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∗ CNRS, LAAS, Univ de Toulouse, INSA, LAAS, F-31400 Toulouse,
France (e-mail: firstname.lastname@laas.fr).

∗∗ CNRS, LAAS, Univ de Toulouse, LAAS, F-31400 Toulouse, France
(e-mail: yannick.pencole@laas.fr)

Abstract: This paper presents a method for the diagnosis of time patterns in time Petri nets.
This method uses a characterization of the pattern called Observable Simple Temporal Network,
given in the form of a set of observable events with temporal constraints on their occurrence
dates. The proposed diagnoser verifies if a part of an input timed sequence of observations is
consistent with the characterization. If the pattern has not occurred, this consistency test will
lead to the same conclusion. One the other hand, if the pattern has occurred, the consistency
test will lead to an ambiguous diagnosis in the general case or to the conclusion that the pattern
has definitely occurred if the underlying system is diagnosable.

Keywords: Time pattern, Discrete event system, Time Petri nets, State class graph,
Observable Simple Temporal Network.

1. INTRODUCTION

The problem of diagnosis of Discrete Event Systems (DES)
in which a fault is considered as an unobservable event that
may occur during the system life has been well studied
since the 90s (Sampath et al. (1995)). Among the studied
formalisms, one can mention Petri nets, for which different
diagnosis and diagnosability techniques have been devel-
oped (Cabasino et al. (2010) for example). An overview of
diagnosis methods on Petri nets can be found in Basile
(2014). The introduction of time (Tripakis (2002)) has
been a first extension to the problem in order to include
a better modeling for temporal phenomena. Some works
introduce this extension on Petri net formalism called
Time Petri Nets (TPN) (Wang et al. (2015)). Another ex-
tension proposed in Jéron et al. (2006) aims to model faults
as more complex behaviours called supervision patterns
that are specific assembling of unobservable events. Recent
works introduce the problem of diagnosis of supervision
patterns in TPN (Pencolé and Subias (2021), Pencolé
et al. (2021)), and defined supervision patterns with time
constraints called timed patterns (Coquand et al. (2021)).

In this work the diagnosis is performed on a new type of
patterns called time patterns, that are timed patterns that
may occur anytime during the system life. The aim of this
work is to provide a diagnosis method for time pattern in
time systems modeled as time Petri nets. To do so, the syn-
thesis of a new object called Observable Simple Temporal
Network that abstracts some observable behaviours of the
system for which the pattern has occurred is performed. It
is presented as a sequence of observable events linked by
time constraints. The diagnosis is performed for a sequence
of observations as the recognition of one of the Observable
Simple Temporal Network of a set abstracting the different

pattern occurrences. It returns whether the pattern has
not or may have occurred, and certify the diagnosis in
case of diagnosable systems.

The paper is articulated as follows. First Section 2 presents
the prerequisites necessary to understand the diagnosis
problem, its modeling and the problem itself. Section 3
develops the synthesis of the Observable Simple Temporal
Network for given system and time pattern. Before con-
cluding, Section 4 gives the diagnosis function based on
the results of the previous section.

2. DIAGNOSIS OF TIME PATTERN IN TIME PETRI
NETS

In this work the system and the pattern are both modeled
as Labeled Time Petri Nets (LTPN) (see Section 2.1).
While the system is partially observable (some of its tran-
sitions are labeled by observable events) the considered
time pattern represents some unobservable behaviours. It
is then necessary to characterize their occurrences as ob-
servable behaviours to perform a diagnosis on the system.
The idea is to abstract the different occurrences of a time
pattern inside a system as finite sets of constraints relative
to the date of occurrence of some observable events in
the system. Such an abstraction will be modeled by an
Observable Simple Temporal Network, denoted OSTN .

2.1 Background on labeled time Petri nets

In this section some formal prerequisites on LTPN are
recalled.

Definition 1. A Labeled Time Petri Net (LTPN) is a 6-
uple N = 〈P, T,A,Σ, `, Is〉 where:



• P is a finite set of places
• T is a finite set of transitions (P ∩ T = ∅)
• A ⊆ (P × T ) ∪ (T × P ) is a binary relation modeling

the arcs between the transitions and the places
• Σ is a finite alphabet of transition labels
• ` : T → Σ is the transition labeling function
• Is : T → IQ+ is a static interval function Is(t),

for which the lower bound, also called the date of
earlier firing is denoted ↓ (Is(t)) ∈ Q+, and its upper
bound, also called the date of later firing, is denoted
↑ (Is(t)) ∈ Q+ ∪ {+∞}

The preset of a transition t is the set of input places
pre(t) = {p ∈ P | (p, t) ∈ A}, and similarly the postset of
t is the set of output places post(t) = {p ∈ P | (t, p) ∈ A}.
For a safe LTPN, a state is a couple S = 〈M, I〉 where
M is the marking of the net (M : P → {0, 1}) and I is
the partial firing interval application (I: T → IQ+) that
associates to any transition a time interval of Q+ in which
t can be fired as soon as it is enabled. S0 = 〈M0, I0〉 is
the initial state of the net where M0 is the initial marking
of the net and I0 is defined as follows: for any transition t
enabled by M0, I0(t) = Is(t), else I0(t) = ∅. For a marking
M , a transition t is firable at the date θ if and only if:

• t is enabled (i.e. ∀p ∈ pre(t), M(p) > 0)
• θ ∈ I(t) and for all t′ enabled by M, θ ≤↑ (I(t′))

The fire of a transition t at a date θ is denoted: 〈M, I〉 θt−→
〈M ′, I ′〉 and defined such that

• M ′ is such that ∀p ∈ pre(t) \ post(t),M ′(p) = 0,
∀p ∈ post(t) \ pre(t), M ′(p) = 1 else M ′(p) = M(p)
• for any transition t′ ∈ T (t′ 6= t) enabled by M

and still enabled by M ′, I(t′) = [a, b] ⇒ I ′(t′) =
[max(0, a− θ), b− θ]
• for every transition t′ enabled by M ′ and not by M ,
I ′(t′) = Is(t

′)

A state S is reachable in a marked LTPN if there exists

a run r = θ1t1 . . . θntn, n ∈ N∗ such that S0
θ1t1−−→ S1

θ2t2−−→
S2 . . .

θntn−−−→ S. The set of reachable states of a LTPN N is
denoted R(N,S0).

A run r = θ1t1 . . . θntn of a LTPN is said to be admissible
if there exist S1, . . . Sn reachable states of N such that

S0
θ1t1−−→ S1

θ2t2−−→ S2 . . .
θntn−−−→ Sn.

A timed sequence over an alphabet Σ is a sequence of pairs
(d, e) ∈ R+ × Σ where d corresponds to the date of firing
of symbol e. A run produces a unique timed sequence.

Definition 2. The language L(N) of a LTPN N is the
set composed by every timed sequence ρ such that there
exists r = θ1t1 . . . θntn an admissible run for N with
ρ = θ1`(t1) . . . θn`(tn).

Berthomieu and Menasche (1983) defines a State Class
Graph (SCG) which is an abstraction of the LTPN as an
automaton. Each state is a class of equivalence between
the states of the LTPN that share their marking and
their firing domain i.e the time constraints on the firable
transitions from the marking. The initial firing domain is
defined by I0(t) for each t enabled by M0.

Definition 3. A State Class Graph (SCG) of a LTPN
N = 〈P, T,A,Σ, `, Is〉 is a triple (C,α0,→) such that :

• α0 = (M0, F0) where M0 is the initial marking of N
and F0 ∈ (IQ+)T is the initial firing domain of N

• C ∈ {0, 1}P × (IQ+)T is the set of all classes corre-
sponding to states reachable in N

• →∈ C × T × C is the transition function defined as

follows : (M,F )
t−→ (M ′, F ′) iff

· t is firable from (M,F )
· M ′ = M − pre(t) + post(t)
· F ′ = next(F, t)

where next : (IQ+)T × T → (IQ+)T is the procedure to
build the firing domain F ′ associated with a reachable
marking M ′ reached from M by the firing of t that is
defined as follows:

(1) for each transition t′ enabled in M , compute the
firing of t by adding the two constraints θ ≤ θ′ and
θ′ = θ + θ′upd (θ′upd is a substitution variable)

(2) eliminate variables relative to transitions enabled in
M and not in M ′

(3) add the constraints relative to the newly enabled
transitions (in M ′)

(4) determine the canonical form of each constraint in F ′

2.2 Modeling

In this work the system is modeled as a partially ob-
servable safe LTPN Θ = 〈PΘ, TΘ, AΘ,ΣΘ, `Θ, Is,Θ〉. Each
firing interval is closed with its bounds belonging to Q+.
The labeling function `Θ is bijective i.e. every event is
associated with a unique transition of TΘ. The alphabet
is partitioned into two sets: ΣoΘ = {o1, . . . , on} the set
of observable events on Θ, and ΣuΘ = {uo1, . . . , uop} the
set of unobservable events. Similary TΘ is partitioned into
ToΘ the set of transitions labeled by an observable event,
and TuΘ the set of transitions labeled by an unobservable
event. Some other assumptions are formulated about Θ:

• A0 the SCG of the system is finite
• A1 there is no cycle of unobservable event in the

system
• A2 the system has no zeno run (infinite sequences of

transitions that can occur in a finite amount of time)
• A3 every transition enabled by the initial marking of

the system is observable

Condition A0 ensures that for each transition t ∈ TΘ,
there is a finite number of arcs in the SCG of Θ labeled by
t. Condition A1 ensures that an observable transition will
always be fired in a finite amount of time after another
one. Condition A2 prevents an infinite number of events
from occurring in a finite amount of time. Condition A3
ensures that the start of the system clock is observable.

Time pattern represent faulty behaviours or particular be-
haviours one wishes to diagnose. Contrary to the patterns
investigates in Coquand et al. (2021) in which the pattern
always occur in a finite time window after the starting
of the system (after a certain amount of time it will not
occur), the time patterns considered here are unobservable
behaviours that can occur on the considered system.

Definition 4. A time pattern over a system Θ is a safe
acyclic LTPN Ω = 〈PΩ, TΩ, AΩ, ΣΩ, `Ω, IsΩ〉 where:

(1) ΣΩ ⊆ ΣuΘ



(2) if (t, t′) ∈ T 2
Ω with pre(t) ∩ pre(t′) = ∅, then t and t′

cannot be firable simultaneously
(3) there is only one transition enabled in the initial

marking M0Θ and it is such that its firing interval
has the form [ainit,+∞[. The other transitions have
a closed interval.

(4) M0Ω /∈ QΩ with M0Ω and QΩ respectively the initial
marking and the set of final markings of Ω

(5) for every marking M reachable in Ω, there exists M ′

reachable from M such that M ′ ∈ QΩ

(6) Ω is deterministic
(7) every run starting from a marking of QΩ necessarily

leads to a marking of QΩ

In this work the study is restricted to pattern without
parallelism (Condition 2). Condition 3 states that an
occurrence of the pattern can start at any time during the
system life, but always ends after a finite amount of time.
Condition 4 ensures that the language of a pattern does
not contain the empty sequence i.e the pattern does not
represent empty event sequences. Condition 5 ensures that
any run of the pattern is a prefix of a run for which the
pattern has occurred. Condition 6 ensures that a pattern
is written in a unique way. Finally Condition 7 ensures
that the occurrence of the pattern in an execution of Θ is
definitive.

Example 1. Figures 1a and 1b show an example of time
pattern Ω1 on a system Θ1. The observable transitions are
t0, t1, t3 and t5 (colored in blue here) and the unobservable
ones are t2 and t4 (colored in red). The final marking of
Ω1 is Pt3 = 1.

The occurrence of a pattern in a run of the system is
considered as a pattern matching problem, following the
definition of Pencolé and Subias (2021):

Definition 5. A timed sequence ρ ∈ L(Θ) matches a
pattern Ω (denoted ρ c Ω) if there exists a sub-word ρ′ of
ρ such that ρ′ ∈ L(Ω).

Without ambiguity, it is said that a run r matches a
pattern Ω (r c Ω) if the timed sequence ρ produced by
r matches Ω.

Example 2. The run r = 0t0.2t4.2t5.2t1.1t2.0t3.1t4.2t5 is
a run of Θ1 that matches Ω1, as it produces the timed
sequence ρ = 0o1.2f.2o4.2o2.1init.0o3.1f.2o2 for which
ρ′ = 7init.1f is a sub-word that belongs to L(Ω1).

The projection of a timed sequence onto the observable
alphabet of the system (also called observable timed se-
quence) is defined as follows:

• PΣΘ→ΣoΘ(θ1e1.θ2e2 . . . θnen) = θ1e1.PΣΘ→ΣoΘ(θ2e2 . . .
θnen) if e1 ∈ ΣoΘ
• PΣΘ→ΣoΘ(θ1e1.θ2e2 . . . θnen) = PΣΘ→ΣoΘ((θ1 +θ2)e2 . . .
θnen) otherwise

Example 3. The associated observable timed sequence to
ρ is ρo = 0o1.4o4.2o2.1o3.2o2.

2.3 Diagnosis problem statement

Intuitively speaking, the diagnosis problem considered is
to determine if a pattern has effectively occurred from the
knowledge of a sequence of observable events produced by
a system.
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Fig. 1. A system Θ1 and a pattern on this system Ω1

The answer is given by a diagnosis function called diag-
noser (denoted Ω-diagnoser), returning for an observable
timed sequence Ω -safe if no run producing this time se-
quence matches Ω, Ω -certain if every run producing the
observable timed sequence matches Ω and Ω -ambiguous
otherwise.

In this paper, we aim at proposing an Ω-diagnoser for
an extension of the pattern diagnosis problem introduced
in Pencolé et al. (2021), that deals with time pattern as
defined in Definition 4. As each run of the system that
matches the pattern produces a given set of observable
events satisfying specific time constraints, the knowledge
of these observable events and time constraints can be
exploited for a diagnosis purpose. We then propose to
formally define the Ω-diagnoser based on the notion of
Observable Simple Temporal Network that is defined be-
low:

Definition 6. An Observable Simple Temporal Network
OSTN is a couple (s,Π) where s is a nonempty sequence
of observable events (s ∈ Σ+

oΘ) and Π is a set of constraints
relative to the occurrence dates of the events of s.

The aim of this work is to diagnose the occurrences of a
time pattern Ω in a system Θ thanks to the recognition
of a set of OSTN s that capture observable behaviours
associated with the system runs that match the pattern
i.e. to every possible type of occurrence of Ω in Θ. These
so called OSTN s are built following the procedure of
Algorithm 1 presented in the next section.

3. OSTN SYNTHESIS

This section presents the synthesis of the OSTN s based
on the analysis of the SCGs of the system and the pattern.

3.1 General procedure

Algorithm 1 exposes the calculation procedure of the
OSTN s that characterize a time pattern Ω in a system
Θ. This algorithm is based on both the SCGs of Θ and
Ω. Firstly, Function getObsPredecessors returns for a
given transition tinit (the one labeled by the init event
here) every observable transition that may be the nearest
observable predecessor of tinit in a run of Θ by exploring
the SCG of Θ. In other words, it returns {tobs ∈ ToΘ
s.t. ∃(m,n) ∈ N2,m < n, ∃(ti)i∈[1,n] ∈ TnΘ,∃(αj)j∈[0,n] ∈
Cn+1, α0

t1−→ α1 . . . αm
tm−−→ αm+1 . . . αn−1

tn−→ αn, tn =
tinit, tm = tobs (i.e. `(tm) ∈ ΣoΘ) ∀i ∈ [m + 1, n], `(tj) ∈
ΣuΘ}. Secondly, starting from tinit and exploring in paral-
lel the SCG of Θ and the one of Ω, the procedure extracts



Algorithm 1 Synthesis of OSTNs for a time pattern Ω
and a system Θ

input : A system Θ, a time pattern Ω and their SCG
(SCG(Θ) and SCG(Ω)), the system transition
tinit (labeled by event init)

output: A set of OSTN
obsPredecessors← getObsPredecessors(tinit, SCG(Θ))
seqMatch ← getMatchingSeq(SCG(Θ), SCG(Ω), tinit)
for π ∈ seqMatch, to ∈ obsPredecessors do
OSTNs ← OSTNs ∪ (obs(to.π),
getConstraints(π, to,Ω))

end
return OSTNs

from the SCG of Θ the transition sequences from Θ for
which there can be an occurrence of Ω i.e the sequences
that match the pattern (function getMatchingSeq)).
getMatchingSeq actually returns a set of sequences of
pairs of interval/transition, where the interval corresponds
to the constraints relative to this transition in the firing
domain of the class in which the transition is fired in the
SCG of Θ. This sequence of pairs called path is denoted π
thereafter. Then, for each couple formed by an observable
predecessor transition to and a path π, getConstraints
computes the time constraints on the observable transi-
tions of π relative to the occurrence of Ω and results in
the synthesis of the OSTN for the couple (to, π). In this
step, the knowledge of the different t0 (i.e the observable
predecessors of tinit) allows to shift the time origin of the
time constraints to make it observable (see Section 3.2). In
the end Algorithm 1 returns a set containing the OSTN s
abstracting the different matching. It has been shown in
Coquand et al. (2021) that this set is finite.

Example 4. Let us consider the system and the pattern
of Figure 1. The tinit transition is t2. The observable
predecessor of t2 is t1. In the system SCG, starting
from tinit the path matching Ω1 is π1 = [0, 3]t3 .[0, 2]t4
.[1, 2]t5. The OSTN building based on these results will be
developed thereafter. Note that this example is simple for
the sake of readability: there is only one path π1 matching
Ω1 (so the SCG is not given). However, in the general case,
there are many possible paths in a system satisfying the
modeling assumptions (see Section 2.2).

3.2 Constraints synthesis

This section describe the function getConstraints of
Algorithm 1. The paths π previously obtained correspond
to the system behaviours that may include occurrences of
the pattern. For each π obtained, there exists a run r of π
that matches Ω, meaning there exists a path π′ in the SCG
of Ω corresponding to the occurrence of Ω in π (in terms
of transition sequence). From each path π of the system
it is then possible to extract time constraints on the firing
dates of the observable transitions of the path according
the to the time constraints of π′ . This step of constraint
extraction is formally detailed in Coquand et al. (2021)
and summarized in this section.

The constraint extraction for a couple (π, π′) is performed
in three main steps.

The first step is to synchronise the system and the pat-
tern to simulate the matching. As the atemporal match-

ing has been previously verified (see getMatchingSeq of
Algorithm 1), this step allows to deal with the tempo-
ral part of the matching by expressing it in the form
of time constraints. To start, the path π returned by
getMatchingSeq is reduced to its observable transitions
and to the transitions responsible for the occurrence of
Ω. The unobservable transitions of the path π that do
not participate to the pattern occurrence are removed.
Their firing date are deported onto the next non-deleted
transition (which can be observable, or unobservable but
that participates to the pattern occurrence) by resolving
an inequation system built from the firing domains of the
classes associated to the path taking into account the firing
order of the transitions in π (Wang et al. (2015)).

p2
tuo1

[0, 2]

p1

tuo2

[1, 2] p3

t3

[1, 3] p4

p0

Fig. 2. Example illustrating the reduction step

Example 5. This example illustrates the reduction of a
path for a system with one observable transition (t3)
and two unobservable transitions (tuo1

and tuo2
) with-

out considering any pattern. Let us consider the net of
Figure 2, and more particularly the path πexample =
[0, 2]tuo1

.[1, 2]tuo2
.[0, 2]t3. The reduction of this path leads

to a new path π = [a, b]t3 where (a, b) ∈ R2. To determine
a and b, the inequation system is to establish with yi the
variable associated to the absolute date of firing (relative
to the start of the net) of ti. Following the firing sequences
resulting inequations will be: {0 ≤ yuo1

≤ 2, 1 ≤ yuo2
−

yuo1
≤ 2, 0 ≤ y3 − yuo2

≤ 2}. As tuo2
and t3 are en-

abled simultaneously but t3 fired after, a new inequation
is added: 0 ≤ y3 − yuo2

(here this last inequation is
redundant but in the case of conflicts between transitions
this inequation must be considered). The resolution of this
inequation system leads to: a = 1, b = 6, so π = [1, 6]t3.
Let us consider now the path [0, 2]tuo1 .[1, 3]t3.[0, 1]tuo2 , the
reduction will be performed on tuo1 and t3 only.

Once the reduced path is obtained, it is then cut into
blocks to be synchronized with the pattern transitions
following π′. A block is part of a path (i.e a sequence of
pairs of firing domains/transitions) composed eventually of
observable transitions, and of a last transition that is an
unobservable transition involved in the pattern occurrence.

π′1 :
[0, 2]tp2

π1 :
[0, 3]t3 [0, 2]t4 [1, 2]t5

w′0

w0 w1

Fig. 3. Block cutting illustration (`Θ(t4) = `Ω(tp2
))



Example 6. Back to the example of Figure 1 with π1 =
[0, 3]t3 .[0, 2]t4 .[1, 2]t5 and π′1 = [0, 2]tp2 , the block cutting
is performed as shown in Figure 3. The transitions t4 and
tp2 must be synchronized as they share the same label
f . The system path π is then composed of two blocks:
w0 = [0, 3]t3[0, 2]t4 and w1 = [1, 2]t5. The second block
contains only an observable transition, as it does not
need to be synchronized with anything. The pattern is
composed of only one block w′0 = [0, 2]tp2 .

Proposition 1. The synchronisation of two blocks w =
I1t1 . . . Iktk and w′ = IΩtΩ with `(tk) = `(tΩ) defines
the following set of constraints (called synchronisation
constraints) to be satisfied:

∀r = d1t1 . . . dktk ⊆ w, r c IΩtΩ ⇔



d1 ∈ I1

. . .

dk ∈ Ik
k∑
i=1

di ∈ IΩ

(1)

During the rest of this work, a synchronisation constraint
is considered as its canonical form, which is defined as the
restriction for a constraint to the set of values for which
there exists a solution for the whole set.

Example 7. Back to the example with π1 = [0, 3]t3 .[0, 2]t4
.[1, 2]t5 and π′1 = [0, 2]tp2

, there is no need for reduction
in this simple example. The synchronisation of t4 and tp2

,
leads to the following set of constraints: {d3 ∈ [0, 3], d4 ∈
[0, 2], d3 + d4 ∈ [0, 2]}. As there is no solution to this set
for values of d3 between 2 and 3, the canonical form of the
synchronisation constraints is: {d3 ∈ [0, 2], d4 ∈ [0, 2], d3 +
d4 ∈ [0, 2]}.

The second step of the constraint extraction, generates
another type of constraints called admissibility constraints,
that provide the necessary conditions for a transition
sequence of the SCG to correspond to a part of an
admissible run in the system. Indeed the SCG contains for
each transition every possible firing date for the transition,
but a set of firing dates for a sequence of transitions
in the SCG may not be admissible for the system (due
to parallelism). Such constraints are calculated from the
following rule: the time elapsed between the enabling and
the firing of a transition belongs to its firing interval in the
system. This time elapsed may be the sum of the firing
dates of a group of transitions if a transition is enabled at
a time and not fired directly.

Example 8. The admissibility constraints for πexample =
[0, 2]tuo1 .[1, 2]tuo2 .[0, 2]t3 of Figure 2 will be: 1 ≤ duo2 +
d3 ≤ 3.

The third step is to transform the previous constraints
into observable ones. For the admissibility constraints a
variable change is applied reporting the involved dates
of firing onto the next observable transition (if they are
relative to an unobservable transition) relatively to the
previous observable transition fired in the sequence. The
same variable change is applied for the constraints issued
from the synchronisation, for which the only unobservable
transitions are the transitions synchronized with the tran-
sitions of the pattern.

o2 o3 o4

[2, 6]

[1, 4] [1, 4]

Fig. 4. Graphical representation of OSTNΩ1

To complete this step it is necessary to shift the time
origin of the constraints to make the constraints relative
to an observable transition (as `Ω(tinit) ∈ ΣuΘ). A similar
variable change to the one performed previously is applied
on the first variable of the constraints set. This variable
change models the time elapsed between the firing of
the observable transition preceeding tinit and the first
transition of each sequence.

Example 9. As t3 is observable, the translation into ob-
servable constraints is performed with the variable change
do5 = d4 + d5. That leads to the following constraints:
{d3 ∈ [0, 2], do5 ∈ [1, 4], d3 +do5 ∈ [1, 4]}. The origin shifting
is performed with the variable change do3 = d2 + d3 as
the time elapsed since the observable transition preceding
the transition labeled by init is d2 + d3 (with d2 ∈ [1, 2]
see Figure 1a). The observable set of constraints for the
matching of Ω1 in Θ1 is: {do3 ∈ [1, 4], do5 ∈ [1, 4], do3 +
do5 ∈ [2, 6]}.

For each tuple (to, π,Πto,π), where Πto,π is the set of
constraints associated to (to, π), the following OSTN
is computed : OSTN = (obs,Πto,π) where obs is the
concatenation of the label of to and of the observable labels
of π.

Example 10. The OSTN characterizing Ω1 throughout
Θ1 is: OSTNΩ1

= (o2.o3.o4, {do3 ∈ [1, 4], do5 ∈ [1, 4], do3 +
do5 ∈ [2, 6]}). Figure 4 shows a graphical representation
of OSTNΩ1

. An arc between two events labeled with an
interval represents the time elapsing since the firing of
the starting node until the firing of the ending node. The
time elapsing between the occurrence of o2 and o4 (which
contains the time between o3 and o2 and the time between
o4 and o3) is bounded between 2 and 6 time units.

In the following for a system Θ and a pattern Ω, NΘ(Ω)
denotes the set of OSTN abstraction of Ω in Θ. For the
example NΘ1

(Ω1) = {OSTNΩ1
}.

4. RECOGNITION-BASED DIAGNOSIS

In this section, we consider that the system Θ produces
the observed timed sequence σ. Let (s,Π) ∈ NΘ(Ω) be an
OSTN. We say that the OSTN (s,Π) is recognized on σ
iff:

• there exists ρ = u.v.w ∈ L(Θ) such that the observ-
able events in the timed subsequence v are the ones of
s and their dates of occurrences satisfy the constraints
Π; and
• let πρ be the path of SCG(Θ) associated with the

run of Θ producing ρ, the path π based on which the
OSTN (s,Π) has been synthetized is a prefix of the
path πρ.

Let O(σ) be the set of OSTN ’s that are recognized on σ.



Proposition 2. (1) If a OSTN is in O(σ), then there
exists a run r of Θ with σ as observable timed
sequence such that r c Ω.

(2) Similarly if a run r of the system produces the
observable timed sequence σ = σ′.σ′′ with σ′′ not
empty and a prefix of r matches Ω while producing
σ′ then O(σ) 6= ∅.

Sketch proof: (1) If a OSTN is recognized on σ there
exists a path of SCG(Θ) associated with a run whose
observable part is σ that has, as a prefix, the path π based
on which the OSTN has been built. Then the result is
a direct consequence of the constraints synthesis and the
bijectivity of `Θ. (2) The run r is associated with a path
πr of SCG(Θ), as it matches Ω, there exists a strict prefix
π of πr that belongs to seqMatch in Algorithm 1 from
which an OSTN exists and will be recognized on σ.

Based on the previous results, we now propose the defini-
tion of two diagnosers. The first one is generic and runs
on any type of system Θ.

Definition 7. The OSTN-based Ω-diagnoser is the func-
tion ∆Ω : PΣΘ→ΣoΘ

(L(Θ))→ {Ω− safe,Ω− ambiguous}
defined as follows.

• ∆Ω(σ) = Ω− safe if O(σ) = ∅.
• ∆Ω(σ) = Ω− ambiguous otherwise.

This Ω-diagnoser keeps tracking the paths of the SCG
that are consistent with σ and checks for the recognition
of at least one OSTN. Proposition 2 then ensures that
∆Ω(σ) = Ω− safe iff no pattern has occurred on the runs
producing σ. The second version of the diagnoser is more
accurate but requires Θ to be Ω-diagnosable (see Pencolé
and Subias, 2021).

Definition 8. A system Θ is said to be Ω-diagnosable iff
∃τ ∈ R+ s.t. ∀(ρ1, ρ2) ∈ L(Θ)2, ρ1 = ρ′1ρ

′′
1 , time(ρ′′1) ≥ τ ,

ρ′1 c Ω ∧PΣ→ΣoΘ(ρ2) = PΣ→ΣoΘ(ρ1) ⇒ ρ2 c Ω.

where time is the function returning for a timed sequence
the time elapsed during this sequence.

Definition 9. Let Θ be a Ω-diagnosable system. The Ω
diagnoser is the function ∆d

Ω : PΣΘ→ΣoΘ(L(Θ)) → {Ω −
safe,Ω− ambiguous,Ω− certain} such that:

• ∆d
Ω(σ) = Ω− safe if O(σ) = ∅.

• ∆d
Ω(σ) = Ω − certain if O(σ) = {OSTN�π,∀π ∈

ΠSCG(Θ)(σ)}
• ∆d

Ω(σ) = Ω− ambiguous otherwise.

ΠSCG(Θ)(σ) denotes the set of paths from SCG(Θ) ending
with an observable transition that at least produces a
run whose observable part is σ and OSTN�π denotes an
OSTN that has been synthetized based on a SCG path
that is a prefix of π.

Proposition 3. If ∆d
Ω(σ) = Ω − certain then Ω has defi-

nitely occurred in the system.

Sketch proof: If ∆d
Ω(σ) = Ω−certain, we know that for any

path of ΠSCG(Θ)(σ) there exists at least a possible run of
Θ that generates σ and matches Ω (Proposition 2). Now,
whatever the observable future of σ is, it will be associated
with a path of the SCG whose prefix is in ΠSCG(Θ)(σ) so
there will always be a possible run that matches Ω. But

as the system is Ω-diagnosable, then the current real run
necessarily matches Ω already.

5. CONCLUSION

This paper adresses the problem of diagnosis in time
Petri nets of time patterns that may occur anytime. The
diagnosis method is based on the recognition of Observable
Simple Temporal Networks (OSTNs) that capture the
occurrence of observable events constrained by time. These
OSTNs are an abstraction of pattern occurrences of in the
system. The provided diagnosis helps either to conclude
the pattern has not occurred, or to indicate the result
is ambiguous. A diagnoser for diagnosable systems is
presented using the diagnosability to conclude, that can
bring a predictable character to the result. Future work
will include diagnosability analysis for such types of time
pattern.
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Jéron, T., Marchand, H., Pinchinat, S., and Cordier,
M.O. (2006). Supervision patterns in discrete event
systems diagnosis. In 2006 8th International Work-
shop on Discrete Event Systems, 262–268. doi:
10.1109/WODES.2006.1678440.
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