSE ω (t 1 ,t 2) = C + E p (t 1 ,t 2) -g ω (t 1 ,t 2) (5)
Definition 6. The static slack energy of jobset ω is

SSE ω = min 0≤t 1 <t 2 ≤d Max SSE ω (t 1 ,t 2) (6)

B. ED-H feasibility test

Based on the new concepts introduced in Section V-A, the author in [START_REF] Chetto | Optimal scheduling for real-time jobs in energy harvesting computing systems[END_REF] proposed an exact (i.e. necessary and sufficient) schedulability test for ED-H.

Theorem 1. [1] A jobset ω is schedulable by ED-H if and only if SST

ω ≥ 0 and SSE ω ≥ 0.
As ED-H is an optimal scheduler, Theorem 1 provides us a feasibility condition.

Let us see now to what extent this test can be applied to a periodic task set sharing resources managed by DPCP. In particular, we will show that the exact ED-H schedulability test is no longer applicable because of the presence of additional blocking times due to the concurrent accesses to shared resources performed by the tasks.

Example 2. Let us illustrate by considering the periodic task set described in Table I. Assume that energy storage capacity is such that C = 8 and E(0) = 8. We assume that the incoming power P p is constant over time and equals to 1. Off-line feasibility checking of the task set indicates that the task set is feasible, as Theorem 1 is satisfied. Let us consider now that tasks share semaphores S k . Table I also indicates both the duration of the critical sections and their starting time w.r.t the job release time. A zero value means that task τ i uses semaphore S k as soon as it is released. The ceiling priority attached to a semaphore is defined by the highest priority task that uses the semaphore. Here, τ 1 starts its execution and locks (resp. unlocks) the semaphore S 1 at time t = 1 (resp. t = 3). τ 2 locks the resource at t = 4 and unlocks it right after at t = 5. Note that in the time interval [START_REF] Mok | Fundamental design problems of distributed systems for the hard-real-time environment[END_REF][START_REF] Wu | Energy-efficient scheduling of real-time tasks with shared resources[END_REF], task τ 1 is released; it preempts τ 3 and then requests to lock semaphore S 1 . As S 1 has already been locked by τ 3 , the ceiling priority is increased to 1 and τ 3 continues using S 1 until t = 13. After, τ 1 locks S 1 and we can note that there is no time left to complete the execution of τ 1 before its deadline. Clearly Fig. 4, shows that task τ 1 misses its deadline at time t = 14.

TABLE I TASK SET PARAMETERS FOR EXAMPLE 2

Task

φ i C i D i T i E i S 1 S 2 a i,k S 1 S 2 τ 1 0 3 5 9 3 2 - 1 - τ 2 0 3 6 12 6 - 2 - 0 τ 3 0 9 27 36 9 4 3 2 6
It clearly appears that blocking times should be accounted for when designing schedulability tests for real-time energy-harvesting systems having resource access constraints. It has been proved in [START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF], that the worst-case blocking situation for every task should be considered for the derivation of a new consistent schedulability condition.

VI. SCHEDULABILITY ANALYSIS UNDER ED-H-DPCP

We prove that a jobset is schedulable under ED-H-DPCP if the blocking times on resources added to the processor demand

A. Blocking Time Computation

The worst-case blocking delay can be treated as an extra computation time for each job in addition to its normal computation time. Using DPCP, the authors in [START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF] showed that chained blocking is impossible. More precisely, they proved that the worst-case blocking time B i of any job is bounded by the duration of the longest critical section among lower-priority jobs that may access the same resources.

Definition 7. The worst-case blocking time of all the jobs released by task τ i is

B i = max i,k {δ i,k |S k ∈ Z i } (7)
with δ i,k the set of lengths among the longest critical sections guarded by a semaphore S k that can block τ i .

Similarly to the concept introduced by Baruah in [START_REF] Baruah | Resource sharing in EDF-scheduled systems: A closer look[END_REF], let us define a blocking function b(t 1 ,t 2) that represents the maximum blocking time experienced by a jobset on any given time interval [t 1 ,t 2).

Definition 8. The maximum blocking time of jobset ω on the time interval

[t 1 ,t 2) is b ω (t 1 ,t 2) = ∑ τ i ∑ J k 0<r k ≤t 1 ,d k ≤t 2 B i (8)
where B i is the worst-case blocking time experienced by the jobs as computed in equation 7.

B. Blocking Energy Computation

Blocking times can lead not only to timing violations for a given task τ i but also to an energy starvation, the available energy being consumed by tasks that can block τ i . The worst-case blocking energy BE i of any task τ i , is bounded by the energy consumption of the longest critical section among lower-priority jobs that may access the same resources.

Definition 9. The worst-case blocking energy of all the jobs released by task τ i is

BE i = max i,k {ε i,k |S k ∈ Z i } (9)
with ε i,k the set of energy consumption among the longest critical sections guarded by a semaphore S k that can block τ i .

Let us define a blocking energy function be(t 1 ,t 2) that represents the maximum blocking energy experienced by a jobset on any given time interval [t 1 ,t 2). Definition 10. The maximum blocking energy of jobset ω on the time interval

[t 1 ,t 2) is be ω (t 1 ,t 2) = ∑ τ i ∑ J k 0<r k ≤t 1 ,d k ≤t 2 BE i (10
)
where BE i is the worst-case blocking energy experienced by the jobs as computed in equation 9.

C. ED-H-DPCP Schedulability Test

We must check if both the static slack time and the static slack energy in any interval are no less than zero, even in the presence of blocking times. For that purpose, we first extend the definition of the static slack time on any given time interval.

Definition 11. For a jobset ω with resource access managed by DPCP, the static slack time on the time interval

[t 1 ,t 2) is SST R ω (t 1 ,t 2) = t 2 -t 1 -h ω (t 1 ,t 2) -b ω (t 1 ,t 2) (11)
Note that SST R ω (t 1 ,t 2) gives an upper bound on the surplus of processing time that could be made available within the interval [t 1 ,t 2) after executing the jobs and considering their worst-case blocking times on shared resources.

Similarly, we extend the definition of the static slack time of a given jobset: Definition 12. For a jobset ω with resource access managed by DPCP, the static slack time is

SST R ω = min 0≤t 1 <t 2 ≤d Max SST R ω (t 1 ,t 2) (12)
Equation 12 will have to be checked so as to evaluate if the system does not exhibit a timing overflow in any time interval during the whole lifetime of the application. It intuitively appears that this time schedulability test will need to be evaluated for every time interval that starts with a release time and ends with a task deadline. Let n be the number of tasks. The computational complexity is clearly in O(n 2).

We are now concerned with the energy schedulability issue. In other terms, how to guarantee that a given task set will be schedulable regarding the energy production, the storage capacity, and its consumption of energy? Definition 13. For a jobset ω with resource sharing managed by DPCP, the static slack energy on the time interval SSER ω (t 1 ,t 2) gives the maximum energy that could be made available within the interval after executing the jobs, including their worst-case blocking times.

[t 1 ,t 2) is SSER ω (t 1 ,t 2) = C + E p (t 1 ,t 2) -g ω (t 1 ,t 2) -be ω (t 1 ,t2) (13)
Definition 14. For a jobset ω with resource sharing managed by DPCP, the static slack energy is

SSER ω = min 0≤t 1 <t 2 ≤d Max SSER ω (t 1 ,t 2) (14)
SSER ω gives the maximum amount of energy that could be consumed (i.e., remaining energy) from any time instant still satisfying the timing and energy constraints of all jobs.

We present here the schedulability test for guaranteeing that, given the capacity of the energy storage unit and the incoming power from the ambient source, a given periodic task set τ scheduled by ED-H with shared resources managed by DPCP, will meet both its timing and energy requirements (i.e., no deadline violations nor energy starvation will occur). Theorem 2. A jobset ω with resource access managed by DPCP, is schedulable by ED-H if the following conditions are satisfied:

SST R ω ≥ 0 and SSER ω ≥ 0 (15)

Proof. The proof is identical to that of Theorem 1. [See [START_REF] Chetto | Optimal scheduling for real-time jobs in energy harvesting computing systems[END_REF]].

Remark. The blocking function b ω (t 1 ,t 2) (resp. be ω (t 1 ,t 2)) used in the computation of SST R ω (resp. SSER ω) represents the worst-case conditions and hence the necessary and sufficient conditions of Theorem 1 becomes a sufficient condition in Theorem 2.

Note, the schedulability test cannot be performed offline if the energy cannot be predicted. In that case, the schedulability test is done online on sliding windows determined by the prediction technique. On the contrary if the power is constant we may have an offline schedulability test that consists in taking all the jobs of the first hyperperiod.

D. Illustrative example

Let us consider an illustrative example so as to explain the interest of the new schedulability test shown in Theorem 2.

Example 3. We consider the task set with resource parameters presented in Table II. We assume that at initialization time, the energy level is maximum (i.e., E(0) = C = 7) and that the instantaneous power rate is constant with Pp = 1. Tasks τ 1 and τ 2 can be blocked by τ 3 for at most 3 units of time. Based on Equation 7, tasks' blocking times are computed as follows: B 1 = B 2 = 3 and B 3 = 0. As 12and Equation 14, we can verify that SST R ω ≥ 0 and SSER ω ≥ 0. Therefore, we conclude that the task set is schedulable under ED-H-DPCP. The resulting schedule obtained with ED-H with shared resources managed by DPCP is depicted in Fig. 5. The highest priority task τ 1 begins its execution and locks semaphore S 1 at time t = 1 for 2 units. Then, task τ 2 starts its execution locking semaphore S 2 . At time t = 4, task τ 3 executes locking first S 2 (unlocked 3 units of time later) and then S 1 at time t = 11. At time t = 12, the second job of task τ 1 is released and since τ 1 has a higher priority than τ 3 , it preempts the execution of τ 3 . Then, τ 1 requests semaphore S 1 but it must wait for its release by τ 3 at time t = 15. Access to semaphore S 1 is then granted to task τ 1 which successfully completes within its deadline with enough available energy. After the execution of the second job of task τ 1 , the energy in the storage capacity is empty. Consequently, the processor state is left idle to recharge the energy reservoir. Note that, at the end of the hyperperiod, the reservoir is again fully replenished, thus ensuring that the schedule will also be valid on the next hyperperiods.

VII. SUMMARY AND FUTURE WORKS

Energy harvesting is a promising technology that is a good alternative to enhance the lifetime of battery-operated IoT devices. Scheduling real-time tasks on such energy-constrained systems is a complex problem and ensuring the timing and energy requirements is very challenging. The optimal ED-H scheduling algorithm provides a framework for scheduling periodic tasks with both real-time and energy constraints. Originally designed for independent real-time tasks, we showed that the feasibility test associated to ED-H is not applicable anymore in the presence of shared resources. Resource sharing can give rise to blocking times, thus delaying the completion of tasks due to resource contention. DPCP is an interesting and efficient protocol to manage shared resources because it prevents priority inversions and chained blocking while being deadlock-free. In this paper, we studied the properties of real-time energy-harvesting systems scheduled using ED-H scheduling algorithm, when used in conjunction with DPCP for arbitrating access to shared resources. We have derived both worst-case blocking times and blocking energy for tasks. We performed a schedulabitity analysis for guaranteeing off-line that both timing and energy constraints will be satisfied.

Taken together, ED-H and DPCP, offer an efficient scheduling framework. We plan to implement it on a real mobile robot platform (the HUSKY cobot [START_REF] Abdulla | On designing cyber-physical-social systems with energy-neutrality and real-time capabilities[END_REF]) in order to have guaranteed time and energy-driven schedule. Xenomai [22] is the real-time executive support chosen for ensuring the hard real-time constraints of the embedded robotic application. Consequently, our immediate future works include the integration of the ED-H-DPCP scheduling support into Xenomai core.

Fig. 1 .

 1 Fig. 1. A typical smart energy-harvesting system

Fig. 3 .

 3 Fig. 3. EDF-DPCP schedule example all semaphores that have been locked. At initialization time, this value is equal to zero (i.e., CurCeil(0) = 0).A task in a critical section can be preempted by a higher priority task that is not waiting to enter the same critical section. However, due to conflicts w.r.t shared resources, a high-priority job may have to wait for the execution of a low-priority job holding the resource. Such waiting time is referred to as worst-case blocking time. Authors in[START_REF] Sha | Priority Inheritance Protocols: An Approach to Real-Time Synchronization[END_REF] have shown that, in the worst-case, each job has to wait for at most one lower-priority job in critical section. Consequently, for any job of task τ i , the worst-case blocking length B i is equal to the duration of the longest critical section among the set of lower-priority tasks that may block τ i .Example 1. Let us consider three periodic tasks τ 1 , τ 2 and τ 3 with two semaphores S 1 and S 2 protecting the access to shared resources R 1 and R 2 respectively. The task set τ i = (C i , T i , D i) parameters are the followings : τ 1 = (2, 6, 5) τ 2 = (2, 8, 6) and τ 3 = (8, 24, 20). Task τ 1 manipulates R 1 at time a 1,1 = 1, task τ 2 manipulates R 2 at time a 2,2 = 0. Task τ 3 requests R 1 at time a 3,1 = 1 and R 2 at time a 3,2 = 5.Fig.3shows how the periodic task set is scheduled by EDF using DPCP for managing shared resource accesses. The ceiling priority of S 1 is Ceil(S 1) = 1 and S 2 is Ceil(S 2) = 2. Worst-case blocking times that tasks may experience are B 1 = 3, B 2 = 3 and B 3 = 0 (see[START_REF] Chen | Dynamic priority ceilings: A concurrency control protocol for real-time systems[END_REF] for computation). First, higher priority task τ 1 starts its execution and accesses the resource R 1 at time t = 1. When task τ 2 starts at time t = 2 the resource R 2 is available. Next, task τ 3 executes and at time t = 5, locks the semaphore S 1 which is available. At time t = 6, job J 2 of task τ 1 is released. As τ 1 priority is higher, it preempts task τ 3 and executes. When τ 1 requests the resource at time t = 7, it is blocked as S 1 has already been locked by τ 3 , the ceiling priority is increased to 1 and τ 3 continues using S 1 until the resource is released by τ 3 . τ 1 completes its execution right after the semaphore S 1 is available. Likewise, at time t = 16, when τ 2 requests semaphore S 2 , it is blocked until τ 3 releases the resource.

Fig. 4 .

 4 Fig. 4. Non-valid schedule under ED-H-DPCP on any interval does not exceed the length of the interval and if the blocking energy added to the energy demand on any interval does not exceed the maximum energy available in the interval.

Fig. 5 .

 5 Fig. 5. Valid schedule under ED-H-DPCPtasks share resources, we check the sufficient condition given in Theorem 2. Applying Equation12and Equation14, we can verify that SST R ω ≥ 0 and SSER ω ≥ 0. Therefore, we conclude that the task set is schedulable under ED-H-DPCP. The resulting schedule obtained with ED-H with shared resources managed by DPCP is depicted in Fig.5. The highest priority task τ 1 begins its execution and locks semaphore S 1 at time t = 1 for 2 units. Then, task τ 2 starts its execution locking semaphore S 2 . At time t = 4, task τ 3 executes locking first S 2 (unlocked 3 units of time later) and then S 1 at time t = 11. At time t = 12, the second job of task τ 1 is released and since τ 1 has a higher priority than τ 3 , it preempts the execution of τ 3 . Then, τ 1 requests semaphore S 1 but it must wait for its release by τ 3 at time t = 15. Access to semaphore S 1 is then granted to task τ 1 which successfully completes within its deadline with enough available energy. After the execution of the second job of task τ 1 , the energy in the storage capacity is empty. Consequently, the processor state is left idle to recharge the energy reservoir. Note that, at the end of the hyperperiod, the reservoir is again fully replenished, thus ensuring that the schedule will also be valid on the next hyperperiods.

 dt represents the amount of energy harvested in time interval [t 1 ,t 2). The energy storage unit has a maximal capacity denoted by C. Its energy level at time t is denoted by E(t). The total energy consumed by active jobs of τ on the time interval [t 1 ,t 2) is denoted by E c (t 1 ,t 2).