François Legeais 
email: francois.legeais@univ-rennes1.fr
  
Roger Lewandowski 
email: roger.lewandowski@univ-rennes1.fr
  
Continuous boundary condition at the interface for two coupled fluids

Keywords: MCS Classification: 76D07, 35J20, 65N30 Stokes equations, coupled problems, variational formulation, numerical simulations

We consider two laminar incompressible flows coupled by the continuous law at a fixed interface Γ I . We approach the system by one that satisfies a friction Navier law at Γ I , and we show that when the friction coefficient goes to ∞, the solutions converges to a solution of the initial system. We then write a numerical Schwarz-like coupling algorithm and run 2D-simulations, that yields same convergence result.

Introduction

We consider the two coupled fluids problem with a rigid lid assumption, given by two 3D stokes equations, (1.3) for i = 1, 2, where the velocities (u 1 , u 2 ) = (u 1 (x h , z 1 ), u 2 (x h , z 2 )) are decomposed as u i = (u i,h , w), u i,h = (u i,x , u i,y ). Moreover, x h ∈ T 2 , where T 2 is the two dimensional torus, which means that we consider horizontal periodic boundary conditions. The interface Γ I is given by Γ I = {(x h , 0), x h ∈ T 2 }, the boundaries Γ i are given by Γ 1 = {(x h , z + 1 ),

-ν i ∆u i + ∇p i = f i , ∇ • u i = 0, (1.1) u 1,h|Γ I = u 2,h|Γ I , w i|Γ I = u i • n i|Γ I = 0, (1.2) u 1|Γ 1 = u 2|Γ 2 = 0,
x h ∈ T 2 }, Γ 2 = {(x h , z - 2 ), x h ∈ T 2 }, z 1 ∈ J 1 = [0, z + 1 ], z 2 ∈ J 2 = [z - 2 , 0]
, where z + 1 > 0 and z - 2 < 0. The coefficient ν i > 0 is the viscosity of the fluid i, p i its pressure. The main characteristic of this problem is the continuity boundary condition (1.2), which is natural and physical [START_REF] Batchelor | An introduction to fluid dynamics[END_REF], and usually considered for free interfaces [START_REF] Lannes | A stability criterion for two-fluid interfaces and applications[END_REF]. Notice that the rigid lid assumption we consider is reasonable for laminar coupled flows, as well as for large scales. In this paper we adress the question of the existence and uniqueness of a weak solution to Problem (1.1)-(1.2)-(1.3), given as the limit of "frictional solutions", for which we can write a numerical Schwarz-like algorithm. More specifically, we approach this problem by the following problem

-ν i ∆u i + ∇p i = f i , ∇ • u i = 0, (1.4) ν i ∂u i,h ∂n i | Γ I = -α(u i,h -u j,h ), w i|Γ I = u i • n i|Γ I = 0, (1.5) u i|Γ i = 0, (1.6)
i, j = 1, 2, in which the continuity condition (1.2) is replaced by the Navier law (1.5) where i = j. Similar problems have been already studied before, see [START_REF] Bernardi | A model for two coupled turbulent fluids. I. Analysis of the system[END_REF][START_REF] Jeffrey | Partitioned time discretization for atmosphere-ocean interaction[END_REF][START_REF] Connors | Partitioned time stepping for a parabolic two domain problem[END_REF][START_REF] Lions | Mathematical theory for the coupled atmosphere-ocean models[END_REF], and the existence and uniqueness of a weak solution is guaranteed. We aim to investigate how Problem (1.4)-(1.5)-(1.6) approaches Problem (1.1)-(1.2)-(1.3) when the friction coefficient α goes to infinity. Such question has already been adressed in [START_REF] Tapia | Stokes and Navier-Stokes equations with Navier boundary conditions[END_REF] for a single fluid, where it is proved that the corresponding solution strongly converges to a solution to the corresponding Stokes (Navier-Stokes) equations with a no slip boundary condition when α → ∞. We show in this paper the convergence in H 1 space type of the solution of (1.4)-(1.5)-(1.6) to a solution of (1.1)-(1.2)-(1.3) (see Theorem 2.1). As we shall see, numerical simulations are easily carried out by (1.4)-(1.5)-(1.6) thanks to a Schwarz-like coupling algorithm, that does not work for (1.1)-(1.2)- (1.3). This method has already been successfully implemented for coupled problems, see for example [START_REF] Tayachi | Design and analysis of a Schwarz coupling method for a dimensionally heterogeneous problem[END_REF]. The note is organized as follows. In the first part we set the functional framework and then we prove the convergence result, namely Theorem 2.1. In the second part, we describe our algorithm and show some numerical results in the 2D case. In particular we check the numerical convergence of the algorithm.

Convergence analysis 2.1 Energy balance

This section is devoted to the derivation of the main a priori estimate, which is standard. Let (u 1 , u 2 ) be any enough smooth solution to Problem (1.4)-(1.5)- (1.6). Taking the scalar product of equation (1.4) i by u i in integrating over T 2 × J i over yields by (1.6) i , because of the periodic boundary conditions in the x -y axes, the incompressibility condition and

u i • n i = 0 at Γ I , ν i T 2 ×J i |∇u i | 2 -ν i Γ I ∂u i,h ∂n i = T 2 ×J i f i • u i , giving by (1.5), ν i T 2 ×J i |∇u i | 2 + α Γ I u i,h • (u i,h -u j,h ) = T 2 ×J i f i • u i .
Summing up the two equalities yields the following energy balance, (2.1)

ν 1 T 2 ×J 1 |∇u 1 | 2 + ν 2 T 2 ×J 2 |∇u 2 | 2 + α Γ I |u 1,h -u 2,h | 2 = T 2 ×J 1 f 1 • u 1 + T 2 ×J 2 f 2 • u 2 .

Functions spaces, variational formulation

Let W i = {u ∈ C ∞ (T 2 × J i ), u |Γ i = 0, u • n i | Γ I = 0, ∇ • u i = 0}, equipped with ||u|| i,1 = ||∇u|| L 2 (T 2 ×J i )
which is indeed a norm due to the condition u |Γ i = 0. Let W i denotes the completion of W i with respect to this norm,

(2.2) W = W 1 × W 2 , W 0 = {(u 1 , u 2 ) ∈ W, u 1,h|Γ I = u 2,h|Γ I a.e. in Γ I }.
We equip W with the scalar product, for any

U = (u 1 , u 2 ), V = (v 1 , v 2 ) ∈ W , (2.3) Λ(U, V) = ν 1 T 2 ×J 1 ∇u 1 • ∇v 1 + ν 2 T 2 ×J 2 ∇u 2 • ∇v 2 .
The space W 0 is the kernel of the form L : (u 1 , u 2 ) → u 1,h|Γ I -u 2,h|Γ I , which is continuous by the trace theorem. Therefore W 0 is a closed hyperplane of W . Let P denotes the orthogonal projection over W 0 , and Φ = (φ 1 , φ 2 ) a unit orthogonal vector to W 0 , so that

W ⊥ 0 = vect Φ. Definition 2.1. (weak solution) A couple U = (u 1 , u 2 ) ∈ W is a weak solution to Problem (1.4)-(1.5)-(1.6) when ∀ V = (v 1 , v 2 ) ∈ W , (2.4) Λ(U, V) + α Γ I (u 1,h -u 2,h ) • (v 1,h -v 2,h ) = T 2 ×J 1 f 1 • v 1 + T 2 ×J 2 f 2 • v 2 = (F, V).
Throughout the rest of the paper, we assume that 

f i ∈ L 2 (T 2 × J i ), i = 1,

Convergence

Let U α = (u α 1 , u α 2 ) ∈ W be the solution of (1.4)-(1.5)-(1.6). We study in this section the convergence of the familly (U α ) α>0 when α → ∞, proving the following result. 

(2.5) ∀ V = (v 1 , v 2 ) ∈ W 0 , Λ(U, V) = (F, V).
Moreover, the solution of (2.5) is unique.

Proof. Let U α = (u α 1 , u α 2 ) ∈ W = W 1 × W 2 be
the solution of (S 1 , S 2 ). We first show that the familly (U α ) α>0 is bounded in W . We have, by (2.1), (2.6)

U α 2 W + α Γ I |u α 1,h -u α 2,h | 2 = T 2 ×J 1 f 1 • u α 1 + T 2 ×J 2 f 2 • u α 2 ,
which yields

(2.7) U α 2 W ≤ T 2 ×J 1 f 1 • u α 1 + T 2 ×J 2 f 2 • u α 2 .
We deduce from Poincaré and Cauchy-Schwarz inequalities that (U α ) α>0 is indeed bounded in W . Therefore, we can extract a subsequence (U αn ) n∈I N (α n → ∞ as n → ∞) which converges weakly in W to some U ∈ W . Moreover, by the trace theorem and usual Sobolev compactness results, the corresponding traces are strongly convergent in L 2 (Γ I ). As by (2.6) lim n→∞ tr(u αn 1,h -u αn 2,h ) = 0 in L 2 (Γ I ), then U ∈ W 0 . Finally, take V ∈ W 0 in (2.4) as test, so that the boundary term vanishes. By passing to the limit in this case when α → ∞, we obtain that U is a weak solution to (1.1)-(1.2)-(1.3). Uniqueness is straightforward, which in addition garanties that the entire familly does converge to U.

It remains to show the strong convergence. Let λ α ∈ IR, be such that U α = P U α + λ α Φ (Φ being given in section 2.2). We first show the strong convergence of (P U α ) α>0 to U by taking P U α as a test in (2.4) which gives, by using the orthogonal decomposition of

U α , (2.8) Λ(U α , P U α ) = P U α 2 W = (F, P U α ),
since the boundary term on Γ I equals to zero by orthogonality. Therefore (P U α ) α>0 is bounded in W 0 , then converges weakly -up to a subsequence (keeping the same notation)to a limit W, strongly in L 2 ((T 2 × J 1 ) × (T 2 × J 2 )). Taking V ∈ W 0 in (2.4) as test, noting that in this case Λ(U α , V) = Λ(P U α , V), and passing to the limit when α → ∞, we see that W is solution of the problem (1.1)-(1.2)-(1.3), hence W = U by uniqueness, and the entire sequence converges. Therefore, passing to the limit in (2.8) yields

lim α→∞ ||P U α || 2 W = (F, U) = Λ(U, U) = ||U|| 2 W ,
which, together with the weak convergence, ensures the strong convergence as claimed. To conclude, it remains to prove that lim α→∞ λ α = 0. By the energy balance (2.6), we have

(2.9) lim sup α→∞ ||U α || 2 W + lim sup α→∞ α Γ I |u α 1,h -u α 2,h | 2 = (F, U).
However, we have

Γ I |u α 1,h -u α 2,h | 2 = λ 2 α Γ I |φ 1,h -φ 1,h | 2 . Therefore, since (||U α || 2 W
) α>0 is bounded, by (2.9) we have (αλ 2 α ) α>0 is bounded, which can happen only if λ α → 0 as α → ∞, concluding the proof.

3 Numerical simulations

Algorithm

We solve the problems (1.4)-(1.5)- (1.6) for large values of α, with a coupling Schwarz like algorithm, using the software Freefem++, for solving 2D Stokes problems by the finite element method. Our algorithm is set as follows.

Step 1: We solve the problem on the upper part which gives a first value u α,0

1 .

-ν 1 ∆u α,0 1 + ∇P

(0) 1 = f 1 , ∇ • u α,0 1 = 0, (3.1) ν 1 ∂u α,0 1,h ∂n 1 | Γ I = -αu α,0 1,h , (3.2) u α,0 1,h | Γ 1 = 0, u α,0 1,h • n 1 = 0. (3.3)
This velocity allows us to solve the problem on the lower part, and to calculate the velocities step by step, up and down.

Step 2: We calculate u α,n 2 and u α,n+1 1 by solving

-ν 2 ∆u α,n 2 + ∇P (n) 2 = f 2 , ∇ • u α,n 2 = 0, (3.4) ν 2 ∂u α,n 2,h ∂n 2 | Γ I = -α(u α,n 2,h -u α,n 1,h ), (3.5) u α,n 2,h | Γ 2 = 0, u α,n 2,h • n 2 = 0. (3.6) and -ν 1 ∆u α,n+1 1 + ∇P (n+1) 1 = f 1 , ∇ • u α,n+1 1 = 0, (3.7) ν 1 ∂u α,n+1 1,h ∂n 1 | Γ I = -α(u α,n+1 1,h -u α,n 2,h ), (3.8) u α,n+1 1,h | Γ 1 = 0, u α,n+1 1,h • n 1 = 0. (3.9)
Note that we are able to prove the stability of this algorithm, and numerical simulation confirm the convergence (see table below). Problem (1.1)-(1.2)-(1.3) cannot be solved in a similar way. Indeed, the interface conditions 

(3.10) u (n) 2,h | Γ I = u (n) 1,h | Γ I , u (n+1 

Simulation results

We take z To check the numerical convergence of the method, we study the error term U α,n+1 -U α,n L 2 . On the left, for a given α, we have the first value of n for which U α,n+1 -U α,n L 2 < 10 -3 . The method is always converging, and the convergence is almost instantaneous for large α (> 10 6 ). 

Theorem 2 . 1 .

 21 The familly (U α ) α>0 strongly converges in W to a weak solution U = (u 1 , u 2 ) ∈ W 0 of Problem (1.1)-(1.2)-(1.3) when α → ∞, in the sense:

) 1 ,

 1 h | Γ I = u (n) 2,h | Γ I ,imply that the sequences (u(n) 1,h ) n and (u (n) 2,h) n are constant on the interface Γ I which doesn't allow any iterations on the coupling algorithm.
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 1 Figure 1: Domain and mesh
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 2 Figure 2: L2 norm of the errors and rate of convergence for n=100

Figure 3 :

 3 Figure 3: Velocities, f 1 = (1, -1) = f 2 , n = 9, α = 10 9

  2. The existence and the uniqueness of a weak solution to Problem (1.4)-(1.5)-(1.6) that satisfies the energy balance (2.1) is straightforward by the Lax-Milgram Theorem for any given α > 0. Notice that work remains to be done about the pressures, by a suitable adaptation of a De Rham like theorem in this framework, which is an open problem.