
HAL Id: hal-03694961
https://hal.science/hal-03694961v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Incremental and compressible kernel null discriminant
analysis

Franck Dufrenois

To cite this version:
Franck Dufrenois. Incremental and compressible kernel null discriminant analysis. Pattern Recogni-
tion, 2022, 127, pp.108642. �10.1016/j.patcog.2022.108642�. �hal-03694961�

https://hal.science/hal-03694961v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Incremental and compressible kernel null discriminant analysis for multi-class
and one-class learning

F. Dufrenoisa

aLaboratoire d’Informatique Signal et Image de la Côte d’Opale, 50, rue Ferdinand Buisson, 62228 Calais Cedex

Abstract

In big data era, learning methods are facing with large and growing multidimensional data bases, most of the time

being delivered in flow. In this context, kernel learning methods must solve two fundamental issues: proposing an

appropriate formulation with regard to the nature of the data and solving the problem related with the ever-increasing

kernel matrix. In this paper, we propose an incremental implementation for computing the solutions of the kernel

null discriminant analysis (KNDA), originally introduced in batch mode by Bodesheim et al. in [3]. We show both

theoretically and experimentally that our incremental scheme guarantees accurate solutions when compared to state of

the art. Additionaly, we introduce a compression strategy based on the properties of the null space of KNDA in order

to remove the redundant information in the learning data. This new result allows for the incremental KNDA to be

used for large scale scenarios while remaining in acceptable learning time. Numerous experiments both in multi-class

problems and one-class problems shows the effectiveness of the proposed strategy.

Keywords: Incremental kernel Discriminant Analysis, null space, compression mechanism, multi-class learning,

one-class learning.

1. Introduction

Linear Discriminant Analysis (LDA) and its kernel extension (KDA) are efficient dimensionality reduction tools al-

lowing the classification to multiple categories in datasets. There are used in numerous areas as diverse as speech

and music classification [1], video classification [36], outlier detection [34], supervised novelty detection [12, 3], etc...

Their attractivity relies on the fact that both are formulated as a Rayleigh quotient whose the solution is easily ob-

tained by solving an equivalent generalized eigenvalue problem (GEP). KDA generalizes LDA to nonlinear data sets

by using the famous kernel trick. Specifically, KDA is based on the construction of a kernel matrix and the KDA’s

solution results from the eigendecomposition of this kernel matrix. With database volume that increases more and

more, the storage requirement and the computational cost involved by KDA make impractical its use with real modern

Email address: Dufrenois@lisic.univ-littoral.fr (F. Dufrenois)

Preprint submitted to Pattern recognition June 7, 2021

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0031320322001236
Manuscript_fa62d96a5aa2bd0d114b9caa2150f0f7

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0031320322001236
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0031320322001236

2

data sets. Additionally, KDA is not suited for handling streaming data sets, i.e where data are injected sequentially

one at a time or by packets (chunk of data). In this context, two issues must be solved: first, an efficient computation

for eigen-decomposition of the kernel matrix must be addressed and secondly, a strategy of compression to avoid the

ever-increasing size of the kernel matrix. Concerning the first issue, several works focused on incremental formu-

lation of KDA. Recently, Cai et al. in [4] propose to cast kernel discriminant analysis into a regression framework

by using spectral graph analysis. Based on the Cholesky decomposition of the kernel Gram matrix, a recursive im-

plementation of KDA is derived. In this way, this new formulation called SRKDA avoids eigenvector computation

and facilitates an incremental formulation of KDA. With the same objective, Gkalelis et al. propose an incremental

accelerated kernel discriminant analysis (IAKDA) in [15]. Compared to SRKDA, IAKDA does not require any data

normalization which reduces significantly its computational cost and round-off errors. IAKDA is based on a matrix

factorization and a simultaneous diagonalization framework. Dimensionality reduction is incrementally obtained by

solving a linear system using the block recursive Cholesky framework. However, the linear system is based on the

kernel Gram matrix whose the size continuously increases in online setting. This method needs an increasing storage

burden as the data arrive. To counter this negative effect, Wang et al. propose an efficient factorization-free Kernel

discriminant analysis (IFKDA) [40]. Based on the work of Chu et al. [10], the authors consider that categories can

be summarized by theirs centers and use them to construct a k-dimensional Reproducing Kernel Hilbert space (RKH)

by solving a simple linear system. The size of the problem is then reduced and the mapping in this RKH space is

obtained from the product of two small-sized kernel matrices. However, if effectively FKDA runs extremely fast, our

experimental evaluation suggests that considering only class centers as discriminative information is not enough to

reach competitive classification performance. Lastly, Liu et al. in [29] introduce an incremental version of the kernel

null discriminant analysis (KNDA), initially introduced in batch version by Boldesheim [3]. Based on the null space

theory, KNDA build a subspace where within-class scatter vanishes and between-class scatter remains positive. This

property allows to represent the entire class by a single point making classification easier. The performance recorded

by this approach both in terms of classification and learning time seems very promising.

Aside from Wang’s algorithm, most of the previous methods are not suited for online scenario notably because they

do not manage the problem of the ever-increasing kernel matrix. This problem is central in most of kernel machine

algorithms where the size of the kernel matrix grows with the data. For the purpose of developing a suited LDA for

online applications, WonHei et al. propose in [27] an online sketch LDA based on the frequent direction algorithm

[28]. The principle of sketch LDA consists in maintaining a low rank sketch matrix of principal components which

captures main data variations. Projecting data onto this reduced set of basis vectors leads to perform dimension

reduction. As a consequence, the size of the between-class and intra-class scatters remains constant at every stage of

the learning process reducing at the same time the computational burden involved by the underlying GEP. However,

3

this method assumes that the data distribution is Gaussian making it potentially inefficient for nonlinear data. The

concept of sketching matrix is also used in [9] to solve the small sample size problem related to discriminant analysis

(DA). Considering that solving DA is equivalent to perfom ridge regression on the class membership matrix [44],

Chowdhury et al. develop a randomized iterative LDA that guarantees highly accurate solutions. Different random

projection and sampling strategies are applied in this work. One difficulty of this kind of method relies on the choice

of the sketch size. Again, this method is based on linear DA and can not deal with nonlinear data sets. In [41], a similar

work is presented in which a fast Fisher DA is developped. Random projection is used to accelerate regularized Fisher

DA and random Fourier features are used to approximate KDA. Based on the integral representation of the kernel

function [35, 33], Random Fourier features approximate each entry of the kernel matrix by inner product based on

a low dimensional randomized Fourier feature map of the input data. The benefit of this method is strategic since it

allows to train linear learning machines on these transformed data and therefore profits from massive time-savings.

However, several drawbacks are highlighted in this work. First, the method is not suited for online applications since

the number of data must be known in advance and the FDA’ solution is computed in bach mode. Second, it is pointed

out that the number of the Fourier features greatly influences the classification accuracy [31]. A better accuracy is

obtained when the dimension of random feature increases but at the expense of a loss of training time. Its selection

must optimize the couple training time/accuracy and this issue remains an open issue.

The goal of this paper is to answer both of these issues by proposing an incremental and compressible Kernel Null

Discriminant Analysis. Our work is closely related to the Liu’s algorithm [29]. Our contribution compared to the liu’s

method relies on two points: First, we propose an exact incremental scheme which meets the null LDA constraints

and guarantees at each learning steps c − 1 null projection directions where c being the number of classes. We show

theoretically that the Liu’s algorithm generates supplementary null projection directions at each updating steps. As a

consequence, the dimension of the null space increases over time and the classification performance decreases during

the learning step. Secondly, the proposed method, however, remains limited to moderate sized problems because there

are faced with an ever-increasing kernel Gram matrix when dealing with streaming data. To remedy this situation, we

show that the null space constraint of KNDA can be used as an efficient criterion of compression by identifying redun-

dancy in the training data. The compression rate of the proposed method is monitored by an user-defined compression

factor. The combined action of these two steps offers a significant gain in terms of time complexity and memory

burden while offering comparable classification performance and learning time with state of the art incremental learn-

ing methods. Experimental evaluations both on multi-class and one class problems confirm the effectiveness of the

proposed method.

The rest of the paper is organized as follows: in section 2, we introduce notation and preliminary definitions. Section

3 briefly recalls the main mathematical definitions of linear discriminant analysis (LDA) and null LDA. Section 4

4

covers several points: first we develop an exact incremental implementation of LDA and show the main differences

with the Liu’s scheme. Secondly, we present a kernel extension of our scheme and lastly, we give the initial settings

for one-class learning. In section 5, we introduce a compression mechanism to deal with large streaming data sets.

Section 6 details the experimental results. Finally, a conclusion ends the paper in section 7.

2. Notations and definitions

Let X = (x1,x2, ...,xn) be a d× n input training data matrix where n and d denote the sample size and the number

of features, respectively. Consider a supervised learning scenario composed of c classes, i.e. X will be accompagnied

with a n label vector Lx = (l1, l2, ..., ln) where each component li ∈ {1, ..., c}. we will note Lkx the subset of labels

in Lx belonging to the kth class and nk = card(Lkx). We will note that n =
∑c
k=1 n

k. Now, let us introduce three

centralizing operators:

Wn = In − Ln, Bn = Ln −Mn and Tn = In −Mn (1)

where In is the n × n identity matrix, Ln =
(
Lkn
)
k=1...c

is a n × n block diagonal matrix where each block Lkn is

a nk × nk matrix with all terms equal to 1/nk and Mn is a n × n matrix with all terms equal to 1/n. We can derive

now the main ingredients of discriminant analysis (DA) in the input space X defined by the following scatter matrices

associated to X: 
SxW = XWnW

>
n X

> = XWX
>
W

SxB = XBnB
>
nX

> = XBX
>
B

SxT = XTnT
>
n X

> = XTX
>
T

(2)

denoting the W ithin-class scatter matrix, Between-class scatter matrix and the T otal scatter matrix, respectively. It

is easy to check that a simple relation links these scatter matrices as follows: SxT = SxW + SxB . For simplicity, we

assume here that the n training vectors are linearly independent implying that the ranks of the scatter matrices are given

by: rank(SxW) = n− c, rank(SxB) = c− 1 and rank(SxT) = n− 1, with rank(SxT) = rank(SxW) + rank(SxB).

3. Null Linear discriminant analysis

Linear discriminant analysis is a subspace learning method which aims to find a subspace basis Πx = (πx1,πx2, ...,πxh)

(∈ Rd×h) of h independent column vectors which both maximizes the between-class scatter SxB and minimizes the

intra-class scatter SxW through the Fisher discriminant criterion:

Πx = argmax
Π>

x Πx=In

trace
(
(Π>x S

x
WΠx)−1Π>x S

x
BΠx

)
(3)

The solution of (3) is equivalent to solve the following generalized eigenvalue problem (GEP): SxBΠx = λxS
x
WΠx.

Since the rank of SxB is c− 1, there are c− 1 eigenvectors (πx1,πx2, ...,πx(c−1)) corresponding to the c− 1 largest

nonzero eigenvalues
(
λx1, λx2, ..., λx(c−1)

)
. Thus, the discriminative features of LDA are computed by: yi = Π>x xi,

5

for i = 1, ..., n. When the dimensionality d is very large compared to the sample size n, the scatter matrices SxW and

SxT become singular and the conventional LDA defined by Eq.3 cannot be used. This situation is widespread for many

modern applications such as face recognition where the dimensionality of the data is very large, most of the time larger

than the sample size. This is commonly referenced as the small sample size (SSS) problem in the litterature. The null

linear discriminant analysis has been introduced by Chen et al. in order to overcome the singularity problem of scatter

matrices [6]. Following the same goal, other methods have been developed to solve it such as the regularized LDA

[44], FisherFace LDA [2], Direct LDA [43], orthogonal LDA [20], QR/GSVD LDA [32][16]. The null LDA showed

very attractive and highly competitive performance with respect to the previously mentioned methods [37][11][3].

Mathematically, Null LDA is equivalent to determine a set of directions π on which the within-class scatter vanishes

(π>x S
x
Wπx = 0) and the between-class scatter remains positive (π>x S

x
Bπx > 0). This can be translated by the

following optimization criterion [6] [17]

Πx = argmax
Π>

x S
x
WΠx=0,Π>

x Πx=I

trace
(
Π>x S

x
BΠx

)
(4)

Such Πx is called the null space of LDA and in this case, the constraint Π>x S
x
WΠx = 0 leads the LDA’s criterion

to the best separability. Originally, Null LDA is solved in two stages: first, the training data set is projected on the

null space of the intra-class scatter SxW and an eigendecomposition of the transformed between-class scatter SxB is

performed which represent approximately a computational complexity of O(d2n). Several batch implementations of

the Null LDA have been proposed in the litterature to reduce this complexity [42] [37][11]. In this paper, we will

consider the Guo’s implementation [42]. In the case of an undersampled problem (n ≤ d) and under the assumption

that the training data vectors are linearly independent, Guo et al. show in [42] that there are c − 1 null projection

directions. Since all scatter matrices are positives and SxT = SxW + SxB , the constraint π>x S
x
Bπx > 0 is equivalent to

π>x S
x
Tπx > 0. Then we can formulate the main properties of the null LDA as the following theorem:

Theorem 1. Let NSx
T

=
{
v|SxTv = 0,v ∈ Rd

}
and NSx

W
=
{
v|SxWv = 0,v ∈ Rd

}
be the null spaces of SxT and

SxW , respectively, and let N⊥Sx
T

and N⊥Sx
W

be their orthogonal complements. Let πx a projection direction that verifies

both  π>x S
x
Tπx > 0 (a)

π>x S
x
Wπx = 0 (b)

(5)

then the following statements are verified [42]:

 πx ∈
(
NSx

W
∩N⊥Sx

T

)
(a)

dim(NSx
W
∩N⊥Sx

T
) = c− 1 (b)

(6)

6

The null space matrix Πx = (πx1,πx2, ...,πx(c−1)) (∈ Rd×c−1) verifying conditions of Eq.5 is represented by both

a set of orthonormal bases Ux = (ux1,ux2, ...,uxn) (∈ Rd×n) of N⊥T and a matrix Ωx =
(
βx1,βx2, ...,βx(c−1)

)
(∈ Rn×c−1) such as

Πx = UxΩx (7)

Proofs of statements in Eq. 6 can be found in [42]. Guo et al. have shown that N⊥Sx
T

is exactly defined by the space

spanned by the mean adjusted data set XT and represented by the orthonormal basis Ux. Ux can be derived from

the singular value decomposition of XT = UxΣxV
>
x where Ux and Vx are the left and right orthonormal matrices of

singular vectors, respectively and Σx is the diagonal matrix of singular values. Given Ux, Ωx (Eq.7) is then computed

by solving the following eigenvalue problem:

(
UTx S

x
WUx

)
Ωx = 0 (8)

which amounts to determine the null space of the modified within-class scatter matrix UTx S
x
WUx. Since SxW =

XWX
>
W , solving Eq.8 is equivalent to find NXT

WUx
,i.e:

XT
WUxΩx = 0 (9)

Eq.9 suggests two comments: first, the inner products induced in XT
WUx can be easily kernelized and next, an incre-

mental formulation of Eq. 9 needs both to update the eigenbasis Ux extracted from XT and the within-scatter matrix

SxW via XW . In the next section, we present an incremental extension of Eq.9.

4. Incremental null discriminant analysis (INDA)

4.1. Proposed scheme

First, in order to describe the sequential nature of the data we will define X = (x1,x2, ...,xn) the old data matrix

already processed, Y = (y1,y2, ...,yl) = (xn+1,xn+2, ...,xn+l) the newly collected data matrix and Z = (X,Y)

the updated data matrix which definesX supplemented by Y . In the same way asX , the centralizing operators defined

in Eq.1 will apply to Y and Z with the corresponding size in index, for instance YT = Y Tl and so on. We will note

µx = X en

n the sample mean of X where en denotes a column vector of n ones. The same notation will be applied to

Y and Z.

Now, considering that XT = XTn has been already processed, i.e. the triplet (Ux, Σx, Ωx) has been computed at the

previous step, the goal of INDA is to compute a new triplet (Uz,Σz,Ωz) associated to ZT = XTn+l resulting from

4.1 Proposed scheme 7

the resolution of these two consecutive steps:

(Uz,Σz)
IPCA← {(Ux,Σx) , XT , YT } (a)

Ωz
Eq.8← {Uz, ZW } (b)

(10)

- Step (a) of (10) is solved by using the incremental scheme for computing PCA as described in [7] and whose the

main steps are summarized in the sequel. First, consider that the updated total scatter matrix SzT = ZT (ZT)>can be

judiciously developped as follows [19]:

SzT = SxT + SyT +4T4>T (11)

where 4T =
(
ln
n+l

)1/2
(µx − µy) is a corrective term taking into account the change in mean resulting from

the added data matrix Y . From the right part of Eq.11, SzT can be re-written in a more compact form as SzT =

(XT ZΨ) (XT ZΨ)
> where Ψ is a new centralizing operator defined by ([19]):

Ψ =

 0 ρen

Tl −ρel

 (12)

where ρ =
√

ln
(n+l) . Now, let (Urx ,Σ

r
x, V

r
x) be a rank-r factorization of XT , we can derive a factorization of the

updated data matrix ZT as follows [25] :

ZT = (XT ZΨ) = (Urx J)

 Σrx P

0 R


 V rx 0

0 I


>

(13)

where P = (Urx)>ZΨ and (J,R) are the elements of the QR decomposition of P⊥ = (ZΨ − UrxP) , the orthogonal

complement of P . Now considering the SVD of

 Σrx P

0 R

 = U1Σ1V1, we can deduce the elements of the

factorization of ZT by: 

Uz = (Urx , J)U1 (a)

Σz = Σ1 (b)

Vz =

 V rx 0

0 I

V1 (c)

(14)

The rank-r singular value factorization of ZT = UrzΣrzV
r
z can be recovered by considering only the column vectors

of U1 and V1 associated to the r largest eigenvalues of Σ1, i.e : Ur1 = U1(:, 1 : r), Σr1 = Σ1(1 : r, 1 : r) and

V r1 = V1(:, 1 : r).

- Step (b) of (10) amounts to solve Eq.9 on the updated within-class scatter matrix, i.e Z>WUzΩz = 0, which can be

4.2 Comparison with the Liu’s scheme [29] 8

factorized by ((X Y)Wn+l)
> (Urx J)U1Ωz = 0. Considering that UT1 U1 = I and after some developments, Ωz is the

solution of the following eigenvalue problem:

 D>0 D>3

D>1 D>2

 Ω1 = 0

with Ωrz = (Ur1)
>

Ω1

(15)

where

D0 = (Urx)>XW11, D1 = (Urx)>YW12

D3 = J>XW21, D2 = J>YW22

(16)

and W11,W12,W21 and W22 are the subparts of the updated centralizing operator Wn+l =

 W11 W12

W21 W22

. How-

ever, a deeper analysis must be addressed on the following issue: what value should be given to r? As we can see

previously, the parameter r controls the level of factorization of ZT via the truncation of its spectrum Σrz . For high

dimensional data sets, it can be useful to extract only a small percentage of the total variability needed to describe the

data. Beside, Chin et al. in [8] use this strategy to reduce the computational cost of their incremental kernel PCA. We

might be tempted at first to do the same thing. But, reader must note that if a truncation is used it changes the rank of

Ω1 and consequently the dimension of the null space resulting from Eq.15. Indeed, let us define D =

 D0 D1

D3 D2


and since D = Z>WUz , it results that rank(D) ≤ min (rank(Wn+l), rank(Z), rank(Uz)) with rank(Z) = n + l

, rank(Wn+l) = n + l − c and rank(Uz) = n + l − 1 (under linear independence assumption). Since c > 1,

rank(D) = rank(Wn+l). From the rank-nullity theorem and since Uz ∈ Rd×(n+l−1), we deduce that the dimension

of the null space of D, i.e dim(ND) verifies

dim(ND) = n+ l − 1− rank(D) = c− 1 (17)

which fullfils the property (b) of Eq.6. Now, consider a large truncation such as r < n + l − c, then rank(D) =

rank(Urz) = r and consequently dim(ND) = 0. In conclusion, the totality of the spectrum of ZT (non null eigenval-

ues) must be maintained during the learning process. In the sequel, the parameter r will be then removed.

4.2. Comparison with the Liu’s scheme [29]

In [29], Liu et al. developed an incremental kernel null discriminant analysis which has strong similarities with the

proposed method. But, we show in this part that the authors in [29] introduce some simplifications making their

algorithm inexact.

4.2 Comparison with the Liu’s scheme [29] 9

The first simplification concerns the construction of the centralizing operator Wn+l when solving Eq.15. Indeed, the

authors consider the old data set X and the newly added data Y as independent data sets. Under this assumption,

Wn+l can be partitioned as a block diagonal matrix such as

Wn+l =

 Wn 0

0 Wl

 (18)

If this simplification seems to have a marginal impact, however it introduces a change in the value of rank(Wn+l).

Without loss of generality, consider thatX and Y contains c identical classes, then sinceWn andWl are not correlated,

we obtain rank(Wn+l) = rank(Wn) + rank(Wl) = n + l − 2c and then dim(ND) = 2c − 1. This results

immediately in zeroing D3 in Eq.16. Indeed, considering the partitionning (18), D3 now writes D3 = J>XWn

instead of J>(XW11 + YW21) and since the new basis J computed from ZΨ (Eq. 12) is orthogonal to the basis Ux

generated by XT then we have

J>XT = J>XTn = 0 (19)

Reader must note that the operators Tn and Wn verify TnWn = Wn, and post-multiplying Eq.19 by Wn gives

J>XWn = J>XW = 0 which implies D3 = 0 in Eq.15. This result is valid only if the operators T and W are

generated from the same data set. But in order to compute an exact Ωz , the elements D0, D1, D2, and D3 of Eq.15

need to update X and Y with the updated intra class scatter Wn+l. In this case, D3 = 0 is no longer verified.

Another simplification in [29] is to consider U1 = I in Eq.15. This implies that the authors choose to overlook the

eigendecomposition of the central matrix

 Σrz P

0 R

 of Eq.13. However, to derive the new basis Uz , Ux and J must

be weighted by U1 (see Eq. 14). If this simplification seems more cost effective from a computational point of view,

a danger of drift may appear, i.e errors accumulate across the update steps causing the discrepancy between the incre-

mental solutions and the ground truth solution (computed by batch methods). Moreover, the conditionΠ>x S
x
WΠx = 0

which is the main constraint of NKDA is no longer verified.

Now since D3 = 0 and U1 = I , Liu et al. simplify the eigenproblem defined in Eq.15. Considering that Ωz can be

partitioned in

 Ωz1

Ωz2

 such as D>0 Ωz1 = 0. The latter equality means that Ωz1 must lie in Ωx which spans the null

space of D>0 since the problem D>0 Ωx = 0 has been solved previously. Therefore Ωz1 can be represented by linear

combinations of Ωx : Ωz1 = Ωxα and the problem (15) can be simplified as:

D>Ωz =

(
D>1 Ωx D>2

) α

Ωz2

 = 0 (20)

4.3 Introducing the kernel trick 10

which is also an eigenproblem but smaller than (15). When α and Ωz2 are computed, the solution Ωz is easily

recovered by Ωz =

 Ωxα

βz2

. Now, let us analyse the behavior of the Liu’s algorithm over two consecutive learning

steps. Let t = 0 be the beginning of the learning process, and consider that the first data set Z(t=0) = X is composed

of n data vectors and c(t=0) = a categories. Then Ω
(t=0)
z is computed by batch method by solving Eq.9 and Ω

(0)
z ∈

R(n−1)×(c(0)−1). The next step consists in solving Eq.20. Consider that the new data set Y has b categories with certain

categories might be already present in X . Since D1 and D2 share the same centralizing operator Wl, it is easy to show

that rank(D) = rank(Wl) = l− b in Eq.20. We have D>1 ∈ Rl×(c(0)−1) and D>2 ∈ Rl×l, then we can conclude that

the dimension of the null space generated by Eq. 20 is dim (ND)
(k=1)

= l+ c(0) − 1− (l− b) = c(0) + b− 1. Thus,

let c(1) = c(0) + b, Ω
(k=1)
z will have c(1) − 1 columns. In other words, the common categories between X and Y

will be considered as different categories. This result shows that the dimension of the null space in the Liu’s scheme

increases over time according the number of classes in each data chunk. In other words, the Liu’s scheme considers

that at each updating step, new classes are injected in the data set Y .

4.3. Introducing the kernel trick

In order to gain in flexibility, the incremental scheme for null LDA as presented in Eq.15 can be formulated in the

kernel induced feature space. In this framework, let us define ϕ : Rd → F a nonlinear mapping from the input space

Rd to a high-dimensional or infinite-dimensional feature space F and Φ = (ϕ(x1), ϕ(x2), ..., ϕ(xn)) the sequence

of images of the input data matrix X in F . In pratice the mapping ϕ is advantageously replaced by a positive definite

kernel function k : Rd×Rd → R that encodes the inner product in F , instead. Thus, we can construct a kernel matrix

K from for every pair of data points in X which is equivalent to the product ΦTxΦx and where each component is

defined as follows: K(i, j) = ϕ(xi)
>.ϕ(xj) = k(xi,xj). Considering the notation introduced in section 4.1, we will

define Kx = Φ>x Φx, Ky = Φ>y Φy and Kz = Φ>z Φz the kernel Gram matrices build from X , Y and Z, respectively.

Moreover, we will note Kxy = Φ>x Φy the kernel Gram matrix build from X and Y and Kx(y) = Φ>x ϕ(y) the kernel

Gram vector build from X and a data y. The kernel extension of our IDA as defined in Eq.10 needs first to compute

the eigenspace (Ux,Σx) of the mapped data matrix ΦxTn. However, as ΦxTn is a high dimensional matrix, (Ux,Σx)

cannot be computed directly by SVD. From kernel SVD [38], we compute instead the SVD of the corresponding

kernel Gram matrix TnKxTn = Q4Q>which gives the following equalities:

Ux = ΦxΓ (a)

Σx = 41/2 (b)
(21)

where Γ = TnQ4−1/2. Of course, only the non null eigen components of4 and Q must be considered. The second

step is to compute the couple (J,R) in Eq.13 resulting from the QR decomposition of P⊥ as defined in section 4.1.

4.4 Computational cost 11

First, the matrix P (Eq. 13) is easily reformulated via the kernel trick as P = Γ>Φ>x ΦzΨ = Γ>KxzΨ and second,

recalling that P⊥ = ΦzΨ − UxP (in the feature space) and after some developments, it expresses as

P⊥ = ΦzΘ (22)

with Θ =

 Ψ1:n,: − ΓΓ>KxzΨ

Ψn+1:n+l,:

. Eq. 22 shows clearly that P⊥ inherits of the high dimensionnality of Φz

making it impossible at this stage to compute a QR decomposition. Fortunately, as previously, this problem can be

overcome by computing SVD of the outer product P>⊥P⊥ which introduces explicitly the kernel matrix Kz . Indeed

P>⊥P⊥ = Θ>KzΘ and let ΞΛΞ> be the eigendecomposition of Θ>KzΘ, the components J and R of P⊥ can be

easily recovered in the same spirit as in Eq. 21, which gives:

 J = ΦzΥ (a)

R = Λ1/2Ξ> (b)
(23)

where Υ = ΘΞΛ−1/2. Reader must note that rank(P>⊥P⊥) = rank(P⊥) and P⊥ is always rank deficient by at

least one due to centering of Φz with the centralizing operator Ψ (Eq.12). Then, when computing the eigendecompo-

sition of Θ>KzΘ, we retain only eigenvectors corresponding to non zero eigenvalues. Then each part of the matrix Σx P

0 R

 defined in Eq.13 are recovered and diagonalized as U1Σ1V1. The updated matrix of left singular vectors

Uz is now given by

Uz = (ΦxΓ,ΦzΥ)U1 (24)

Now, a kernel formulation of each element of Eq.15 can be then deduced as

D0 = Γ>KxW11, D1 = Γ>KxyW21

D3 = Υ>KzxW12, D2 = Υ>KzyW22

(25)

4.4. Computational cost

The previous analysis clearly shows that Liu’s scheme shows a reduced computational burden compared to the exact

method. The efficiency of Liu’s algorithm relies on two simplifications: first, the eigendecomposition of

 Σx P

0 R


corresponding to a complexity of O((n + l)3) is avoided and secondly, the component D3 is set to 0 in Eq.15 by

considering Wn+l partitioned as in Eq. 18. By noting that the first subpart of the new solution Ωz spans the null space

of D0, then D0 is also removed from the computation leading to solve the simplified eigenproblem of Eq. 20. In this

4.5 One-class classification 12

case, the time complexity reduces to a cost of O(
(∑k

i=0 c
(i) − 1 + l

)
l2) for the Liu’s scheme instead of O((n+ l)3)

for the exact solution. These favorable results should not however conceal the fact that this algorithm does not solve

exactly the conditions of the null LDA. We will see in the experimental section the impact of these simplifications on

the classification performance of the Liu’s algorithm.

4.5. One-class classification

KDA as well as NKDA are not explicitly formulated for solving a one class problem because they try to find c −

1 discriminative projections. Then, the minimal solution of KDA is one discriminative projection for a two class

problem. In one class setting, only one class is avalaible and in order to cope with the lack of a second class, a common

strategy is to artificially generate representative counter examples. Based on [? ?], we propose to separate the target

or reference class from the origin of the kernel feature space which is used here as an “artificial” counter example.

Beside, the one class support vector machine (SVM) formulation is based on this principle. In the incremental setting,

the initial kernel Gram matrix K at time t = 0 is supplemented with one column of zeros and one row of zeros and

when t > 0 the kernel Gram matrix Kxy is supplemented with one row of zeros, as follows :

Koc
x =

 0 0

0 Kx

 ,Koc
xy =

 0

Kxy

 (26)

Of course, this artificial counter example is flagged with a negative label.

5. Compressible NKDA

At this stage, our incremental NKDA uses all training samples in the learning stage. But for very large scale datasets,

our algorithm is faced two problems: a memory overhead to store the entire kernel Gram matrix and a growing com-

putational cost corresponding to its eigendecomposition. This drawback is a major obstacle to deal with applications

requiring online operations. However, when dealing with large data sets, it stand to reason that after a certain learning

time, some new training samples would not contain much new information. In this case, these new data samples are

considered as redundant and there is no gain to include them. Thus, the definition of a pertinent redundancy measure

is a critical issue because it improves training times while having a minimal impact of the classification accuracy. In

this perspective, we show in the sequel that the null space of SW , i.e. NSW
offers the conditions to define an efficient

criterion of redundancy in the training data.

5.1. Null space based compression

Recall that the goal of null LDA is to find a mapping Πx =
(
πx1,πx2, ...,πx(c−1)

)
which in particular verifies

π>xkS
x
Wπxk = 0 for k = 1...c− 1 (27)

5.1 Null space based compression 13

From the definition of SxW (Eq. 2), Eq. 27 can be simplified by π>xkXWn = 0n which gives

π>xk(x−X e
m
n

nm
) = 0 (28)

for a single sample x in X from the mth class, where emn is a binary indicator vector associated to the mth class of

length n. A kernel formulation of Eq.28 can be deduced by considering that πxk = ΦxΓβxk and using the kernel

trick. Then from Eq.28, we define rmk (x/X) a measure of membership of x to the kth direction of the null space

generated by the old data matrix Φx such as

rmk (x/X) = β>xkΓ
>Kx(x)− omk (X) = 0 (29)

where omk (X) = β>xkΓ
>Kx

em
n

nm denotes the mth class center projected onto the kth direction of the null space. Let

us define rm(x/X) =
(
rm1 (x/X), rm2 (x/X), ..., rmc−1(x/X)

)
, then since Eq.29 is verified for all directions of the

null space, we deduce that the l2-norm ‖rm(x/X)‖2 = 0 which is verified for each data x in X . Now, given a new

data y collected in Y , the goal is to derive rm(y/X), i.e. the level of membership of y to the null space generated

by X in the feature space. It seems reasonable to suppose that as the learning is progressing the greater the chance

that new data show intrinsic similarities with the previously learned data. In other word, rm(y/X) decreases as the

size of X increases and can be considered as a redundancy measure in the kernel induced feature space between y and

the learned data set X . In the following, we propose a compression mechanism based on this assumption. Before all,

recall that the updated intra-class scatter SzW can be recursively obtained by

SzW = SxW + SyW +4W4>W (30)

where 4W is a corrective term, taking into account the common classes between X and Y . Let µmx and µmy be

the sample means of the mth class from the sets X and Y , respectively, then 4W4>W is defined by 4W4>W =∑
m∈Lx∩Ly

4Wm
4>Wm

, where 4Wm
=
(
nmlm

nm+lm

)1/2 (
µmx − µmy

)
. Our objective is to measure the redundancy

level between Y and X with respect to the null space generated by X , i.e. by computing for each null direction πxk

π>xkS
z
Wπxk (31)

Since π>xkS
x
Wπxk = 0 and from Eq. 30, Eq.31 becomes

π>xkDD
>πxk (32)

5.1 Null space based compression 14

with D = (Y,4W). An overall measure of redundancy between Y and X can be deduced from Eq.32 by

R(Y/X) =
trace

(
Π>xDD

>Πx

)
l

(33)

Now, given y ∈ Y in the mth class, from Eq.32 the redundancy between y and X computed on the kth component of

the null space is easily deduced by

rmk (y/X) = β>xkΓ
>Kx(y)− omk (Y/X) (34)

where omk (Y/X) denotes the change of mth class center when Y is added to X on the kth direction of the null space

and defined by

omk (Y/X) = β>xkΓ
>
(

(1− αm)Kxy
eml
lm

+ αmKx
emn
nm

)
(35)

with αm =


(
lmnm

ln+nm

)1/2
if m ∈ Lx

0 otherwise

. Thus a global measure of redundancy between y andX can be defined

by ‖rm(y/X)‖2 with rm(y/X) =
(
rm1 (y/X), rm2 (y/X), ..., rmc−1(y/X)

)
is a redundancy vector bringing together

the redundancy of y recorded on each direction of the null space of X . The average redundancy of the mth class

beetwen the new data chunk Y and the old data X is then easily deduced

rm(Y/X) =
1

lm

∑
y∈Lm

y

‖rm(y/X)‖2 (36)

It seems obvious that more the learning is progressing, more the average redundancies for each class tend to de-

crease meaning that similarities grow up between old and new data. This trend leads us to define a sparsity cri-

terion which uses thresholding on the redundancies computed for each new collected data. More precisely, given{
rj(Y/X(t=0))

}c
j=1

an initial set of average redundancies computed for each class at step t = 0, and consider a

new data y collected in the mth class a the tth learning step, then y will be removed from the learning process if its

redundancy ‖rm(y/X)‖2 is lower than a specified positive threshold ν (0 < ν < 1) such that

∥∥rm(y/X(t>0))
∥∥
2

rm(Y/X(0))
< ν (37)

The initial set of average redundancies
{
rj(Y/X(0))

}c
j=1

for each class has been computed during the cross validation

step. Since the average redundancy per class is tending to decrease, the compression starts when a new data records

a redundancy with X lower than a certain threshold which is proportional to the average redundancy of its class

computed at the first step. The parameter ν allows the user to regulate the compression rate during the learning

5.2 Redundancy measure: property 15

process and we will study its impact on the classification in the experimental section. If it is reasonable to assume

that ‖rm(y/X)‖2 is decreasing when the learning grows up, the following section tries to provide some mathematical

evidence.

5.2. Redundancy measure: property

The proposed proof assumes that the measure of redundancy has the same behavior for each class and consequently,

we will omit the exponent m denoting the class number in the sequel. In order to prove that the l2-norm ‖r(y/X)‖2
(Eq.34) is a mesure of redundancy which decreases as the learning is progressing, we consider the following scenario:

let us define x,y0 and y three data vectors verifying

1. x ∈ X,x = min
xi∈X

‖xi − y‖2

2. y0,y ∈ Y, ‖x− y‖2 ≥ ‖y0 − y‖2

The first condition means that x, a learned data in X , is the nearest to y among all xi ∈ X and the second condition

means that the intermediate new data y0 is nearest to y than x to y. This scenario is a snapshot at time t of the learning

process. If we consider that y0 will be the next data learned at time t+ 1, then we want to prove that

∥∥∥r(y/X(t))
∥∥∥
2
≥
∥∥∥r(y/X(t+1))

∥∥∥
2

(38)

with X(t+1) = X(t) ∪ {y0}. Or in other words, the redundancy level between y and X increases when a new data

close to y is included in the learning process. First, in the feature space the inequality between distances (condition 2)

remains true , i.e.

‖ϕ(x)− ϕ(y)‖2 ≥ ‖ϕ(y0)− ϕ(y)‖2 (39)

Let πxk
= ΦxΓβxk, the kth direction of the null space Πx computed at time t, multipling both sides of Eq.39 by πki

and considering that the operator norm verifies ‖A‖ ‖v‖ ≥ ‖Av‖ (where A is a matrix and v is a vector), Eq.39 can

be written as ∥∥π>xk
(ϕ(x)− ϕ(y))

∥∥
2
≥
∥∥π>xk

(ϕ(y0)− ϕ(y))
∥∥
2

(40)

Using the kernel trick, Eq.40 expresses as

∥∥∥β>xkΓ>Kx(x)− β>xkΓ>Kx(y)
∥∥∥
2
≥
∥∥∥β>xkΓ>Kx(y0)− β>xkΓ>Kx(y)

∥∥∥
2

(41)

16

(a) (b) (c)

Figure 1: Illustration of the decreasing trend of
∥∥r (

y/X(t)
)∥∥.

Let us define ok(X(t)) the class center projected onto the kth component of the null space at time t and integrating it

in both sides of Eq.41, Eq.41 simplifies as

∥∥∥rk (y/X(t)
)∥∥∥

2
≥
∥∥∥rk (y0/X

(t)
)
− rk

(
y/X(t)

)∥∥∥
2

(42)

Now, consider that y0 is learned, i.e. X(t+1) = X(t) ∪ {y0}, the old class center ok(X(t)) is updated and becomes

ok(X(t+1)). The immediat consequence is that rk
(
y0/X

(t+1)
)

= 0 and Eq.42 verifies now

∥∥∥rk (y/X(t)
)∥∥∥

2
≥
∥∥∥rk (y/X(t+1)

)∥∥∥
2

(43)

This result holds for each direction k = {1, ..., c− 1} of the null space and Eq.38 is verified. Figure 1 explains

graphically the behavior of
∥∥r (y/X(t)

)∥∥, the redundancy measure of a new data y (data circled in red in Figures

1) during the 1th(Fig. 1.a), 2th (Fig. 1.b) and tth (Fig. 1.c) learning step. Data filled in red denote the old data

already learned and data filled in grey represent the remaining data. Data already learned are projected in the same

vector o(X(t)) =
(
o1(X(t)),o2(X(t)), ...,oc−1(X(t))

)
which defines the class center in the null space at time t.

As the learning is progressing, more data are learned, or in other words they are represented by the same reference

point in the null space. As a consequence, the distance measured by
∥∥r (y/X(t)

)∥∥ between y and o(X(t)) decreases

irremediably (see Figure 1.c).

6. Experiments

6.1. Data sets and algorithms

Table I provides a detailed description of the datasets which will be used to evaluate our method. These data sets

involve several areas such as image recognition, document recognition and URL adresses. Most of them have several

categories and will be used for the multi-class learning experiments. One-class learning experiments will be conducted

by selecting only one target category among others. Online learning will be simulated as follows: the majority of the

6.2 Evaluation and comparison 17

Table 1: Data description

Data sets Types Classes Dim Train Test Source

MNIST g.l. images (28×28) 10 784 60000 10000 [24]
CIFAR-10 color images (32×32) 10 3072 50000 10000 [22]
YaleFaceB g.l. image (64×64) 38 4096 1900 514 [14]
Ayahoo concept images 12 4096 988 1249 [13]
RCV1 (Reuters) documents 65 18933 2347 1249 [26]
URL URL addresses 2 3231961 10137 400 [30]

Table 2: Algorithm description

Algorithms Authors Learning type Parameters Incr. Comp.

ICNKDA proposed method MC/OC 2
√ √

INKDA Liu et al. [29] MC/OC 1
√

×
SRKDA Cai et al [4] MC 2

√
×

AKDA Gkalelis et al [15] MC 2
√

×
FKDA Wang et al [40] MC 2

√ √

SoDA Weihong et al [27] MC 1
√ √

IOC-SVM Laskov et al [23] OC 2
√

×
ISVDD Jiang et al [18] OC 2

√ √

IOC-GPR Kemmler et al [21] OC 2
√

×

data set is stored in hard drive and a chunk of data will be extracted and stored in the random access memory at each

learning step. Table II presents the different methods which will be used as a basis for comparison. All these methods

work incrementally or recursively (see column Incr. in Table II) but few of them have a compression mechanism (see

column Comp. in Table II). All these methods have been implemented in matlab and experiments are conducted on a

Workstation with Intel-7 2.5 GHz, 8G RAM, 64-bit Windows system.

6.2. Evaluation and comparison

6.2.1. Comparative study with the Liu’s scheme

In this experiment, we compare specifically the two schemes on several points: a) the accuracy in approximating batch

KNDA solution. b) the behavior with respect to the batchsize l. c) the empirical time complexity. Several performance

measures will be considered to analyse the behavior of each method: the area under the curve (AUC) to measure the

classification performance, the null direction error (NDE) which measures the l2-norm of the difference between the

score vectors returned by the batch method and the incremental method, the training time (TIME) and the dimension

of the null space (DIM). The MNIST data set will be used to conduct the evaluation. Two learning scenarios will be

analysed: Multi-class learning (MCL) and one-class learning (OCL). MCL will be studied from 100 training images

per classes while OCL will be based on 1000 training images of the digit 4, the other digits will be considered as

anomalies. The test data set will be composed of 100 images of each class. In both case, the Gaussian kernel of

scale parameter σ is choosen to conduct the experiments and a cross validation step is used to select the values of σ

6.2 Evaluation and comparison 18

Table 3: Multi-class learning: comparative study.

methods l AUC NDE Times (sec) DIM

exact-σ = 4
10 99.54 0 63.30 9
30 99.54 0 23.86 9
50 99.54 0 15.70 9

Liu-σ = 6
10 90.30 7.22 9.11 615
30 95.54 4.50 2.28 313
50 98.05 3.26 1.23 197

Table 4: One-class learning: comparative study.

methods l AUC NDE Times (sec) DIM

exact- σ = 3
10 95.11 0 51.5 1
30 95.11 0 18.7 1
50 95.11 0 11.6 1

Liu- σ = 15
10 88.80 1.58 3.90 96
30 91.45 0.8 1.22 33
50 93.74 0.56 0.82 20

corresponding to the best AUC.

Table III and Table IV summarize the results obtained from the exact method and the Liu’s method. First in both

scenario, we observe that the exact method converges towards the ground truth null direction projections (returned by

the batch method) since its null direction error (NDE) reaches 0 at the end of the learning (4-th column of Table III

and IV). Conversely, the Liu ’scheme systematically shows a non-zero NDE confirming that is a wrong approximation

of the batch KNDA while the exact method reaches the expected solution. Moreover, results recorded by the exact

method are independent of the batchsize l while it is not the case for the Liu’s method. Concerning the classification

performance, we remark that the exact method systematically outperforms the Liu’s scheme. The AUC value (3-th

column in Table III and IV) recorded by the exact method remains constant no matter what the batchsize value while

the AUC value returned by the Liu’s scheme is very sensitive to the batchsize value. As demonstrated previously, the

dimension of the null space increases at every updating step for the Liu’s scheme and its growth rate depends on the

batchsize l. Conversely, the exact method verifies the main condition of KNDA (6-th column of Table III and IV).

Lastly, as expected the Liu’s scheme shows a faster training time that the exact method (5-th column of Table III and

IV) but at the expense of the classification performance.

Figure 2 confirms graphically this analysis by illustrating the behavior of the two algorithms with respect to the

dimension of the null space (DIM, first row of the figure 2) and the null direction error (NDE, second row of the figure

2) and for different values of the batchsize l. As we can observe on Figure 2.a, the value of DIM computed by the

6.2 Evaluation and comparison 19

(a) (b)

(c) (d)

Figure 2: Our method vs Liu’s method. The first row shows the evolution of the dimension of the null space (left:Liu’s scheme, right: our scheme).
The second row shows the evolution of the null direction error (left: Liu’s scheme, right:our scheme).

Liu’s scheme increases at each updating step confirming the result of Eq.?? while on Figure 2.b it remains constant for

the exact method verifying the rank of SB , i.e. C − 1. Figure 2.c shows that, whatever the batchsize value l, the Liu’s

scheme does not converge to the true solution (NDE>0) while the exact method converges towards zero NDE (Figure

2.d).

6.2.2. Influence of the compression rate

In this part, we analyse the impact of the compression strategy with respect to the classification performance (AUC) and

the training time (Times). The MNIST data set is used for the experiment. We maintain the experimental setup as de-

scribed in the previous section (see tables III and IV). The compression parameter ν varies in [0, 0.15, 0.25, 0.35, 0.45]

where ν = 0 means "no compression”. Table V summarizes the results of this experiment. From a general point of

view, these results show that the redundancy level is high in the MNIST data set. Indeed, for ν = 0.45, corresponding

to a high compression rate, we record a 0.6% decrease in AUC for the multi-class problem and a 0.3% decrease in

6.2 Evaluation and comparison 20

Table 5: Influence of the compression parameter ν.

Learn. mode ν AUC Times (sec) CR

OCL

0 95.11 11.60 0
0.15 95.23 1.80 62.0
0.25 95.62 1.04 72.5
0.35 95.44 0.68 79.4
0.45 94.52 0.30 85.1
Liu’s sch. 93.74 0.82 0

MCL

0 99.54 15.78 0
0.15 99.52 6.62 29.5.0
0.25 99.45 3.98 46.9
0.35 99.29 2.07 61.3
0.45 98.97 1.20 71.9
Liu’s sch. 98.05 1.23 0

(a) (b) (c)

Figure 3: Illustration of the change inR(Y/X) (Eq.33) during the multi-class experiment (MNIST data set). Changes in the parameter R(Y/X) (a),
the compression rate CR (b) and the AUC value (b).

AUC for the one-class problem. In the same way, the training time are drastically reduced: a decrease by a factor of

~15 for the multi-class problem and ~40 for the one-class problem.

6.2.3. Global redundancy: analysis of R(Y/X)

Figure 3.a illustrates the evolution of the parameter R(Y/X) (Eq.33) computed by the proposed method for a com-

pression rate ν = 0.3. In this experiment we use 10000 training images of the MNIST data base (multi-class learning).

Clearly, we observe that R(Y/X) is subjected to three gradients of decrease: first, R initiates a significant decrease

over the first 1000 images (I), next a slower decrease up the 5000th image and lastly reaches a constant level over the

remaining samples. This variation means that redundancy is very low during the initial learning stages, the dictionnary

is being filled and next redundancy increases and finally stabilizes. Figure 3.b shows the variation of the compression

rate, CR, during the learning step. Like R(Y/X), the variation of CR shows 3 slopes of increase. At the end of the

learning, most of the data are removed reducing the increase of CR. In this experiment the compression rate reaches

6.2 Evaluation and comparison 21

91.6%. Lastly, Figure 3.c shows the variation of AUC during the learning process and reader can observe that the

AUC value increases monotonically reaching 99.82 at the end of the learning stage.

6.2.4. Multi-class learning and comparative study

We propose here to extend our analysis by comparing our method with recent incremental extensions of kernel dis-

criminant analysis (see Table II) such as spectral regression KDA (ISRKDA, [4]), accelerated KDA (IAKDA, [15]),

factorization-free KDA (IFKDA, [40]) and null KDA (INKDA, [29]). We will name our method ICNKDA, acronym

of incremental and compressible null KDA. A Gaussian Kernel of bandwidth σ is used for all the methods. A regular-

ization parameter β is needed for ISRKDA and IAKDA to solve the singularity problem associated to the inversion of

the kernel matrix. We tune σ and β to achieve best testing performance for the proposed methods which are reported

in the 3-th and 4-th columns of table VI. Moreover, the behavior of ICNKDA will be analysed without compression

(ν = 0) and with compression (ν = 0.35). Since most of the competitors are not equipped with a compression mech-

anism, we will limit the size of the training sample to 1000. Performance of the methods will be studied according to

the AUC values in percent and the training times in secondes. Reader must note that the training time used to build

and update the kernel matrix is not reported because this is a common step for all the methods, only the training time

used to update the model will be recorded.

From Table VI, several comments can be pointed out:

a) For all the studied data sets, ICNKDA without compression reaches better or equivalent classification performances

than concurents. As expected, training times consumed by the proposed approach without compression are by far

the worst. The use of a compression strategy in ICNKDA with an appropriate choice of the compression parameter

ν provides a classication level and training time truly competitive with others competitors. In particular, we observe

that the training times for ICNKDA0.35 are faster than those of ISRKDA and IAKDA. It shoud be noted that values

in brackets in the column AUC correspond to the compression rate recorded at the end of the learning process of

ICNKDA0.35.

b) Despite very good training times, INKDA performs less well and these results confirm a loss of accuracy during

the learning process. An illustration of this trend is observed on Figure 4 with the YALE-B data set by comparing the

change in AUC for both methods. Three values of the kernel parameter σ are used in this experiment. Whatever the

value of the kernel width, after a period of growth, the Liu’s scheme records a noticeable performance loss (dashed

lines in Figure 4) while our method shows a continuous increase of the AUC value over the learning (solid lines in

Figure 4). This example is not a particular case that might be explained by a wrong choice of the kernel parameter but

it reflects a general trend of the Liu’s scheme. Indeed, despite a cross validation step to select the best value of σ, the

Liu’s scheme is not optimal to compute incrementally the KNDA’s solution.

6.2 Evaluation and comparison 22

Table 6: Multi-class learning: comparative results

Data Methods σ β Times (sec) AUC

MNIST
10

ICNKDA0 4 - 15.78 99.54
ICNKDA0.35 4 - 2.07 99.29(CR=61.3)
INKDA 4 - 1.23 98.05
ISRKDA 2 1e-3 4.30 99.6
IAKDA 2 2 8.07 99.25
IFKDA 2 - 0.44 96.15

CIFAR
10

ICNKDA0 8 - 15.26 77.94
ICNKDA0.35 8 - 2.83 75.01(CR=56.0)
INKDA 8 - 1.01 65.27
ISRKDA 8 1e-3 4.47 75.10
IAKDA 8 10 7.13 77.53
IFKDA 8 - 0.38 64.63

Y ALE −B
38

ICNKDA0 10 - 16.48 98.89
ICNKDA0.35 10 - 3.33 98.24(CR=45.7)
INKDA 20 - 4.08 81.48
ISRKDA 10 1e-3 5.03 99.16
IAKDA 10 2 6.72 96.06
IFKDA 10 - 2.92 60.2

AY AHOO
′12′

ICNKDA0 2 - 14.26 98.27
ICNKDA0.35 2 - 3.88 97.39(CR=41.4)
INKDA 1 - 2.55 97.25
ISRKDA 2 1e-3 4.06 97.78
IAKDA 2 2 7.06 98.35
IFKDA 2 - 0.46 95.48

c) The factorization mechanism used by IFKDA provides the best training times among the competitors, but using

only the class centers as discriminative information seem to be not enough to perform as well as the other competitors.

6.2.5. One-class learning and comparative study

To complete our study, we propose here to compare our approach with different incremental one-class learning meth-

ods. In this experiment, the learning process is based on a single target class and the others classes are considered

as anomalies. The competitors include the incremental one class svm (IOCSVM, [5, 23]), incremental support vec-

tor data description (ISVDD, [39, 18]), incremental one class gaussian process regression (IOCGPR, [21]) and the

incremental kernel null discriminant analysis in its one class version (INKDA, [29]).

For all the methods a Gaussian kernel of scale σ is used. Additional parameters are needed in the experiments. The

solutions obtained by IOCSVM and ISVDD are influenced by a regularization parameter C = 1
Nν with ν is related

to the outlier ratio in the data set. If we consider that no outliers affect the training data set, C can be set to 1 which

corresponds to a very small outlier ratio (ν ∼ 1
N). Concerning IOCGPR, we use the predictive variance criterion for

6.2 Evaluation and comparison 23

Figure 4: Multi-class learning: evolution of the AUC values for the YALEB data set (see text).

Table 7: one-class learning: comparative study.

Data Methods σ Times (sec) CR AUC

MNIST
′4′

ICNKDA0 3 11.60 0 95.12
ICNKDA0.35 3 0.68 79.4 95.44
ISVDD 4 1.69 93.9 95.44
IOCSVM 8 6.31 0 95.45
IOCGPR 6 3.90 0 94.36
INKDA 15 0.82 0 93.74

CIFAR
′deer′

ICNKDA0 2 11.61 0 76.64
ICNKDA0.35 2 2.12 59.8 75.31
ISVDD 4 88.1 38.1 75.28
IOCSVM 4 16.5 0 75.28
IOCGPR 4 3.91 0 75.26
INKDA 20 2.44 0 72.39

RCV 1
′earn′

ICNKDA0 5 6.36 0 86.64
ICNKDA0.35 3 0.67 85.5 83.38
ISVDD 15 1.84 97.9 86.06
IOCSVM 15 1.17 0 86.10
IOCGPR 10 1.32 0 86.09
INKDA 20 0.76 0 81.73

URL
′normal′

ICNKDA0 4 17.86 0 82.4
ICNKDA0.35 2 11.88 61.1 83.73
ISVDD 4 248.36 93.9 81.2
IOCSVM 4 115.88 0 81.2
IOCGPR 4 5.74 0 81.9
INKDA 1 9.09 0 75.2

6.2 Evaluation and comparison 24

deriving an OCC score but we replace the histogram intersection kernel with the radial basis function (see [21]). The

result of IOCGPR is dependent with the variance of the additive-noise σn which is set to 0.01 in all the experiments.

Lastly, both INKDA and ICNKDA use the strategy presented in section 4.5 to build the one-class kernel Gram matrix.

As in the multi-class experiment, the performance of ICNKDA will be studied without (ν = 0) and with compression

(ν = 0.35).

Table VII shows the results obtained on 4 data sets: MNIST, CIFAR, RCV1 and URL. The target classes are outlined

in the first column. For each experiment, the training data set is composed of 1000 data randomly selected in the

target class and the test set is built from at most 100 data samples extracted from each class. Each competitor uses the

Gaussian function to build the kernel Gram matrix and its bandwidth σ is selected by cross validation (see table VII).

From Table VII, we can notice that ICNKDA shows similar classification results with recent incremental one-class

learning approaches. In most of the cases, by choosing a moderated compression factor, the classification performance

remains competitive with other OCL methods. As previously, it is obvious that the compression strategy provides

substancial gain in training time. Despite fast training times, we observe that the Liu’s scheme (INKDA) provides the

worst classification results and confirms the previous comments.

Concerning one-class SVM methods such as ISVDD and IOCSVM, the results are very similar. ISVDD has the

advantage of using only existing support vectors and the new data vectors to recompute the boundary while IOCSVM

must use all the training data vectors at each updating step. By ignoring interior points of the boundary, ISVDD

is intrinsically equipped with a compression mechanism. But, we observe that training time returned by ISVDD is

sensitive to the dimensionality of the data. Precisely, training time will be very fast for low dimensional data but will

increase drastically for high dimensional data (see the results for the URL data set in Table VII). Indeed, the repeated

access to the expanding, shrinking and bookkeeping steps for maintaining the KKT conditions can be time-consuming

for high dimensional data sets. Based on the same strategy, IOCSVM is even less competitive thereby confirming the

results given in [18].

IOCGPR provides similar classification results that other OCL methods with competitive learning times. However,

without compression mechanism of the kernel Gram matrix, its use will be limited to moderate sized data sets.

6.2.6. Large scale data sets

As previously, we conduct two experiments: Large scale multi-class learning and large scale one-class learning.

For the multi-class learning experiment, 50000 gray level images of MNIST and 50000 color images of CIFAR will

be used in the training phase. Moreover, we compare our method with IFKDA [40] and SoDA [27]. Among the

randomized LDA and KDA [41], SoDA is an online algorithm which recursively updates its solution and does not

depend of the knowledge of the size of the training data set. IFKDA is also an online algorithm which does not need

6.2 Evaluation and comparison 25

(a) (b)

(c) (d)

Figure 5: Large scale multi-class learning. First row: evolution of the AUC values (a) and training times (b) recorded by ICNKDA (circles), SoDA
(diamonds) and IFKDA (squares) from 50000 MNIST images. Second row: evolution of the AUC values (a) and training times (b) recorded by
ICNKDA (circles), SoDA (diamonds) and IFKDA (squares) from 50000 CIFAR-10 images.

26

to store the kernel Gram matrix of the training data. Performance of SoDA is analysed with respect to the size of the

sketch matrix, noticed l, used to capture the main data variations. Different values of l are used in these experiments.

We test SoDA with l = 200, 400 for MNIST (low dimensional data set) and l = 500, 1000 for CIFAR-10 (high

dimensional data sets). IFKDA will be studied with respect to two values of its kernel parameter σ = 4, 10. The

proposed method ICNKDA is parametrized by the kernel width σ and the compression factor ν. In this experiment,

we select σ = 4 for MNIST and σ = 8 for CIFAR-10 and ν will be in the range {0.45, 0.65} for both data sets.

Figure 5 shows the evolution of the AUC values and the training times recorded by all the methods. In terms of

classification performance, Figures 5.a and 5.c show clearly that the proposed method (black curves with filled and

empty circles) outperforms all of its competitors on the MNIST (fig. 5.a) and CIFAR-10 (fig. 5.c) data sets. Moreover,

as expected, we observe that the compression factor ν influences both the classification performance and the training

time, with a different level depending on the complexity (variability) of the data sets. A trade-off between classification

performance and learning time should be considered. Off all the methods, IFKDA records by far the best training times

but shows the worse classification results (red curves with filled and empty squares). Training times returned by SoDA

(blue curves with filled and empty diamonds) can be substantial with the dimensionnality of the data. For instance,

SoDA shows the worse training times for the CIFAR-10 data set. Table VIII shows the final results returned by all the

methods. We observe that ICNKDA removes a large quantity of redundant information (see the last column of Table

VIII) and despite this, ICNKDA performs very well and shows the best results.

For the one-class learning experiment, three large scale data sets are analysed: MNIST, CIFAR-10 and URL. 5842

images of the digit 4 from MNIST are used as target images, 4904 images of deer from CIFAR-10 and 10000 benign

URL adresses as target from the URL data set. We compare our method with ISVDD which has the advantage to

include implicitly a compression mechanism. Figure 6 presents the evolution of the AUC values and the training

times recorded by the two methods. Clearly, we observe that ICNKDA records equivalent classification results with

ISVDD for the MNIST data set but performs better for high dimensional data sets such as CIFAR-10 and URL. As

previously observed in Table VII, ISVDD is time-consuming for high dimensional data sets while ICNKDA shows

faster training times. As expected, the classification performance of ICNKDA is slightly affected when the compres-

sion factor changes. Table IX shows the final results obtained by the two methods and reports the following points:

first, with equivalent compression rates, the two methods return similar classification results for the MNIST experi-

ment. However, when the dimensionality of the data significantly increases ICNKDA outperforms ISVDD. Indeed,

the experiments on the CIFAR-10 and URL data sets seems to confirm this trend.

7. Conclusions

This paper introduces an incremental scheme of KNDA for solving large scale multi-class learning and one-class

learning problems. In order to reduce the size of the kernel Gram matrix which is the main drawback of most kernel

27

(a) (b)

(c) (d)

(c) (d)

Figure 6: Large scale one-class learning. First row: evolution of the AUC values (a) and training times (b) recorded by ICNKDA (circles) and
ISVDD (squares) from MNIST images (target: digit 4) Second row: evolution of the AUC values (a) and training times (b) obtained on CIFAR-10
images (target: deer). Third row: evolution of the AUC values (a) and training times (b) obtained on URL adresses (target: benign adresses)

28

Table 8: large scale multi-class learning.

Data Methods Times (sec) AUC CR

MNIST
10

ICNKDAν=0.45 90.6 99.74 98.07
ICNKDAν=0.65 33.07 99.60 98.56
IFKDAσ=4 1.09 96.26 -
IFKDAσ=10 1.14 95.18 -
SoDAl=200 27.87 96.81 -
SoDAl=400 23.26 96.71 -

CIFAR
10

ICNKDAν=0.45 193.72 80.16 97.26
ICNKDAν=0.65 52.71 78.57 98.17
IFKDAσ=4 2.48 62.28 -
IFKDAσ=10 2.47 65.82 -
SoDAl=200 402.90 69.20 -
SoDAl=400 248.30 70.40 -

Table 9: large scale one-class learning.

Data Methods Times (sec) AUC CR

MNIST
′4′

ICNKDAν=0.25 17.76 97.01 92.97
ICNKDAν=0.35 6.55 96.75 95.33
ISVDDσ=4 80.42 96.94 95.36

CIFAR
′deer′

ICNKDAν=0.25 29.95 78.1 83.91
ICNKDAν=0.35 7.60 75.1 90.96
ISVDDσ=4 4643 75.7 56.10

URL
′1′

ICNKDAν=0.25 54.18 84.1 91.77
ICNKDAν=0.35 18.54 83.5 95.96
ISVDDσ=4 1222 80.5 97.16

REFERENCES 29

learning methods, we propose an efficient compression mechanism based on the main condition of the null KDA. The

proposed criterion removes redundancy in the data and the overlapping rate is monitored by a compression factor. The

combined action of this two steps allows to reduce significantly the learning time while maintaining a classification

level close to the result obtained by the exact method (without compression).

Another contribution is an exact updating scheme for computing the solution of kernel discriminant analysis compared

to the one proposed by Liu et al. in [29] which does not respect the main conditions of KNDA. As the consequence,

the Liu’s scheme produces more null projection directions than theoretically expected and we observe experimentally

a loss of classification performance during the learning process.

The proposed method is compared with recent incremental kernel learning methods both on multi-class and one-class

problems. The results obtained show that our exact incremental KNDA equipped with a compression strategy offers

the capacity to deal with large scale streaming data sets.

References

[1] Alexandre-Cortizo, E., Rosa-Zurera, M., Lopez-Ferreras, F., 2005. Application of fisher linear discriminant

analysisto speech/music classification. EUROCON 2005 - The International Conference on "Computer as a

Tool" 2, 1666–1669.

[2] Belhumeur, P., Hespanha, J., Kriegman, D., 1997. Eigenfaces vs. fisherfaces: recognition using class specific

linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720.

[3] Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., Denzler, J., 2013. Kernel null space methods for novelty

detection, in: Computer Vision and Pattern Recognition, pp. 3374–3381.

[4] Cai, D., He, X., Han, J., 2011. Speed up kernel discriminant analysis. The VLDB Journal 20, 21–33.

[5] Cauwenberghs, G., Poggio, T., 2000. Incremental and decremental support vector machine learning, in: Proceed-

ings of the 13th International Conference on Neural Information Processing Systems, MIT Press, Cambridge,

MA, USA. pp. 388–394.

[6] Chen, F., Liao, H., Ko, M., Lin, J., Yu, G., 2001. A new lda-based face recognition system which can solve the

small sample size problem, in: Pattern Recognition, pp. 2067–2070.

[7] Chin, T., Suter, D., 2007. Incremental kernel principal component analysis. IEEE Transactions on Image Pro-

cessing 16, 1662–1674.

[8] Chin, T.J., Suter, D., 2007. Incremental kernel principal component analysis. IEEE Trans. Image Processing 16,

1662–1674.

REFERENCES 30

[9] Chowdhury, A., Yang, J., Drineas, P., 2020. Randomized iterative algorithms for fisher discriminant analysis, in:

Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, pp. 239–249.

[10] Chu, D., Liao, L., Ng, M.K., Wang, X., 2015. Incremental linear discriminant analysis: A fast algorithm and

comparisons. IEEE Transactions on Neural Networks and Learning Systems 26, 2716–2735.

[11] Chu, D., Thye, G.S., 2010. A new and fast implementation for null space based linear discriminant analysis.

Pattern Recognition 43, 1373–1379. URL: https://doi.org/10.1016/j.patcog.2009.10.004,

doi:10.1016/j.patcog.2009.10.004.

[12] Dufrenois, F., Noyer, J., 2016. One class proximal support vector machines. Pattern Recognition 52, 96–112.

[13] Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.A., 2009. Describing objects by their attributes., in: CVPR, IEEE

Computer Society. pp. 1778–1785. URL: https://vision.cs.uiuc.edu/attributes/.

[14] Georghiades, A., Belhumeur, P., Kriegman, D., 2001. From few to many: Illumination cone models for face

recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23, 643–660. URL:

http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html.

[15] Gkalelis, N., Mezaris, V., 2017. Incremental accelerated kernel discriminant analysis. MM ’17: Proceedings of

the 25th ACM international conference on Multimedia , 1575–1583.

[16] Howland, P., Park, H., 2004. Generalizing discriminant analysis using the generalized singular

value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 995–1006.

doi:10.1109/TPAMI.2004.46.

[17] Huang, R., Liu, Q., Lu, H., Ma, S., 2002. Solving the small sample size problem of lda. Proceedings of the 16th

International Conference on Pattern Recognition 3, 29–32.

[18] Jiang, H., Wang, H., Hu, W., Kakde, D., Chaudhuri, A., 2017. Fast incremental svdd learning algorithm with the

gaussian kernel. arXiv e-prints .

[19] J.Lim, D.Ross, Lin, R., Yang, M., 2004. Incremental learning for visual tracking. In Advances in NIPS , 793 –

800.

[20] J.Ye, T.Xiong, 2006. Null space versus orthogonal linear discriminant analysis. Proc. Int. Conf. Machine Learn-

ing , 1073–1080.

[21] Kemmler, M., Rodner, E., Wacker, E., Denzler, J., 2013. One-class classification with gaussian processes. Pattern

Recogn. 46, 3507–3518.

REFERENCES 31

[22] Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from tiny images URL:

https://www.cs.toronto.edu/ kriz/cifar.html.

[23] Laskov, P., Gehl, C., Krüger, S., Müller, K., 2006. Incremental support vector learning: Analysis, implementation

and applications. J. Mach. Learn. Res. 7, 1909–1936.

[24] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to document recognition ,

2278–2324URL: http://yann.lecun.com/exdb/mnist/.

[25] Levey, A., Lindenbaum, M., 2000. Sequential karhunen-loeve basis extraction and its application to images.

IEEE Transaction on Imgage Processing 9, 1371–1374.

[26] Lewis, D.D., Yang, Y., Rose, T.G., Li, F., 2004. Rcv1: A new benchmark col-

lection for text categorization research. J. Mach. Learn. Res. 5, 361–397. URL:

http://www.daviddlewis.com/resources/testcollections/reuters21578.

[27] Li, W., Zhong, Z., Zheng, W., 2017. One-pass person re-identification by sketch online discriminant analysis.

CoRR abs/1711.03368. URL: http://arxiv.org/abs/1711.03368.

[28] Liberty, E., 2013. Simple and deterministic matrix sketching, in: The 19th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, ACM. pp.

581–588.

[29] Liu, J., Lian, Z., Wang, Y., Xiao, J., 2017. Incremental kernel null space discriminant analysis for novelty

detection. CVPR , 4123–4131.

[30] Ma, J., Saul, L.K., Savage, S., Voelker, G.M., 2009. Identifying suspicious urls: An application of large-scale

online learning, in: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 681–688.

URL: http://www.sysnet.ucsd.edu/projects/url/.

[31] Musco, C., Musco, C., 2017. Recursive sampling for the nyström method. Advances in Neural Information

Processing Systems 2017-December, 3834–3846. 31st Annual Conference on Neural Information Processing

Systems, NIPS 2017 ; Conference date: 04-12-2017 Through 09-12-2017.

[32] Park, H., Drake, B., Lee, S., Park, C., 2007. Fast linear discriminant analysis using qr decomposition and

regularization. Technical report GT-CSE-07-21 .

[33] Rahimi, A., Recht, B., 2007. Random features for large-scale kernel machines, in: Proceedings of the 20th

International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY,

USA. pp. 1177–1184.

REFERENCES 32

[34] Roth, V., 2006. Kernel fisher discriminant for outlier detection. Neural Computation 18, 942–960.

[35] Rudin, W., 1962. Fourier analysis on groups.

[36] S. Pang, Ozawa, S., Kasabov, N., 2005. Incremental linear discriminant analysis for classification of data streams.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 905–914.

[37] Sharma, A., Paliwal, K.K., 2012. A new perspective to null linear discriminant analysis method and its fast

implementation using random matrix multiplication with scatter matrices. Pattern Recognition 45, 2205–2213.

[38] Shawe-Taylor, J., Cristianini, N., 2004. Kernel Methods for Pattern Analysis. Cambridge University Press, New

York, NY, USA.

[39] Tax, D., Duin, R., 1999. Support vector domain description. Pattern Recognition Letters 20, 1191–1199.

[40] Wang, Y., Xue, N., Fan, X., Luo, J., Liu, R., Chen, B., Li, H., Luo, Z., 2018. Fast factorization-free kernel

learning for unlabeled chunk data streams. IJCAI , 2833–2839.

[41] Ye, H., Li, Y., Chen, C., Zhang, Z., 2017. Fast fisher discriminant analysis with randomized algorithms. Pattern

Recognition 72, 82–92.

[42] Y.F.Guo, L.Wu, H.Lu, Z.Feng, X.Xue, 2006. Null foley-sammon transform. Pattern Recognition 39, 2248–2251.

[43] Yu, H., Yang, J., 2001. A direct lda algorithm for high-dimensional data - with application to face recognition.

Pattern Recognition 34, 2067–2070.

[44] Zhang, Z., Dai, G., Xu, C., Jordan, M.I., 2010. Regularized discriminant analysis, ridge regression and beyond.

J. Mach. Learn. Res. 11, 2199–2228.

