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For T Ω a Hermitian symmetric tube-type domain, a family (π µ ) µ∈C of holomorphic vector-valued representations is studied. The corresponding Wallach set is determined. The main tool is a realization of the representations as weighted L 2 -spaces on the cone Ω through the Laplace transform.

Introduction

The holomorphic discrete series has been studied intensively after its introduction by Harisch Chandra. In particular the analytic continuation of the series and the possible unitarizable representations beyond the discrete series is a difficult problem, solved in full generality in the 80's (see [START_REF] Enright | A classification of unitary highest weight modules, Representation theory of reductive groups[END_REF], [START_REF] Jakobsen | Hermitian symmetric spaces and their unitary highest weight modules[END_REF]). Earlier, for scalar-valued cases, the description of the Wallach set [START_REF] Wallach | The analytic continuation of the discrete series, I, II[END_REF] was an important result. For tube-type domains in particular, the Laplace transform offers explicit and nice realizations of the singular representations (see [START_REF] Rossi | Analytic continuation of the holomorphic discrete series of a semisimple Lie group[END_REF], [START_REF] Faraut | Analysis on Symmetric Cones[END_REF]). There were a few attempts to study the vector-valued cases by a similar approach (see [START_REF] Kunze | Positive definite operator-valued kernels and unitary representations[END_REF], [START_REF] Clerc | Laplace transform and unitary highest weight modules[END_REF], [START_REF] Ding | Weighted Laplace transforms and Bessel functions on Hermitian symmetric domains[END_REF], [START_REF] Hilgert | Vector valued Riesz distributions on Euclidean Jordan algebras[END_REF] ), but far from being conclusive. The present work addresses these questions on a modest but typical example.

The theory of tube-type domains which are Hermitian symmetric spaces is intimately connected to the theory of Euclidean Jordan algebras, as developed in [START_REF] Faraut | Analysis on Symmetric Cones[END_REF]. To any (say) simple Euclidean Jordan algebra J is associated a symmetric cone Ω, and the tube-domain is J ⊕ iΩ. The group G of bi-holomorphic automorphisms has a family of generators which are easily described in the framework of Jordan algebras. The maximal compact subgroup U of G is a real form of the structure group of J, the complexification of J. Hence among the irreducible representations of U one can single out those which are irreducible sub-representations of the natural action of U on the polynomial algebra on J. The simplest component is the space of degree one homogeneous polynomials (i.e. linear forms). This allows to define a family of holomorphic representations (π µ ), µ ∈ C (in fact projective representations, which can be realized as representations of the universal covering of G). For µ real-valued and large enough, the representations are unitary and realized on weighted Bergman spaces. Their reproducing kernels Q µ are easy to determine and it is a natural question to ask for which values of µ is Q µ still positive-definite, or said in different terms to determine the Wallach set corresponding to this family of unitarizable vector-valued holomorphic representations. Simple Euclidean Jordan algebras are characterized by three numbers n, r, d which satisfy the relation n = r + r(r-1) 2 d. The main theorem of the present article can be formulated as follows. 1 Theorem 0.1. The kernel Q µ is positive-definite if and only if µ belongs to

2 d 2 , 3 d 2 , • • • , (r -1) d 2 rd 2 , +∞ .
In order to investigate other cases, the obstacle is in the complexity of the decomposition of the chosen representation of L, when restricted to the subgroup K of automorphisms of the Jordan algebra J. In the present example, there are only two components and it is possible to handle the case. The investigation through the Laplace transform gives interesting insights in the problem, and our results gives some motivation for considering more examples.

Euclidean Jordan algebra and tubetype domains

Let J a simple Euclidean Jordan algebra. Our main reference on the subject is [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] and we usually follow their notation. In particular, a simple Euclidean Jordan algebra is characterized by three integers : its dimension n, its rank r and an integer d, which satisfy

n = r + r(r -1) 2 d .
The standard inner product on J is given by

x, y ∈ J, (x|y) = tr(xy),
where tr is used for the trace function on J.

Let L be the neutral component of the structure group of J. Then L is a reductive group, and K = L ∩ O(J) is a maximal compact subgroup of L which is also the stabilizer in L of the unit element e and the neutral component of the automorphisms group of J.

Denote by det the determinant of the Jordan algebra J. Recall that det is a homogeneous polynomial of degree r on J.

Let χ : L -→ R + be the character on L which satisfies the following identity, det ℓx = χ(ℓ) det x , for ℓ ∈ L and any x ∈ J.

Let P be the quadratic representation of J, and recall that for any x ∈ Ω P (x) ∈ L and χ P (x) = (det x) 2 .

(

Another useful formula, valid for any

ℓ ∈ L is Det ℓ = χ(ℓ) n/r .
Let Ω be the positive cone of J. The measure

d * x = (det x) -n r dx
is invariant under the action of L.

Introduce the Γ-function of the cone as the integral

Γ Ω (λ) = Ω e -tr x det(x) λ d * x
The integral converges absolutely for ℜ(λ) > (r -1) d 2 = n r -1 and

Γ Ω (λ) = (2π) n-r 2 Γ(λ)Γ λ - d 2 . . . Γ λ -(r -1) d 2 .
For α ∈ C, ℜ(α) > (r -1) d 2 , recall the Riesz integral given for a Schwarz function ϕ ∈ S(J) by

T α (ϕ) = 1 Γ Ω (α) Ω ϕ(x)(det x) α d * x . (2) 
Proposition 1.1. For ϕ in S(J), T α (ϕ) admits an analytic continuation as an entire function of α. Moreover, the analytic continuation T α is a tempered distribution on J for all α ∈ C and satisfies

T α (ϕ • ℓ -1 ) = χ(ℓ) α T α (ϕ) . (3) 
The closure Ω contains r + 1 orbits under the action of L, namely

Ω = r k=0 Ω (k) ,
where Ω (k) is the set of elements of rank k in Ω. Notice that Ω (0) = {0} and Ω (r) = Ω.

Proposition 1.2. For α = k d 2 , 0 ≤ k ≤ r -1, the distribution T α is a positive measure (from now on denoted by ν k ) supported by Ω (k) . The measure ν k is quasi-invariant by L and satisfies

ν k (ℓ . ) = χ(ℓ) k d 2 ν k ( . ) . (4) 
Let c = 0 be an idempotent of J. Then the Peirce decomposition of J with respect to c is given by

J = J(c, 1) ⊕ J(c, 1/2) ⊕ J(c, 0) ,
where for α = 0, 1/2, 1,

J(c, α) = {x ∈ J, cx = αx} .
A Jordan frame of J is a collection (c 1 , c 2 , . . . , c r ) of strongly orthogonal primitive idempotents which satisfy

e = c 1 + c 2 + • • • + c r .
To each Jordan frame corresponds a Peirce decomposition

J = 1≤i≤j≤r J ij ,
where for 1 ≤ i ≤ r and i + 1 ≤ j ≤ r,

J ii = J(c i , 1) = Rc i , J ij = J(c i , 1/2) ∩ J(c j , 1/2) .
The spaces J ij for 1 ≤ i < j ≤ r have the same dimension d.

Let J be the complexification of J. Extending the Jordan algebra structure of J to J in a C-linear way, J becomes a complex simple Jordan algebra. Let L be the connected component of the structure group of J, which is a reductive group. Extend the Euclidean inner product of J to a Hilbertian product on J and let U (J) be the corresponding unitary group. Then

U = L ∩ U (J) (5) 
is a connected maximal compact subgroup of L. Notice that L and U are two real forms of L.

Let

T Ω = {z = x + iy ∈ J, y ∈ Ω} be the corresponding tube domain. Let G be the neutral component of the group of biholomorphic diffeomorphisms of T Ω . The group G is generated by • the group L, after complex extension to J of its elements

• the group of translations N = {t u : z → z + u, u ∈ J} • ι the inversion z -→ -z -1 .
The group G acts transitively on T Ω and the space T Ω , equipped with the Bergman metric, is a non compact Hermitian symmetric space.

Let g ∈ G and let z ∈ T Ω . Then the complex differential Dg(z) is an element of the complex structure group L of the complex Jordan algebra J. For the generators of G, notice that for

z ∈ T Ω • Dℓ(z) = ℓ for ℓ ∈ L. • Dt u (z) = id for u ∈ J • Dι(z) = P z -1 = P (z) -1 for the inversion ι.
For g ∈ G and z ∈ T Ω , let J(g, z) = Dg(z) be the differential of the map g at z. An important result is that

J(g, z) ∈ L ,
as can verified on the generators of G and extended to G by using the chain rule.

Let U be the stabilizer of the origin ie ∈ T Ω . Then U is a maximal compact subgroup of G. To describe this subgroup, it is convenient to refer to the bounded realization of T Ω . Let | . | be the spectral norm on J and let D be the corresponding open unit ball

D = {w ∈ J, |w| < 1} .
Let G(D) 0 be the neutral component of the group of biholomorphic diffeomorphisms of D. Then the stabilizer of 0 ∈ D in G(D) 0 is equal to U as defined by [START_REF] Hilgert | Vector valued Riesz distributions on Euclidean Jordan algebras[END_REF].

Define the Cayley transform to be the rational map c on J given by c(w

) = i(e + w)(e -w) -1 .
Then c is well-defined for w ∈ D, its image c(w) belongs to T Ω and c yields a biholomorphic diffeomorphism from

D into T Ω . Now for u ∈ U , define u = c • u • c -1 . (6) 
Then u ∈ U and the map u

-→ u is a isomorphism of U to U . Notice that D u(ie) = u . (7) 
This is obtained by the chain rule applied to [START_REF] Jakobsen | Hermitian symmetric spaces and their unitary highest weight modules[END_REF] and the fact that Dc(0) = 2i id J .

2 Vector-valued holomorphic representations and Laplace transform Let (σ, V σ ) be a finite dimensional (holomorphic) irreducible representation of L (equivalently of U or L) and choose an inner product ( . , . ) Vσ on V σ which is invariant under the action of U . Let O σ be the Montel space of V σ -valued holomorphic functions on T Ω . The following formula defines a representation of

G on O σ π σ (g)F (z) = σ J(g -1 , z) -1 F g -1 (z) . (8) 
For

F, G ∈ O σ let (F, G) σ = T Ω σ(P (y) -1 F (z), G(z) Vσ d * z
where d * z = (det y) -2n r dx dy is the G-invariant measure on T Ω , and let

H σ = {F ∈ O σ , (F, F ) σ < +∞} .
When this space is not reduced to {0}, it is a Hilbert space, stable by the action of G and π σ yields a unitary representation of G. Then the evaluation map at any z ∈ T Ω

H σ ∋ F -→ F (z) ∈ V σ is easily shown to be continuous. Define for z, w ∈ T Ω the reproducing kernel of H σ by Q σ (z, w) = E z E * w . Proposition 2.1. Assume that H σ = {0}. Then Q σ (z, w) = c σ P z -w 2i
for some constant c > 0.

See [START_REF] Clerc | Laplace transform and unitary highest weight modules[END_REF] for a proof. Denote by Herm + (V σ ) the space of positive semi-definite operators on V σ . Proposition 2.2. Suppose that H σ = {0}. There exists a unique Herm + (V σ )-valued measure dR σ on Ω such that

Q σ (z, w) = Ω e -( z-w 2i | v) dR σ (v) . (9) 
Moreover, the measure dR σ satisfies

∀ℓ ∈ L, dR σ (ℓ . ) = σ(ℓ) * -1 dR σ ( . ) σ(ℓ) -1 , (10) 
Ω e -tr v dR σ (v) = Id Vσ . (11) 
For a proof see [START_REF] Clerc | Laplace transform and unitary highest weight modules[END_REF]. Let L σ be the space of mesurable functions f : Ω -→ V σ which satisfy

Ω dR σ (2v)f (v), f (v) Vσ < +∞ . ( 12 
)
After identifying two functions which are equal dR σ -a.e., L σ becomes a Hilbert space for the inner product

(f, g) Lσ = Ω dR σ (2v)f (v), g(v) Vσ . (13) 
Define the (modified) Laplace transform F σ by

F σ f (z) = Ω e i (z | v) dR σ (2v)f (v) . ( 14 
)
Proposition 2.3. Assume that H σ = {0}. Then the Laplace transform F σ yields an isometry from L σ onto H σ .

For the proof, see [START_REF] Clerc | Laplace transform and unitary highest weight modules[END_REF], Theorem 3.5.

The results presented so far can be summarized as follows : to each representation σ such that H σ is not reduced to {0}, there corresponds an Herm + (V σ )-valued measure dR σ on Ω which satisfies (10) and (11). In some sense, there is a converse construction, starting form the measure dR σ and constructing the Hilbert space H σ . Proposition 2.4. Let σ be a holomorphic irreducible representation of L and assume that there exists an Herm + (V σ )-valued measure dR σ on Ω which satisfies (10) and (11). Define the space L σ by the condition (12) and let H σ be the image of L σ by the Laplace transform (14). Then H σ , equipped with the inner product given by

(F σ f, F σ g) = (f, g) Lσ
is a Hilbert space of holomorphic functions in T Ω , which admits the reproducing kernel given by

Q σ (z, w) = Ω e -( z-w 2i | v) dR σ (v) .
The space H σ is stable under the action of G given by ( 8) and (π σ , H σ ) is an irreducible unitary representation of G.

For the proof see again [START_REF] Clerc | Laplace transform and unitary highest weight modules[END_REF], Theorem 3.5.

Remark. For z, w ∈ T Ω , ℜ z -w 2i = ℑ(z) + ℑ(w) 2 ∈ Ω,
and on the diagonal

ℜ z -z 2i = ℑ(z) ∈ Ω .
Hence det z-w 2i = 0 on T Ω × T Ω , and there exists a unique determination of log det z -w 2i on T Ω × T Ω which coincides on the diagonal {w = z} with ln (det(ℑz)). With this choice, define for µ ∈ C,

det z -w 2i µ = e µ log(det( z-w 2i )) ,
and let

σ µ (ℓ) = χ(ℓ) -µ 2 σ(ℓ) .
This makes sense for ℓ ∈ L and defines a representation of L, which can also be considered as a representation of the universal covering of L. It may be used to define a holomorphic representation π σµ of the universal covering of G still using formula [START_REF] Rossi | Analytic continuation of the holomorphic discrete series of a semisimple Lie group[END_REF]. Thanks to (1), the corresponding reproducing kernel is given by

Q σ,µ (z, w) = det z -w 2i -µ Q σ (z, w) .
This opens the possibility of studying the existence of dR σ by using techniques of analytic continuation.

3 Polynomial representations of L and the associated holomorphic discrete series

Let P be the space of holomorphic polynomials on J. The group L acts naturally on P by

π(ℓ)p (z) = p(ℓ -1 z) ,
for p ∈ P and ℓ ∈ L. It may also be regarded as a representation of U or of L, and clearly the decomposition of P into invariant minimal subspaces is the same for the three different points of view. Fix a Jordan frame (c 1 , c 2 , . . . , c r ) of J. For 1 ≤ k ≤ r let

e k = c 1 + c 2 + • • • = c k , J k = J(e k , 1) .
Then J k is simple Jordan algebra with neutral element e k . Notice that for any k, 0 ≤ k ≤ r,

Ω k = L e k .
Let det k be its determinant and let p k be the orthogonal projector of J unto

J k . Form ∆ k (x) = det k (p k x)
the k-th principal minor.

A multiindex m = (m 1 , m 2 , . . . , m r ) where

m j ∈ Z, 1 ≤ j ≤ r is said to be positive if m 1 ≥ m 2 ≥ • • • ≥ m r ≥ 0. The set of positive multiindices is denoted by M + . For m ∈ M + let ∆ m (x) = ∆ 1 (x) m 1 -m 2 ∆ 2 (x) m 2 -m 3 . . . ∆ r (x) mr .
and let P m be the subspace of P generated by {π(ℓ)∆ m , ℓ ∈ L}. 

π m (g)F (z) = σ m (J(g -1 , z) -1 F g -1 (z) .
Form the corresponding Hilbert space H σm and the corresponding representation π σm of G on H σm . Let further

Q m (z, w) = σ m P z -w 2i .
When H m = {0}, this is (up to a positive scalar) the reproducing kernel of H m , and there exists a Herm + (P m )-valued measure dR m , supported in Ω, such that (9) is satisfied. The question we address is to calculate dR m , using the two properties (10) and (11) which allow in principle to calculate a formal solution. It remains to test the positivity of the solution to conclude. In this case, the remark can be exploited as follows. Let µ ∈ N, and consider the map I µ : P → P given by

(I µ p )(z) = (det z) µ p(z)
and define the representation σ m,µ of L on P m given by σ m,µ (ℓ) p = χ(ℓ) -µ (p • ℓ -1 ) . Proposition 3.2. The operator I µ maps P m onto P m+µ and intertwines σ m,µ and σ m+µ .

Proof. Now first

(I µ ∆ m )(z) = ∆ 1 (x) m 1 -m 2 . . . ∆ mr+µ r (z) = ∆ m 1 +µ,m 2 +µ,...,m r-1 +µ,mr+µ (z) = ∆ m+µ (z) ∈ P m+µ Next for p ∈ P m I µ (σ m,µ (ℓ)p)(z) = χ(ℓ) -µ p(ℓ -1 z)∆ µ r (z) = p(ℓ -1 z)∆ µ r (ℓ -1 z) = (I µ p)(ℓ -1 z) .
Combining both formulas,

I µ (σ m,µ (ℓ)∆ m ) = ∆ m+µ • ℓ -1 = σ m+µ(ℓ) I µ ∆ m .
As observed previously, this can be extended for µ a complex number, by considering the universal covering of L.

The strategy is to consider a multiindex m with last index m r = 0 and study the family of kernels Q σ m+µ , µ ∈ C by analytic continuation.

The scalar case (i.e. m = (m, m, . . . , m)) is treated in [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] ch. XIII and the study leads to the so-called Wallach set (see [START_REF] Wallach | The analytic continuation of the discrete series, I, II[END_REF] and [START_REF] Rossi | Analytic continuation of the holomorphic discrete series of a semisimple Lie group[END_REF] for original proofs).

For x ∈ Ω, ∆ j (x) > 0. For s = (s 1 , s 2 , . . . , s r ) ∈ C r , write

∆ s (x) = ∆ 1 (x) s 1 -s 2 ∆ 2 (x) s 2 -s 3 . . . ∆ r (x) sr .
The Gamma function of the cone Ω is defined by

Γ Ω (s) = Ω e -tr x ∆ s (x)d * x
The integral is absolutely convergent for ℜs j > (j -1) d 2 , j = 1, 2, . . . , r and can be meromorphically continued to C r . Moreover,

Γ Ω (s) = (2π) n-r 2 r j=1 Γ s j -(j -1) d 2 , ( 15 
)
see [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] Ch. VII.

4 The case of P 1,0,...,0

In this section, we achieve the computation of dR µ for the case corresponding to the family of indices m = (1, 0, . . . , 0) + µ, µ ∈ C. 2The space P 1,0,...,0 is the dual space J ′ of complex linear forms on J. Using the duality (over C) given by (x, y) -→ tr xy it is convenient to identify J ′ with J. The corresponding representation σ of L is then given by

σ(ℓ)v = ℓ t -1 v .
The corresponding U -invariant Hilbertian inner product is given by (x|y) = tr xy .

The following (folklore) lemma will be useful later. Lemma 4.1. Let J be a simple Euclidean Jordan algebra of rank r ≥ 2. Let Q be a Hermitian operator on J which is invariant under K. Then there exists α, β ∈ R such that for any v, w ∈ J Qv = αv + β(v|e) e.

Proof. Let q(v, w) = (Qv, w) be the associated Hermitian form on J. Let (c 1 , c 2 , . . . , c r ) be a Jordan frame of J. Let A = r j=1 Cc j and let q A be the restriction of q to A. Given a permutation σ of {1, 2, . . . , r} there exists an element k σ of K such that k σ c j = c σ(j) . Hence q A is invariant under S r . The space A ≃ C r decomposes under the action of S r as

A = Ce ⊕ A 0 = Ce    a = r j=1 a j c j , r j=1 a j = 0    ,
and A 0 is irreducible under the action of S r . Hence the space of S rinvariant Hermitian forms on A is of dimension 2. The two Hermitian forms r j=1 a j b j and ( r j=1 a j )( r j=1 b j ) on C r are S r -invariant and they are linearly independent. Hence there exists two real numbers α, β such that

q A ( r j=1 a j c j , r j=1 b j c j ) = α   r j=1 a j b j   + β   r j=1 a j     r j=1 b j   .
As a consequence, the two Hermitian forms q and α tr(xx)+β tr(x) tr(x) on J are invariant by K and coincide on A. By the spectral theorem for J, they coincide on J and hence also on J. The conclusion follows

Recall that σ µ is the representation of L given by

σ µ (ℓ) = χ(l) -µ 2 σ(ℓ) .
The measure dR µ on Ω should satisfy

for all ℓ ∈ L, dR µ (ℓ.) = χ(ℓ) µ ℓ dR µ (.) ℓ t (16) 
and

Ω e -tr v dR µ (v) = Id J . ( 17 
) Theorem 4.2. Let ℜµ > (r -1) d 2 .
Let dR µ be the Herm(J)-valued measure on Ω defined by

dR µ (y) = 1 µ(µ + 1)(µ -d 2 )Γ Ω (µ) µP (y) - d 2 p y (det y) µ d * y (18)
where for y ∈ J, p y is the operator defined by p y v = (v|y)y.

Then Ω e -tr y dR µ (y) = Id J .

Before giving a proof of the theorem, we present a heuristic approach which led us to the formula. Assume that the measure dR µ is absolutely continuous with respect to the L-invariant measure (det y) -n r dy on Ω, and let dR µ (y) = r µ (y)(det y) -n r dy be its expression, where r µ is now a Herm(J) + -valued function on Ω. The function r µ has to satisfy

∀ℓ ∈ L, ∀x ∈ Ω, r µ (ℓx) = χ(l) µ l r µ (x) l t (19) 
and

Ω e -tr x r µ (x) dx * = id J . (20) 
Lemma 4.3. Let r µ a Herm(J)-valued function on Ω which satisfies (19). Then there exist two real numbers α(µ), β(µ) such that r µ (y) = (det y) µ α(µ)P (y) + β(µ) p y .

Proof. Letting ℓ ∈ K and v = e, (19) implies that for any k ∈ K k r µ (e) = r µ (e) k .

Now use Lemma 4.1 to conclude that there exists two real numbers α(µ) and β(µ) such that

r µ (e)v = α(µ)v + β(µ) tr(v)e .
Further, let y ∈ Ω and use again (19) with x = e and ℓ = P (y 1/2 ) to get r µ (y) = (det y) µ α(µ)P (y) + β(µ) p y .

To prove Theorem 4.2, it remains to compute α(µ) and β(µ), so that (20) is satisfied. Consider the four following functions on J Tr P (x), Tr p x , (P (x)e|e), (p x (e)|e) .

They are homogeneous polynomials of degree 2 and they are invariant by K. The space P 2 of homogeneous polynomials of degree 2 decomposes under the action of L as P 2 = P 2,0,...,0 ⊕ P 1,1,0,...,0 , as a consequence of Proposition 3.1. Now each space P m contains a unique (up to a scalar) K-invariant vector (see [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] Proposition XI.3.1), so that the four polynomials are linear combination of the two Kinvariant polynomials in P 2,0 and P 1,1 .

Lemma 4.4. Consider the following polynomials

p 2,0 (x) = d 2 (tr x) 2 + tr(x 2 ) , p 1,1 (x) = (tr x) 2 -tr(x 2 )
Then p 2,0 (resp. p 1,1 ) is the unique (up to a scalar) K-invariant element in P 2,0,...,0 (resp. P 1,1,0,...,0 ).

For a proof, see [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] ch XI. Exercice 2.

Lemma 4.5. Let J be a simple Euclidean Jordan algebra of rank r ≥ 2. Then the following identities hold

Tr P (x) = 2 d + 2 p 2,0 (x) + d 2 4 p 1,1 (x) ( 22 
) (P (x)e|e) = Tr p x = 2 d + 2 p 2,0 (x)) - d 2 p 1,1 (x) (23) (p x e|e) = 2 d + 2 p 2,0 (x) + p 1,1 (x) . (24) 
Proof. First observe that 

See [START_REF] Faraut | Analysis on Symmetric Cones[END_REF] Lemma XI.2.3. Apply now this formula and for m = (2, 0, . . . , 0)

Ω e -tr x p 2,0 (x) (det x) µ d * x = = (2π) n-r 2 r 1 + rd 2 Γ(2 + µ) r j=2 Γ µ -(j -1) d 2 = r 1 + rd 2 (µ + 1) µ Γ Ω (µ)
and for m = (1, 1, 0, . . . , 0) to obtain

Ω e -tr x p 1,1 (det x) µ d * x = (2π) n-r 2 r(r -1)Γ(µ + 1)Γ µ + 1 - d 2 r j=3 Γ µ -(j -1) d 2 = r (r -1) µ µ - d 2 Γ Ω (µ) . Proposition 4.7. For ℜµ > (r -1) d 2 Ω e -tr x Tr(P (x))(det x) µ d * x = 2 d + 2 Γ Ω (µ)rµ (1 + rd 2 )(µ + 1) + d 2 4 (r -1)(µ - d 2 ) (28) Ω e -tr x Tr(p x )(det x) µ d * x = 2 d + 2 Γ Ω (µ)rµ (1 + rd 2 )(µ + 1) - d 2 (r -1)(µ - d 2 ) (29) Ω e -tr x (P (x)e|e)(det x) µ d * x = 2 d + 2 Γ Ω (µ)rµ (1 + rd 2 )(µ + 1) - d 2 (r -1)(µ - d 2 ) (30) Ω e -tr x (p x e|e)(det x) µ d * x = 2 d + 2 Γ Ω (µ)rµ (1 + rd 2 )(µ + 1) + (r -1)(µ - d 2 ) . (31) 
Proof. Combine Lemma 4.5 and Lemma 4.6 to get the results.

As Tr(Id J ) = n and (Id J e, e) = tr e = r, α(µ), β(µ) have to satisfy

  (2 + rd)(µ + 1) + (r -1) d 2 2 (µ -d 2 ) (2 + rd)(µ + 1) -(r -1)d(µ -d 2 ) (2 + rd)(µ + 1) -d(r -1)(µ -d 2 ) (2 + rd)(µ + 1) + 2(r -1)(µ -d 2 )     α(µ) β(µ)   = d + 2 rµΓ Ω (µ)   n r   .
Now observe that the four coefficients of the matrix vanish identically for d = -2. Hence the system can be rewritten as

   (r-1)d 2 + 1 µ -(r -1) d 2 4 + (r-1)d 2 + 1 µ + (r-1)d 2 + 1 µ + (r-1)d 2 + 1 rµ + 1      α(µ) β(µ)   = 1 rµΓ Ω (µ)   n r  
The determinant of the matrix is a polynomial of degree 2 in µ, and it is easily seen that it vanishes for µ = -1 and µ = d 2 . Next, the coefficient of degree 2 is equal to

(r-1)d 2 + 1 1 1 r = n -1 .
Hence the determinant of the matrix of the system is equal to

(n -1)(µ + 1) µ - d 2 .
The solutions of the system are given by 

 α(µ) β(µ)   = 1 r(n -1)µ(µ + 1)(µ -d 2 )Γ Ω (µ)    rµ + 1 -µ -(r-1)d 2 -1 -µ -(r-1)d 2 -1 (r-1)d 2 + 1 µ -(r -1) d 2 4 + (r-1)d 2 + 1      n r   Notice that n(rµ + 1) -rµ -(r(r -1) d 2 + r) = (n -1)rµ
and hence (32) is also satisfied on Cy. Assume now that y ∈ Ω. Then as P (y) is positive-definite, the inequality (32) is strict on (y) ⊥ . So equality can occur only if v = µy for some µ ∈ C, µ = 0. Conversely, equality in (32) implies (y|y) 2 = r(y 2 |y 2 ), hence corresponds to the case of equality in the Cauchy-Schwarz inequality (33) and implies y = te for some t > 0. This completes the proof.

The next proposition is just an immediate consequence of the previous lemma. Corollary 4.9. Let µ ∈ R. For y ∈ Ω, the operator r µ (y) is positive semi-definite if and only if µ ≥ rd 2 .

The singular cases

To prove Theorem 0.1, it remains (cf [START_REF] Clerc | Laplace transform and unitary highest weight modules[END_REF]) to look to the cases µ = k d 2 , 0 ≤ k ≤ r-1. If k = 0, i.e. for the orbit O (0) = {0}, there is clearly no solution to the condition (16). The next section will treat the case k = 1. We examine in this section the case where 2 ≤ k ≤ r -1, assuming that r ≥ 3. The next lemma is a generalization of Lemma 4.8. As Tr r 1 (x) = (r 1 (x)e|e) for any x ∈ Ω (1) , the integral on the left hand side of (39), call it Σ, satisfies Tr(Σ) = (Σe, e). As Tr Id J = n and (Id e|e) = r, Σ cannot be equal to Id J . This achieves the proof of Proposition 6.1.

The proof of Theorem 0.1 is now complete.

Proposition 3 . 1 .

 31 The subspaces P m are mutually inequivalent irreducible subspaces under the action of L and P is the direct orthogonal sum P = m∈M + P m . Denote by π m the restriction of π to the subspace P m will be denoted by π m . Let m = (m 1 , m 2 , . . . , m r ) ∈ M + and let O m = O(T Ω , P m ) ≃ O(T Ω ) ⊗ P m be the space of P m -valued holomorphic functions on T Ω . Then G acts on O m by

Lemma 4 . 6 .

 46 (P (x)e|e) = (x 2 |e) = tr(x 2 ), Tr p x = (x|x) = tr(x 2 ), (p x e|e) = (x|e)(x|e) = (tr x) 2 . Hence (23) and (24) express the change of basis from {tr(x 2 ), (tr x) 2 } to {p 2,0 , p 1,1 }. For (22), it suffices to evaluate both sides on x = e and on x = c a primitive idempotent (e and c are not proportional, as rank J ≥ 2). Now tr(e) = tr(e 2 ) = r, Tr P (e) = n, tr(c) = tr(c 2 ) = 1, Tr P (c) = 1 and the verification follows by elementary computation. For ℜµ > (r -1) d 2 , I 2,0 = Ω e -tr x p 2,0 (x)(det x) µ d * x = r 1 + rd 2 µ(µ + 1)Γ Ω (µ) (25)I 1,1 = Ω e -tr x p 1,1 (x)(det x) µ d * x = r(r -1) µ (µ -d 2 )Γ Ω (µ) (26) Proof. Let p ∈ P m . For ℜµ > (r -1) d 2 ,Ω e -tr y p(y)(det y) µ d * x = Γ Ω (m + µ) p(e) .

Lemma 5 . 1 .

 51 Let 1 ≤ k ≤ r and let y ∈ Ω(k) . Then for all v ∈ Jp y v | v ≤ k P (y)v |v .(34)Proof. Let c be an idempotent of rank k. Decompose V as Cc ⊕ (c) ⊥ . Both subspaces are invariant by p c and by P (c). Hence it suffices to verify (34) separately on each subspace. The inequality being trivial on (c) ⊥ , it suffices to verify it on Cc. So let v = λc, with λ ∈ C. Thenp c (v)|v = |λ| 2 (c|c), P (c)v|v = |λ| 2 .As (c, c) = k, (34) is valid for y = c. Now let y in Ω(k) . There exists an idempotent c of rank k and some ℓ ∈ L such that y = ℓc. Now p y = ℓ * p c ℓ and P (y) = ℓ * P (c)ℓ and (34) follows by using the result obtained for c when applied to w = ℓv.a multiple of a primitive idempotent and hence satisfies x = |x|c for some primitive idempotent c. In turn, this implies that r 1 (x) = |x| 2 r 1 (c) = α|x| 2 P (c) = αP (x) .HenceTr r 1 (x) = α|x| 2 , (r 1 (x)e|e) = α(x 2 |e) = α|x| 2

tacitly assumed is the condition r ≥

2, the case where r = 1 corresponds to the complex half-line and has only scalar representations

The case where J is of rank 1, i.e. J = R, is excluded as there are only scalar scalar valued cases.

Hence   α(µ)

Now, following (21) set

and this achieves the proof of Theorem 4.2.

We now discuss for which values of µ is r µ Herm + (J)-valued. Proof. We may assume that y = 0. The space J splits as J = Cy ⊕ (y) ⊥ . Both subspaces are invariant under p y . Moreover P (y) preserves Cy and as it is a selfadjoint operator, it also preserves (y) ⊥ . Hence to prove the inequality (32), it is enough to prove the inequality separately on both subspaces. The inequality is trivial on (y) ⊥ , so that it is enough to prove it on Cy. Now p y y|y = (y|y) 2 , P (y) y|y = (y 3 |y) = (y 2 |y 2 ) .

By the Cauchy-Schwarz inequality,

Then

Proof. Rewrite Theorem 4.2 using the Riesz integrals (cf ( 2)), extended to operator-valued functions to obtain

The statement is valid for ℜ(µ) large enough, and both sides can be continued analytically. By analytic continuation, the two sides coincide at µ = k d 2 for k = 2, . . . , r -1, and, as

The positivity of r k (y) for y ∈ O (1) follows from Lemma 5.1 and

6 The case µ = d 2

The last case concerns the case where µ = d 2 . In fact, the factor (µ-d 2 ) in the denominator of the right hand expression of (36) leads to an indetermination, as for c a primitive (i.e. rank(c) = 1) idempotent,

and hence the expression µP (y) -d 2 p y vanishes for µ = d 2 identically on Ω (1) . Proposition 6.1. There is no Herm + (J)-valued measure supported on Ω (1) such that conditions (16) and (17) are satisfied.

Before giving the proof, a few elementary lemmas are needed. Lemma 6.2. Let c be an idempotent in J. For s > 0, let ℓ s = P (c + s(e -c)). Then and the verification of the lemma is a routine calculation.

Lemma 6.3. Let c be a primitive idempotent of J. Let L c be the stabilizer of c in L. Let S ∈ Herm + (J) and assume that

Then there exists a scalar α ∈ [0, +∞) such that S = αP (c).

Proof. Recall first the formula P (ℓx) = ℓP (x)ℓ t for any element x and ℓ ∈ L. Hence P (c) satisfies (37). Now assume that S ∈ Herm + (J) satisfies (37). For s > 0, ℓ s = P c + s(e -c) belongs to L c and is symmetric. Hence condition (38) implies that S = ℓ s S ℓ s for any s > 0. Let v ∈ J(c, 1 2 ). Then by Lemma 6.2

which is clearly impossible unless Sv = 0. Hence S vanishes on J(c, 1 2 ). A similar argument shows that S vanishes on J(c, 0). As c is primitive J(c, 1) = Rc 1 and Sc 1 = ℓ s Sℓ s c 1 = ℓ s Sc 1 , which forces Sc 1 ∈ Cc 1 . The conclusion follows. Now we are in condition to prove Proposition 6.1. Assume there exists a measure, which we denote by dR 1 for simplicity, satisfying both conditions. Then there would exist a Herm + (J)-valued function r 1 on Ω (1) such that dR 1 (x) = r 1 (x) dν 1 (x) satisfying, for x ∈ Ω (1) 

and

Let c be a primitive idempotent and let S = r 1 (c). Then S satisfies the conditions of Lemma 6.3 and hence there exists α ∈ [0, +∞) such that S = αP (c). Now all primitive idempotents are conjugate by some element of K and S commutes with K (a consequence of ( 16)).

Hence the constant α does not depend on c. Any element x of Ω (1) is