
HAL Id: hal-03695062
https://hal.science/hal-03695062

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Resource Management in Smart
Energy-Harvesting Systems

Mohamed Irfanulla, Audrey Queudet, Maryline Chetto, Lamia Belouaer

To cite this version:
Mohamed Irfanulla, Audrey Queudet, Maryline Chetto, Lamia Belouaer. Real-time Resource Man-
agement in Smart Energy-Harvesting Systems. 27th IEEE Symposium on Computers and Communi-
cations (IEEE ISCC 2022), Jun 2022, Rhodes, Greece. �hal-03695062�

https://hal.science/hal-03695062
https://hal.archives-ouvertes.fr

Real-time Resource Management
in Smart Energy-Harvesting Systems

Mohamed Irfanulla MOHAMED ABDULLA
Nantes Université, École Centrale Nantes,

CNRS, LS2N, UMR 6004
F-44000 Nantes, France

mohamed-irfanulla.mohamed-abdulla@ls2n.fr

Audrey QUEUDET
Nantes Université, École Centrale Nantes,

CNRS, LS2N, UMR 6004
F-44000 Nantes, France
audrey.queudet@ls2n.fr

Maryline CHETTO
Nantes Université, École Centrale Nantes,

CNRS, LS2N, UMR 6004
F-44000 Nantes, France
maryline.chetto@ls2n.fr

Lamia BELOUAER
E-Cobot

Nantes, France
l.belouaer@e-cobot.com

Abstract—Energy harvesting is an emerging technology that
enhances the lifetime of Internet-of-Things (IoT) applications.
Satisfying real-time requirements for these systems is challenging.
Dedicated real-time schedulers integrating both timing and
energy constraints are required, such as the ED-H scheduling
algorithm[1]. However, this algorithm has been proved to be
optimal for independent tasks only (i.e., without considering
any shared resources), thus preventing its confident deployment
into computing infrastructures in which tasks are mostly
interdependent. In this paper, we first derive worst-case blocking
times and worst-case blocking energy for tasks sharing resources
managed by the DPCP protocol[2] and scheduled under the
ED-H scheme. Then, we provide a sufficient schedulability test for
ED-H–DPCP guaranteeing off-line that both timing and energy
constraints will be satisfied, even in the presence of shared
resources.

Index Terms—Energy Harvesting, ED-H, DPCP, Shared
resource, Schedulability test

I. INTRODUCTION

Battery-operated Cyber-physical systems (CPSs) have to
address the problem of energy scarcity. These system can
additionally benefit from energy harvesting mechanism to
deal with energy constraints. In this paper, we consider
Real-time Energy Harvesting (RTEH) systems as defined in
[1]. Such smart energy systems in charge of collecting and
processing the raw data gathered from sensors, must satisfy
timing constraints through a smart real-time scheduler which
usually relies on a preemptive priority-based algorithm. We are
interested in smart energy-harvesting systems that consist of an
energy harvester that scavenges energy from ambient sources
and stores it in an energy storage unit such as a battery or
super-capacitor. Fig. 1 presents the system architecture of a
typical real-time energy harvesting system. As an autonomous
system, a smart energy-harvesting system should embed a

This work is partially supported by a French grant from the Isite
NExT (Project entitled ”Optimisation et Gestion en Temps Réel de la
Consommation Energétique d’un Système Cobotique”) within the New
Partnerships framework.

smart energy management mechanism so as to optimize
the use of the energy retrieved from the environment and
guarantee an energy neutrality operation to the system (i.e.,
the system never consumes more energy than harvested). Most
of real-time systems are controlling ones and consequently,
they implement periodic tasks. The online Earliest Deadline
First (EDF) scheduler [3] that executes first the task with
the closest deadline has been proved optimal when energy is
not limited. A variant of EDF, namely ED-H [1], was more
recently proposed so as to provide an optimal strategy to
schedule real-time tasks under energy harvesting settings. An
exact feasibility test was also given with robustness properties.

Motivation. For a large number of embedded real-time
systems, applications exhibit resource constraints sharing both
virtual and physical objects such as data structures, variables,
main memory area, file, set of registers, I/O devices or
database. Many shared resources do not allow simultaneous
accesses and require mutual exclusion. The underlying system
must then be able to ensure mutually exclusive access to these
shared resources, otherwise data inconsistency will appear.
To achieve mutual exclusion, the shared resources subject
to mutual exclusion constraints must be serially executed,
causing additional delays due to priority inversion. Indeed,
a higher-priority task requesting a shared resource already
used by a lower-priority task can be blocked, thus delaying
the completion time of the task and leading eventually
to a deadline miss. The ED-H scheduling algorithm has
been proved optimal under the assumption that all tasks
are independent (i.e., their executions do not depend on the
execution of other tasks). However, this is not a realistic
assumption. In the case of smart systems like mobile robots,
tasks implicitly or explicitly synchronize through resource
sharing. Up to now, the ED-H scheduling algorithm could
not satisfactorily be implemented in applications with shared
critical resources.

978-1-6654-9792-3/22/$31.00 ©2022 IEEE

Fig. 1. A typical smart energy-harvesting system

Contributions. This paper is concerned with a less
restrictive model in which the application tasks need to
access critical resources. We consider a set of tasks which
are scheduled by ED-H while concurrent accesses to critical
shared resources are managed by DPCP [2]. Our contribution
is threefold: (i) we show that the ED-H feasibility test is not
applicable anymore in the presence of shared resources, (ii) we
determine the worst-case blocking times and the worst-case
blocking energy of the tasks when jointly using the ED-H
scheduler and the DPCP protocol for managing the accesses
to shared resources and (iii) we propose a new sufficient
schedulability test in order to take into account blocking
delays incurred by the resources in the offline analysis of the
system. To the best of our knowledge, this is the first work
that studies the problem of resource sharing when a real-time
energy-harvesting scheduling scheme is considered.

Paper organization. The paper is organized as follows.
In section II we review some related work and present
some requirements for smart energy-harvesting systems. In
section III, the system model is described by focusing on
the resource-related concerns. We review some background
material related to ED-H and DPCP in section IV. In section V,
the schedulability analysis under ED-H is detailed and we
show its non-applicability to systems with shared resources. In
section VI we give new formulas for computing the worst-case
blocking computation of tasks from both timing and energy
points of view, and we derive the feasibility test for the ED-H
scheduling algorithm under resource sharing. Examples are
given for illustrative purpose. Finally, we conclude the paper
and give some future works in section VII.

II. RELATED WORK

Dynamic Voltage Scaling (DVS) [4] and Dynamic Power
Management (DPM) [5] are famous techniques for minimizing
the processor energy consumption. In the DVS approach,
the minimization of the energy consumption is performed
by slowing down the operating voltage and clock frequency
of the processor. As regards DPM techniques, they consist
in switching the processor to a low-power state (i.e., sleep
mode) during idle time intervals (i.e., periods of time during
which there is no tasks to execute). Although used in
various energy-aware scheduling algorithms proposed for both
uniprocessor and multicore systems (see [6] for a survey),
relatively few studies have considered task synchronization

issues. Synchronization access protocols are the well-know
mechanisms for supporting data consistency. Resource sharing
protocols are independent mechanisms that can be combined
with base scheduling algorithms including the well-known
priority driven ones such as RM (Rate Monotonic), DM
(Deadline Monotonic) and EDF (Earliest Deadline First)
[3]. They not only enforce mutually exclusive accesses to
shared variables to avoid race conditions. They also avoid
deadlocks, starvations and priority inversions. For uniprocessor
preemptive real-time systems, protocols such as the so-called
PCP (Priority Ceiling Protocol) [7] (and its dynamic-priority
based version – DPCP [2]) and SRP (Stack Resources
Protocol) [8] have been proposed.

The problem of determining whether a real-time task set
with resource constraints is schedulable or not has been proved
as NP-hard [9]. Some papers have addressed the problem of
scheduling task sets that share resources in exclusive mode
[10]–[12]. They mainly focus on enhancing the schedulability
analysis to provide tighter schedulability conditions. However,
no energy constraints are considered in the schedulability
analysis.

Some works addressed the impact of energy when
scheduling dependant tasks [13]–[16]. Above works use the
classical resource access protocols to ensure mutual exclusion
w.r.t shared resources. Some recent work [17] present an
operating system kernel named ENOS for energy-neutral
real-time systems. Depending on the energy level, the system
switches between different energy modes which also changes
the task set to execute according to the available energy.
However, this approach deals only with independent tasks and
mainly relies on hardware interrupt handling routines.

To the best of our knowledge there are no existing works
that take into consideration energy-harvesting constraints in
the scheduling problem of dependent real-time tasks.

III. SYSTEM MODEL

Our system model is divided into three sub-models: (i) a
task model which gathers the key parameters of the tasks, (ii)
a resource model which describes the characteristics of the
resources concurrently accessed by tasks, and (iii) the energy
model which defines how the energy is produced, stored, and
consumed in the system.

A. Task model

We consider a set of n periodic tasks denoted by τ =
{τ1,τ2, ..,τn}, on a uniprocessor architecture. Each task τi
is characterized by its initial release time φi, its worst-case
computation time Ci, its period Ti, its relative deadline Di (with
Di ≤ Ti), and its worst-case energy consumption Ei which is
not necessarily proportional to Ci. We consider a synchronous
task set (i.e. all offsets are set equal to 0). The periodic task τ

generates a (potentially infinite) sequence of jobs that inherit
timing parameters from the periodic tasks, denoted by ω . Each
job Jk in ω is assigned a release time rk = φi + j×Ti (with
j ≥ 0) and an absolute deadline dk = rk +Di. Let dMax be the
greatest absolute deadline among all active jobs. The processor

Fig. 2. Blocking time caused by a shared critical section [18]

utilization factor is defined as U p
τ = ∑

n
i=1

Ci
Ti

. The average
energy consumption of task set τ per unit time is defined as
Ue

τ = ∑
n
i=1

Ei
Ti

. Thus U p
τ cannot exceed one and Ue

τ cannot be
greater than the average power drawn from the energy source
during one unit time.

B. Resource model

We consider a set Ω = {R1, ...,Rp} of p shared resources
in the system. Each periodic task may access one or several
of these critical resources. Each resource R j is guarded by a
distinct semaphore S j a task must lock (resp. unlock) when
entering (resp. leaving) a critical section. It uses the two
classical primitives wait() and signal() for requesting and
releasing the access to the resource respectively, as illustrated
in Fig. 2. All tasks blocked on the same resource are kept in
a queue associated with the semaphore. When a running task
executes a wait on a locked semaphore, it enters a blocked
state, until another task executes a signal primitive that unlocks
the semaphore (see Fig. 2). σi denotes the set of semaphores
used by τi. We denote the blocking set of task τi as Zi (i.e.
the set of semaphores that can block τi). The duration (resp.
the energy consumption) of the longest critical section of task
τi guarded by Sk is denoted by δi,k (resp. εi,k). The instant at
which a task τi accesses the resource Rk is denoted by ai,k.

C. Energy model

The energy harvested from the ambient source is converted
into electrical power with an instantaneous charging rate
Pp(t). Ep(t1, t2) =

∫ t2
t1 Pp(t)dt represents the amount of energy

harvested in time interval [t1, t2). The energy storage unit has
a maximal capacity denoted by C. Its energy level at time t
is denoted by E(t). The total energy consumed by active jobs
of τ on the time interval [t1, t2) is denoted by Ec(t1, t2).

IV. BACKGROUND MATERIALS

A. The ED-H scheduler

An optimal dynamic priority scheduling algorithm, namely
ED-H [1] was proposed in 2014 to take into account both
real-time and energy harvesting constraints. ED-H is a variant
of the famous Earliest Deadline First (EDF) scheduling
algorithm [3]. It is a dynamic priority-driven scheduler that
makes its decisions online considering both timing and energy
constraints. It requires an accurate prediction of the near future

of both the harvested energy and the energy consumed by
the tasks. ED-H is semi-online, more exactly online with
lookahead-D [19]. The scheduler manages the idle or busy
state of the processor dynamically, depending on two key
parameters: the slack time (i.e., the maximum continuous
processor time that could be available from current time while
still guaranteeing the deadlines of all the jobs) and the slack
energy (i.e., the maximum amount of energy that could be
consumed from any time instant while still satisfying all the
energy and timing constraints of all the jobs). In other words,
the scheduler executes the active jobs in view of their absolute
deadline, their energy consumption, the remaining energy in
the storage unit, and the energy produced by the source. While
the storage unit is empty, the processor must be inactive. On
the contrary, if there is a ready job waiting for execution and if
the energy level in the storage unit is maximum, the processor
must be busy executing the ready job so as not to waste energy.

Let Lp(tc) be the list of jobs ready for execution at current
time tc. The scheduler ED-H algorithm can be described by
the following rules:

• Rule 1: The order of priority of EDF is used to select
the future running job in Lp(tc).

• Rule 2: The processor is imperatively idle in [tc; tc + 1)
if Lp(tc) = /0.

• Rule 3: The processor is imperatively idle in [tc; tc+1) if
Lp(tc) ̸= /0 and one of the following conditions is satisfied:

1) E(tc)≈ 0
2) PreemptionSlackEnergy(tc)≈ 0

• Rule 4: The processor is imperatively busy in [tc; tc+1) if
Lp(tc) ̸= /0 and one of the following conditions is satisfied:

1) E(tc)≈C
2) SlackTime(tc)≈ 0

• Rule 5: The processor can equally be idle or busy
if Lp(tc) = /0, 0 < E(tc) < C, SlackTime(tc) > 0 and
PreemptionSlackEnergy(tc)≈ 0.

Clearly, ED-H implements a smart dynamic power
management procedure that specifies when to put the processor
busy (resp. idle) so as not to waste energy (resp. not to
consume energy too greedily). Optimality of ED-H means that
if a task set cannot be feasibly scheduled on a given RTEH
platform, this task set cannot be feasibly scheduled by any
other scheduler on the same platform.

B. DPCP protocol

In real-time systems, tasks may exchange data through
shared memory and concurrent accesses may lead to data
inconsistency. Without any resource access protocol, tasks may
be blocked many times before the completion of their jobs,
thus leading to deadline violations.

We focus here on DPCP (Dynamic Priority Ceiling
Protocol) [2]. DPCP associates a ceiling value Ceil(Si) with
every semaphore Si associated to resource Ri, which is equal
to the maximum of the priority values of all jobs that
might manipulate Ri. An additional variable called CurCeil(t)
represents, at any time instant, the maximum ceiling value of

Fig. 3. EDF-DPCP schedule example

all semaphores that have been locked. At initialization time,
this value is equal to zero (i.e., CurCeil(0) = 0).

A task in a critical section can be preempted by a higher
priority task that is not waiting to enter the same critical
section. However, due to conflicts w.r.t shared resources, a
high-priority job may have to wait for the execution of a
low-priority job holding the resource. Such waiting time is
referred to as worst-case blocking time. Authors in [7] have
shown that, in the worst-case, each job has to wait for at most
one lower-priority job in critical section. Consequently, for any
job of task τi, the worst-case blocking length Bi is equal to
the duration of the longest critical section among the set of
lower-priority tasks that may block τi.

Example 1. Let us consider three periodic tasks τ1, τ2 and
τ3 with two semaphores S1 and S2 protecting the access to
shared resources R1 and R2 respectively. The task set τi =
(Ci,Ti,Di) parameters are the followings : τ1 = (2,6,5) τ2 =
(2,8,6) and τ3 = (8,24,20). Task τ1 manipulates R1 at time
a1,1 = 1, task τ2 manipulates R2 at time a2,2 = 0. Task τ3
requests R1 at time a3,1 = 1 and R2 at time a3,2 = 5.

Fig. 3 shows how the periodic task set is scheduled by
EDF using DPCP for managing shared resource accesses. The
ceiling priority of S1 is Ceil(S1) = 1 and S2 is Ceil(S2) = 2.
Worst-case blocking times that tasks may experience are
B1 = 3, B2 = 3 and B3 = 0 (see [2] for computation). First,
higher priority task τ1 starts its execution and accesses the
resource R1 at time t = 1. When task τ2 starts at time t = 2
the resource R2 is available. Next, task τ3 executes and at
time t = 5, locks the semaphore S1 which is available. At time
t = 6, job J2 of task τ1 is released. As τ1 priority is higher, it
preempts task τ3 and executes. When τ1 requests the resource
at time t = 7, it is blocked as S1 has already been locked by τ3,
the ceiling priority is increased to 1 and τ3 continues using S1
until the resource is released by τ3. τ1 completes its execution
right after the semaphore S1 is available. Likewise, at time
t = 16, when τ2 requests semaphore S2, it is blocked until τ3
releases the resource.

V. SCHEDULABILITY ANALYSIS UNDER ED-H
The schedulability analysis at the design phase of a real-time

system aims at checking whether the tasks can consistently
meet their deadlines when scheduled by a given scheduling
algorithm. For RTEH systems, such an analysis requires an
accurate knowledge of the profile of the energy source and
that of all the characteristics of both the real-time workload

and the hardware platform. The analysis should be performed
off-line whenever possible so as to guarantee a priori any
deadline missing caused by energy and/or time starvation.
When the scheduling algorithm A considered for the analysis
is optimal, a schedulability test reduces to a feasibility test, a
stronger condition guaranteeing that any feasible task set can
be scheduled by A. A task set is referred to as schedulable
according to a given scheduling algorithm if all of its jobs
are schedulable. A jobset ω is feasible if and only if it is
time-feasible (i.e., timing constraints are met for all tasks
without considering energy constraints) and energy-feasible
(i.e., energy constraints are satisfied for all tasks without
considering timing constraints).

A. Terminology and Notation

We first recall basic definitions for real-time scheduling
concepts introduced in [1] used for checking the schedulability
of a jobset under ED-H.

Definition 1. The processor demand of jobset ω on the time
interval [t1, t2) is

hω(t1, t2) = ∑
t1≤rk,dk≤t2

Ck (1)

When the processor utilization factor associated to a given
jobset ω is less than 100%, the processor is idle from time to
time, hence the notion of slack time.

Definition 2. The static slack time of jobset ω on the time
interval [t1, t2) is

SSTω(t1, t2) = t2 − t1 −hω(t1, t2) (2)

Definition 3. The static slack time of jobset ω is

SSTω = min
0≤t1<t2≤dMax

SSTω(t1, t2) (3)

Similarly, in order to analyse the the schedulability of a
jobset from the energy point of view, we recall hereafter how
the energy demand and the slack energy are defined.

Definition 4. The energy demand of jobset ω on the time
interval [t1, t2) is

gω(t1, t2) = ∑
t1≤rk,dk≤t2

Ek (4)

Definition 5. The static slack energy of jobset ω on the time
interval [t1, t2) is

SSEω(t1, t2) =C+Ep(t1, t2)−gω(t1, t2) (5)

Definition 6. The static slack energy of jobset ω is

SSEω = min
0≤t1<t2≤dMax

SSEω(t1, t2) (6)

B. ED-H feasibility test

Based on the new concepts introduced in Section V-A, the
author in [1] proposed an exact (i.e. necessary and sufficient)
schedulability test for ED-H.

Theorem 1. [1] A jobset ω is schedulable by ED-H if and
only if SSTω ≥ 0 and SSEω ≥ 0.

As ED-H is an optimal scheduler, Theorem 1 provides us a
feasibility condition.

Let us see now to what extent this test can be applied to
a periodic task set sharing resources managed by DPCP. In
particular, we will show that the exact ED-H schedulability test
is no longer applicable because of the presence of additional
blocking times due to the concurrent accesses to shared
resources performed by the tasks.

Example 2. Let us illustrate by considering the periodic
task set described in Table I. Assume that energy storage
capacity is such that C = 8 and E(0) = 8. We assume that
the incoming power Pp is constant over time and equals to 1.
Off-line feasibility checking of the task set indicates that the
task set is feasible, as Theorem 1 is satisfied. Let us consider
now that tasks share semaphores Sk. Table I also indicates
both the duration of the critical sections and their starting time
w.r.t the job release time. A zero value means that task τi uses
semaphore Sk as soon as it is released. The ceiling priority
attached to a semaphore is defined by the highest priority task
that uses the semaphore. Here, τ1 starts its execution and locks
(resp. unlocks) the semaphore S1 at time t = 1 (resp. t = 3). τ2
locks the resource at t = 4 and unlocks it right after at t = 5.
Note that in the time interval [9,14), task τ1 is released; it
preempts τ3 and then requests to lock semaphore S1. As S1
has already been locked by τ3, the ceiling priority is increased
to 1 and τ3 continues using S1 until t = 13. After, τ1 locks S1
and we can note that there is no time left to complete the
execution of τ1 before its deadline. Clearly Fig. 4, shows that
task τ1 misses its deadline at time t = 14.

TABLE I
TASK SET PARAMETERS FOR EXAMPLE 2

Task φi Ci Di Ti Ei S1 S2
ai,k

S1 S2

τ1 0 3 5 9 3 2 - 1 -

τ2 0 3 6 12 6 - 2 - 0

τ3 0 9 27 36 9 4 3 2 6

It clearly appears that blocking times should be accounted
for when designing schedulability tests for real-time
energy-harvesting systems having resource access constraints.
It has been proved in [2], that the worst-case blocking situation
for every task should be considered for the derivation of a new
consistent schedulability condition.

VI. SCHEDULABILITY ANALYSIS UNDER ED-H–DPCP

We prove that a jobset is schedulable under ED-H-DPCP if
the blocking times on resources added to the processor demand

Fig. 4. Non-valid schedule under ED-H–DPCP

on any interval does not exceed the length of the interval and
if the blocking energy added to the energy demand on any
interval does not exceed the maximum energy available in the
interval.

A. Blocking Time Computation

The worst-case blocking delay can be treated as an extra
computation time for each job in addition to its normal
computation time. Using DPCP, the authors in [2] showed
that chained blocking is impossible. More precisely, they
proved that the worst-case blocking time Bi of any job is
bounded by the duration of the longest critical section among
lower-priority jobs that may access the same resources.

Definition 7. The worst-case blocking time of all the jobs
released by task τi is

Bi = max
i,k

{δi,k|Sk ∈ Zi} (7)

with δi,k the set of lengths among the longest critical
sections guarded by a semaphore Sk that can block τi.

Similarly to the concept introduced by Baruah in [20],
let us define a blocking function b(t1, t2) that represents the
maximum blocking time experienced by a jobset on any given
time interval [t1, t2).

Definition 8. The maximum blocking time of jobset ω on the
time interval [t1, t2) is

bω(t1, t2) = ∑
τi

∑
Jk

0<rk≤t1,dk≤t2

Bi (8)

where Bi is the worst-case blocking time experienced by the
jobs as computed in equation 7.

B. Blocking Energy Computation

Blocking times can lead not only to timing violations for a
given task τi but also to an energy starvation, the available
energy being consumed by tasks that can block τi. The
worst-case blocking energy BEi of any task τi, is bounded by
the energy consumption of the longest critical section among
lower-priority jobs that may access the same resources.

Definition 9. The worst-case blocking energy of all the jobs
released by task τi is

BEi = max
i,k

{εi,k|Sk ∈ Zi} (9)

with εi,k the set of energy consumption among the longest
critical sections guarded by a semaphore Sk that can block τi.

Let us define a blocking energy function be(t1, t2) that
represents the maximum blocking energy experienced by a
jobset on any given time interval [t1, t2).

Definition 10. The maximum blocking energy of jobset ω on
the time interval [t1, t2) is

beω(t1, t2) = ∑
τi

∑
Jk

0<rk≤t1,dk≤t2

BEi (10)

where BEi is the worst-case blocking energy experienced
by the jobs as computed in equation 9.

C. ED-H–DPCP Schedulability Test

We must check if both the static slack time and the static
slack energy in any interval are no less than zero, even in
the presence of blocking times. For that purpose, we first
extend the definition of the static slack time on any given
time interval.

Definition 11. For a jobset ω with resource access managed
by DPCP, the static slack time on the time interval [t1, t2) is

SST Rω(t1, t2) = t2 − t1 −hω(t1, t2)−bω(t1, t2) (11)

Note that SST Rω(t1, t2) gives an upper bound on the surplus
of processing time that could be made available within the
interval [t1, t2) after executing the jobs and considering their
worst-case blocking times on shared resources.

Similarly, we extend the definition of the static slack time
of a given jobset:

Definition 12. For a jobset ω with resource access managed
by DPCP, the static slack time is

SST Rω = min
0≤t1<t2≤dMax

SST Rω(t1, t2) (12)

Equation 12 will have to be checked so as to evaluate if the
system does not exhibit a timing overflow in any time interval
during the whole lifetime of the application. It intuitively
appears that this time schedulability test will need to be
evaluated for every time interval that starts with a release time
and ends with a task deadline. Let n be the number of tasks.
The computational complexity is clearly in O(n2).

We are now concerned with the energy schedulability issue.
In other terms, how to guarantee that a given task set will
be schedulable regarding the energy production, the storage
capacity, and its consumption of energy?

Definition 13. For a jobset ω with resource sharing managed
by DPCP, the static slack energy on the time interval [t1, t2) is

SSERω(t1, t2) =C+Ep(t1, t2)−gω(t1, t2)−beω(t1, t2) (13)

TABLE II
TASK SET PARAMETERS FOR EXAMPLE 3

Task φi Ci Di Ti Ei S1 S2
ai,k

S1 S2

τ1 0 3 8 12 6 2 - 1 -

τ2 0 1 10 16 2 2 - 1 -

τ3 0 12 39 48 12 3 3 7 0

SSERω(t1, t2) gives the maximum energy that could be made
available within the interval after executing the jobs, including
their worst-case blocking times.

Definition 14. For a jobset ω with resource sharing managed
by DPCP, the static slack energy is

SSERω = min
0≤t1<t2≤dMax

SSERω(t1, t2) (14)

SSERω gives the maximum amount of energy that could be
consumed (i.e., remaining energy) from any time instant still
satisfying the timing and energy constraints of all jobs.

We present here the schedulability test for guaranteeing that,
given the capacity of the energy storage unit and the incoming
power from the ambient source, a given periodic task set τ

scheduled by ED-H with shared resources managed by DPCP,
will meet both its timing and energy requirements (i.e., no
deadline violations nor energy starvation will occur).

Theorem 2. A jobset ω with resource access managed by
DPCP, is schedulable by ED-H if the following conditions are
satisfied:

SST Rω ≥ 0 and SSERω ≥ 0 (15)

Proof. The proof is identical to that of Theorem 1. [See [1]].

Remark. The blocking function bω(t1, t2) (resp. beω(t1, t2))
used in the computation of SST Rω (resp. SSERω) represents
the worst-case conditions and hence the necessary and
sufficient conditions of Theorem 1 becomes a sufficient
condition in Theorem 2.

Note, the schedulability test cannot be performed offline if
the energy cannot be predicted. In that case, the schedulability
test is done online on sliding windows determined by the
prediction technique. On the contrary if the power is constant
we may have an offline schedulability test that consists in
taking all the jobs of the first hyperperiod.

D. Illustrative example

Let us consider an illustrative example so as to explain the
interest of the new schedulability test shown in Theorem 2.

Example 3. We consider the task set with resource
parameters presented in Table II. We assume that at
initialization time, the energy level is maximum (i.e., E(0) =
C = 7) and that the instantaneous power rate is constant
with Pp = 1. Tasks τ1 and τ2 can be blocked by τ3 for at
most 3 units of time. Based on Equation 7, tasks’ blocking
times are computed as follows: B1 = B2 = 3 and B3 = 0. As

Fig. 5. Valid schedule under ED-H–DPCP

tasks share resources, we check the sufficient condition given
in Theorem 2. Applying Equation 12 and Equation 14, we
can verify that SST Rω ≥ 0 and SSERω ≥ 0. Therefore, we
conclude that the task set is schedulable under ED-H–DPCP.
The resulting schedule obtained with ED-H with shared
resources managed by DPCP is depicted in Fig. 5. The highest
priority task τ1 begins its execution and locks semaphore S1 at
time t = 1 for 2 units. Then, task τ2 starts its execution locking
semaphore S2. At time t = 4, task τ3 executes locking first S2
(unlocked 3 units of time later) and then S1 at time t = 11. At
time t = 12, the second job of task τ1 is released and since
τ1 has a higher priority than τ3, it preempts the execution
of τ3. Then, τ1 requests semaphore S1 but it must wait for
its release by τ3 at time t = 15. Access to semaphore S1 is
then granted to task τ1 which successfully completes within its
deadline with enough available energy. After the execution of
the second job of task τ1, the energy in the storage capacity is
empty. Consequently, the processor state is left idle to recharge
the energy reservoir. Note that, at the end of the hyperperiod,
the reservoir is again fully replenished, thus ensuring that the
schedule will also be valid on the next hyperperiods.

VII. SUMMARY AND FUTURE WORKS

Energy harvesting is a promising technology that is a good
alternative to enhance the lifetime of battery-operated IoT
devices. Scheduling real-time tasks on such energy-constrained
systems is a complex problem and ensuring the timing and
energy requirements is very challenging. The optimal ED-H
scheduling algorithm provides a framework for scheduling
periodic tasks with both real-time and energy constraints.
Originally designed for independent real-time tasks, we
showed that the feasibility test associated to ED-H is not
applicable anymore in the presence of shared resources.
Resource sharing can give rise to blocking times, thus delaying
the completion of tasks due to resource contention. DPCP is an
interesting and efficient protocol to manage shared resources
because it prevents priority inversions and chained blocking
while being deadlock-free. In this paper, we studied the
properties of real-time energy-harvesting systems scheduled
using ED-H scheduling algorithm, when used in conjunction
with DPCP for arbitrating access to shared resources. We
have derived both worst-case blocking times and blocking
energy for tasks. We performed a schedulabitity analysis for

guaranteeing off-line that both timing and energy constraints
will be satisfied.

Taken together, ED-H and DPCP, offer an efficient
scheduling framework. We plan to implement it on a real
mobile robot platform (the HUSKY cobot [21]) in order to
have guaranteed time and energy-driven schedule. Xenomai
[22] is the real-time executive support chosen for ensuring
the hard real-time constraints of the embedded robotic
application. Consequently, our immediate future works include
the integration of the ED-H–DPCP scheduling support into
Xenomai core.

REFERENCES

[1] M. Chetto, “Optimal scheduling for real-time jobs in energy harvesting
computing systems,” IEEE Transactions on Emerging Topics in
Computing, vol. 2, no. 2, pp. 122–133, 2014.

[2] M. I. Chen and K. J. Lin, “Dynamic priority ceilings: A concurrency
control protocol for real-time systems,” Real-Time Systems, vol. 2, no. 4,
pp. 325–346, 1990.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of the ACM
(JACM), vol. 20, pp. 46–61, 1973.

[4] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “Dynamic
voltage scaled microprocessor system,” IEEE Journal of Solid-State
Circuits, vol. 35, no. 11, pp. 1571–1580, 2000.

[5] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, System-level design
techniques for energy-efficient embedded systems. Springer US, 2005.

[6] J. J. Chen and C. F. Kuo, “Energy-efficient scheduling for real-time
systems on dvs platforms,” RTCSA, pp. 28–35, 2007.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Transactions on
Computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[8] T. P. Baker, “A stack-based resource allocation policy for realtime
processes,” Real-Time Systems Symposium, pp. 191–200, 1990.

[9] A. K.-L. Mok, “Fundamental design problems of distributed systems for
the hard-real-time environment,” Ph.D. dissertation, 1983.

[10] K. wa Lam, S. H. Son, and S. lun Hung, “Priority ceiling protocol with
dynamic adjustment of serialization order,” Proceedings - International
Conference on Data Engineering, pp. 552–561, 1997.

[11] P. Martineau and M. Silly, “Scheduling in a hard real-time system with
shared resources,” Euromicro Conference on Real-Time Systems, pp.
234–239, 1994.

[12] J. Y. Kim and K. Koh, “Pessimistic deadline ceiling protocol: A
concurrency control protocol under earliest deadline first scheduling,”
Euromicro Conference on Real-Time Systems, pp. 80–86, 1995.

[13] J. Wu and K. L. Kao, “Energy-Efficient Scheduling of Real-time Tasks
with Abortable Critical Sections,” IEEE International Conference on
Embedded Software and Systems, pp. 1788–1793, 2012.

[14] J. Wu, “Energy-efficient scheduling of real-time tasks with shared
resources,” Future Generation Computer Systems, pp. 179–191, 2016.

[15] F. Zhang and S. T. Chanson, “Processor voltage scheduling for real-time
tasks with non-preemptible sections,” Proceedings - Real-Time Systems
Symposium, pp. 235–245, 2002.

[16] R. Jejurikar and R. Gupta, “Energy aware non-preemptive scheduling
for hard real-time systems,” Proceedings - Euromicro Conference on
Real-Time Systems, vol. 2005, pp. 21–30, 2005.

[17] P. Wägemann, T. Distler, H. Janker, P. Raffeck, and V. Sieh, “A Kernel
for Energy-Neutral Real-Time Systems with Mixed Criticalities,” RTAS
- Proceedings, 2016.

[18] G. C. Buttazzo, Hard Real-Time Computing Systems, ser. Real-Time
Systems Series. Boston, MA: Springer US, 2011, vol. 24.

[19] M. Chetto and A. Queudet, “Clairvoyance and online scheduling in
real-time energy harvesting systems,” Real-Time Systems, vol. 50, no. 2,
pp. 179–184, 2014.

[20] S. K. Baruah, “Resource sharing in EDF-scheduled systems: A closer
look,” Proceedings - Real-Time Systems Symposium, pp. 379–387, 2006.

[21] M. I. M. Abdulla, M. Chetto, A. Queudet, and L. Belouaer, “On
designing cyber-physical-social systems with energy-neutrality and
real-time capabilities,” ICPS, pp. 369–374, 2021.

[22] Xenomai 4. [Online]. Available: https://evlproject.org/

