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Abstract

We consider two laminar incompressible flows coupled by the continuous law at
a fixed interface ΓI . We approach the system by one that satisfies a friction Navier
law at ΓI , and we show that when the friction coefficient goes to ∞, the solutions
converges to a solution of the initial system. We then write a numerical Schwarz-like
coupling algorithm and run 2D-simulations, that yields same convergence result.
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1 Introduction

We consider the two coupled fluids problem with a rigid lid assumption, given by two 3D
stokes equations,

−νi∆ui +∇pi = fi, ∇ · ui = 0,(1.1)

u1,h|ΓI
= u2,h|ΓI

, wi|ΓI
= ui · ni|ΓI

= 0,(1.2)

u1|Γ1
= u2|Γ2

= 0,(1.3)

for i = 1, 2, where the velocities (u1,u2) = (u1(xh, z1),u2(xh, z2)) are decomposed as ui =
(ui,h, w), ui,h = (ui,x, ui,y). Moreover, xh ∈ T2, where T2 is the two dimensional torus,
which means that we consider horizontal periodic boundary conditions. The interface ΓI is
given by ΓI = {(xh, 0),xh ∈ T2}, the boundaries Γi are given by Γ1 = {(xh, z+

1 ),xh ∈ T2},
Γ2 = {(xh, z−2 ),xh ∈ T2}, z1 ∈ J1 = [0, z+

1 ], z2 ∈ J2 = [z−2 , 0], where z+
1 > 0 and z−2 < 0.

The coefficient νi > 0 is the viscosity of the fluid i, pi its pressure.
The main characteristic of this problem is the continuity boundary condition (1.2), which
is natural and physical [2], and usually considered for free interfaces [6]. Notice that the
rigid lid assumption we consider is reasonable for laminar coupled flows, as well as for
large scales. In this paper we adress the question of the existence and uniqueness of a
weak solution to Problem (1.1)-(1.2)-(1.3), given as the limit of ”frictional solutions”, for
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which we can write a numerical Schwarz-like algorithm. More specifically, we approach
this problem by the following problem

−νi∆ui +∇pi = fi, ∇ · ui = 0,(1.4)

νi
∂ui,h
∂ni
|ΓI

= −α(ui,h − uj,h), wi|ΓI
= ui · ni|ΓI

= 0,(1.5)

ui|Γi
= 0,(1.6)

i, j = 1, 2, in which the continuity condition (1.2) is replaced by the Navier law (1.5) where
i 6= j. Similar problems have been already studied before, see [3, 4, 5, 8], and the existence
and uniqueness of a weak solution is guaranteed. We aim to investigate how Problem
(1.4)-(1.5)-(1.6) approaches Problem (1.1)-(1.2)-(1.3) when the friction coefficient α goes to
infinity. Such question has already been adressed in [1] for a single fluid, where it is proved
that the corresponding solution strongly converges to a solution to the corresponding
Stokes (Navier-Stokes) equations with a no slip boundary condition when α → ∞. We
show in this paper the convergence in H1 space type of the solution of (1.4)-(1.5)-(1.6) to
a solution of (1.1)-(1.2)-(1.3) (see Theorem 2.1).
As we shall see, numerical simulations are easily carried out by (1.4)-(1.5)-(1.6) thanks to
a Schwarz-like coupling algorithm, that does not work for (1.1)-(1.2)-(1.3). This method
has already been successfully implemented for coupled problems, see for example [9].
The note is organized as follows. In the first part we set the functional framework and then
we prove the convergence result, namely Theorem 2.1. In the second part, we describe
our algorithm and show some numerical results in the 2D case. In particular we check the
numerical convergence of the algorithm.

2 Convergence analysis

2.1 Energy balance

This section is devoted to the derivation of the main a priori estimate, which is standard.
Let (u1,u2) be any enough smooth solution to Problem (1.4)-(1.5)-(1.6). Taking the scalar
product of equation (1.4)i by ui in integrating over T2 × Ji over yields by (1.6)i, because
of the periodic boundary conditions in the x− y axes, the incompressibility condition and
ui · ni = 0 at ΓI ,

νi

∫
T2×Ji

|∇ui|2 − νi
∫

ΓI

∂ui,h
∂ni

=

∫
T2×Ji

fi · ui,

giving by (1.5), νi

∫
T2×Ji

|∇ui|2 +α

∫
ΓI

ui,h · (ui,h−uj,h) =

∫
T2×Ji

fi ·ui. Summing up the

two equalities yields the following energy balance,

(2.1)

ν1

∫
T2×J1

|∇u1|2 + ν2

∫
T2×J2

|∇u2|2 + α

∫
ΓI

|u1,h − u2,h|2 =∫
T2×J1

f1 · u1 +

∫
T2×J2

f2 · u2.

2.2 Functions spaces, variational formulation

Let Wi = {u ∈ C∞(T2 × Ji), u|Γi
= 0, u · ni|ΓI

= 0, ∇ · ui = 0}, equipped with
||u||i,1 = ||∇u||L2(T2×Ji) which is indeed a norm due to the condition u|Γi

= 0. Let Wi

denotes the completion of Wi with respect to this norm,

(2.2) W = W1 ×W2, W0 = {(u1,u2) ∈W, u1,h|ΓI
= u2,h|ΓI

a.e. in ΓI}.
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We equip W with the scalar product, for any U = (u1,u2),V = (v1,v2) ∈W ,

(2.3) Λ(U,V) = ν1

∫
T2×J1

∇u1 · ∇v1 + ν2

∫
T2×J2

∇u2 · ∇v2.

The space W0 is the kernel of the form L : (u1,u2)→ u1,h|ΓI
−u2,h|ΓI

, which is continuous
by the trace theorem. Therefore W0 is a closed hyperplane of W . Let P denotes the
orthogonal projection over W0, and Φ = (φ1,φ2) a unit orthogonal vector to W0, so that
W⊥0 = vect Φ.

Definition 2.1. (weak solution) A couple U = (u1,u2) ∈W is a weak solution to Problem
(1.4)-(1.5)-(1.6) when ∀V = (v1,v2) ∈W ,

(2.4) Λ(U,V) +α

∫
ΓI

(u1,h−u2,h) · (v1,h−v2,h) =

∫
T2×J1

f1 ·v1 +

∫
T2×J2

f2 ·v2 = (F,V).

Throughout the rest of the paper, we assume that fi ∈ L2(T2×Ji), i = 1, 2. The existence
and the uniqueness of a weak solution to Problem (1.4)-(1.5)-(1.6) that satisfies the energy
balance (2.1) is straightforward by the Lax-Milgram Theorem for any given α > 0. Notice
that work remains to be done about the pressures, by a suitable adaptation of a De Rham
like theorem in this framework, which is an open problem.

2.3 Convergence

Let Uα = (uα1 ,u
α
2 ) ∈ W be the solution of (1.4)-(1.5)-(1.6). We study in this section the

convergence of the familly (Uα)α>0 when α→∞, proving the following result.

Theorem 2.1. The familly (Uα)α>0 strongly converges in W to a weak solution U =
(u1,u2) ∈W0 of Problem (1.1)-(1.2)-(1.3) when α→∞, in the sense:

(2.5) ∀V = (v1,v2) ∈W0, Λ(U,V) = (F,V).

Moreover, the solution of (2.5) is unique.

Proof. Let Uα = (uα1 ,u
α
2 ) ∈W = W1×W2 be the solution of (S1, S2). We first show that

the familly (Uα)α>0 is bounded in W . We have, by (2.1),

(2.6) ‖Uα‖2W + α

∫
ΓI

|uα1,h − uα2,h|2 =

∫
T2×J1

f1 · uα1 +

∫
T2×J2

f2 · uα2 ,

which yields

(2.7) ‖Uα‖2W ≤
∫
T2×J1

f1 · uα1 +

∫
T2×J2

f2 · uα2 .

We deduce from Poincaré and Cauchy-Schwarz inequalities that (Uα)α>0 is indeed bounded
in W . Therefore, we can extract a subsequence (Uαn)n∈IN (αn → ∞ as n → ∞) which
converges weakly in W to some U ∈W . Moreover, by the trace theorem and usual Sobolev
compactness results, the corresponding traces are strongly convergent in L2(ΓI). As by
(2.6) limn→∞ tr(u

αn
1,h−uαn

2,h) = 0 in L2(ΓI), then U ∈W0. Finally, take V ∈W0 in (2.4) as
test, so that the boundary term vanishes. By passing to the limit in this case when α→∞,
we obtain that U is a weak solution to (1.1)-(1.2)-(1.3). Uniqueness is straightforward,
which in addition garanties that the entire familly does converge to U.
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It remains to show the strong convergence. Let λα ∈ IR, be such that Uα = PUα + λαΦ
(Φ being given in section 2.2). We first show the strong convergence of (PUα)α>0 to U
by taking PUα as a test in (2.4) which gives, by using the orthogonal decomposition of
Uα,

(2.8) Λ(Uα, PUα) = ‖PUα‖2W = (F, PUα),

since the boundary term on ΓI equals to zero by orthogonality. Therefore (PUα)α>0 is
bounded in W0, then converges weakly -up to a subsequence (keeping the same notation)-
to a limit W, strongly in L2((T2×J1)× (T2×J2)). Taking V ∈W0 in (2.4) as test, noting
that in this case Λ(Uα,V) = Λ(PUα,V), and passing to the limit when α → ∞, we see
that W is solution of the problem (1.1)-(1.2)-(1.3), hence W = U by uniqueness, and the
entire sequence converges. Therefore, passing to the limit in (2.8) yields

lim
α→∞

||PUα||2W = (F,U) = Λ(U,U) = ||U||2W ,

which, together with the weak convergence, ensures the strong convergence as claimed. To
conclude, it remains to prove that limα→∞ λα = 0. By the energy balance (2.6), we have

(2.9) lim sup
α→∞

||Uα||2W + lim sup
α→∞

α

∫
ΓI

|uα1,h − uα2,h|2 = (F,U).

However, we have
∫

ΓI
|uα1,h − uα2,h|2 = λ2

α

∫
ΓI
|φ1,h − φ1,h|2. Therefore, since (||Uα||2W )α>0

is bounded, by (2.9) we have (αλ2
α)α>0 is bounded, which can happen only if λα → 0 as

α→∞, concluding the proof.

3 Numerical simulations

3.1 Algorithm

We solve the problems (1.4)-(1.5)-(1.6) for large values of α, with a coupling Schwarz like
algorithm, using the software Freefem++, for solving 2D Stokes problems by the finite
element method. Our algorithm is set as follows.
Step 1: We solve the problem on the upper part which gives a first value uα,01 .

−ν1∆uα,01 +∇P (0)
1 = f1, ∇ · uα,01 = 0,(3.1)

ν1

∂uα,01,h

∂n1
|ΓI

= −αuα,01,h ,(3.2)

uα,01,h |Γ1 = 0, uα,01,h · n1 = 0.(3.3)

This velocity allows us to solve the problem on the lower part, and to calculate the velocities
step by step, up and down.
Step 2: We calculate uα,n2 and uα,n+1

1 by solving

−ν2∆uα,n2 +∇P (n)
2 = f2, ∇ · uα,n2 = 0,(3.4)

ν2

∂uα,n2,h

∂n2
|ΓI

= −α(uα,n2,h − uα,n1,h ),(3.5)

uα,n2,h |Γ2 = 0, uα,n2,h · n2 = 0.(3.6)

4

http://www3.freefem.org/


and

−ν1∆uα,n+1
1 +∇P (n+1)

1 = f1, ∇ · uα,n+1
1 = 0,(3.7)

ν1

∂uα,n+1
1,h

∂n1
|ΓI

= −α(uα,n+1
1,h − uα,n2,h ),(3.8)

uα,n+1
1,h |Γ1 = 0, uα,n+1

1,h · n1 = 0.(3.9)

Note that we are able to prove the stability of this algorithm, and numerical simulation
confirm the convergence (see table below). Problem (1.1)-(1.2)-(1.3) cannot be solved in
a similar way. Indeed, the interface conditions

(3.10) u
(n)
2,h|ΓI

= u
(n)
1,h|ΓI

, u
(n+1)
1,h |ΓI

= u
(n)
2,h|ΓI

,

imply that the sequences (u
(n)
1,h)n and (u

(n)
2,h)n are constant on the interface ΓI which doesn’t

allow any iterations on the coupling algorithm.

3.2 Simulation results

We take z+
1 = 50 , z−2 = −5, L = 100, ν1 = ν2 = 1 and the source F =

((
1
−1

)
,

(
1
−1

))
constant, for the simplicity.

Figure 1: Domain and mesh

Figure 2: L2 norm of the errors and rate of convergence for n=100
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α n

10 4026

102 984

103 408

104 221

105 137

106 54

109 9

To check the numerical convergence of the method, we study
the error term ‖Uα,n+1−Uα,n‖L2 . On the left, for a given α, we
have the first value of n for which ‖Uα,n+1 −Uα,n‖L2 < 10−3.
The method is always converging, and the convergence is almost
instantaneous for large α (> 106).

Figure 3: Velocities, f1 = (1,−1) = f2, n = 9, α = 109
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