Camille Coquand

Audine Subias

Yannick Pencolé
email: yannick.pencole@laas.fr

Observable Simple Temporal Network synthesis for the diagnosis of time patterns in time Petri nets

Keywords: Time pattern, Discrete event system, Time Petri nets, State class graph, Observable Simple Temporal Network

This paper presents a method for the diagnosis of time patterns in time Petri nets. This method uses a characterization of the pattern called Observable Simple Temporal Network, given in the form of a set of observable events with temporal constraints on their occurrence dates. The proposed diagnoser verifies if a part of an input timed sequence of observations is consistent with the characterization. If the pattern has not occurred, this consistency test will lead to the same conclusion. One the other hand, if the pattern has occurred, the consistency test will lead to an ambiguous diagnosis in the general case or to the conclusion that the pattern has definitely occurred if the underlying system is diagnosable.

INTRODUCTION

The problem of diagnosis of Discrete Event Systems (DES) in which a fault is considered as an unobservable event that may occur during the system life has been well studied since the 90s [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]). Among the studied formalisms, one can mention Petri nets, for which different diagnosis and diagnosability techniques have been developed [START_REF] Cabasino | Fault detection for discrete event systems using petri nets with unobservable transitions[END_REF] for example). An overview of diagnosis methods on Petri nets can be found in [START_REF] Basile | Overview of fault diagnosis methods based on petri net models[END_REF]. The introduction of time [START_REF] Tripakis | Fault diagnosis for timed automata[END_REF]) has been a first extension to the problem in order to include a better modeling for temporal phenomena. Some works introduce this extension on Petri net formalism called Time Petri Nets (TPN) [START_REF] Wang | Diagnosis of time petri nets using fault diagnosis graph[END_REF]). Another extension proposed in [START_REF] Jéron | Supervision patterns in discrete event systems diagnosis[END_REF] aims to model faults as more complex behaviours called supervision patterns that are specific assembling of unobservable events. Recent works introduce the problem of diagnosis of supervision patterns in TPN (Pencolé and Subias (2021), Pencolé et al. (2021)), and defined supervision patterns with time constraints called timed patterns [START_REF] Coquand | Signature of timed patterns in time Petri nets: a formal characterization[END_REF]).

In this work the diagnosis is performed on a new type of patterns called time patterns, that are timed patterns that may occur anytime during the system life. The aim of this work is to provide a diagnosis method for time pattern in time systems modeled as time Petri nets. To do so, the synthesis of a new object called Observable Simple Temporal Network that abstracts some observable behaviours of the system for which the pattern has occurred is performed. It is presented as a sequence of observable events linked by time constraints. The diagnosis is performed for a sequence of observations as the recognition of one of the Observable Simple Temporal Network of a set abstracting the different pattern occurrences. It returns whether the pattern has not or may have occurred, and certify the diagnosis in case of diagnosable systems.

The paper is articulated as follows. First Section 2 presents the prerequisites necessary to understand the diagnosis problem, its modeling and the problem itself. Section 3 develops the synthesis of the Observable Simple Temporal Network for given system and time pattern. Before concluding, Section 4 gives the diagnosis function based on the results of the previous section.

DIAGNOSIS OF TIME PATTERN IN TIME PETRI NETS

In this work the system and the pattern are both modeled as Labeled Time Petri Nets (LTPN) (see Section 2.1).

While the system is partially observable (some of its transitions are labeled by observable events) the considered time pattern represents some unobservable behaviours. It is then necessary to characterize their occurrences as observable behaviours to perform a diagnosis on the system. The idea is to abstract the different occurrences of a time pattern inside a system as finite sets of constraints relative to the date of occurrence of some observable events in the system. Such an abstraction will be modeled by an Observable Simple Temporal Network, denoted OSTN .

Background on labeled time Petri nets

In this section some formal prerequisites on LTPN are recalled. Definition 1. A Labeled Time Petri Net (LTPN) is a 6uple N = P, T, A, Σ, , I s where:

• P is a finite set of places • T is a finite set of transitions (P ∩ T = ∅)

• A ⊆ (P × T) ∪ (T × P) is a binary relation modeling the arcs between the transitions and the places • Σ is a finite alphabet of transition labels • : T → Σ is the transition labeling function

• I s : T → I Q+ is a static interval function I s (t),
for which the lower bound, also called the date of earlier firing is denoted ↓ (I s (t)) ∈ Q + , and its upper bound, also called the date of later firing, is denoted

↑ (I s (t)) ∈ Q + ∪ {+∞}
The preset of a transition t is the set of input places pre(t) = {p ∈ P | (p, t) ∈ A}, and similarly the postset of t is the set of output places post(t) = {p ∈ P | (t, p) ∈ A}.

For a safe LTPN, a state is a couple S = M, I where M is the marking of the net (M : P → {0, 1}) and I is the partial firing interval application (I: T → I Q+) that associates to any transition a time interval of Q + in which t can be fired as soon as it is enabled. S 0 = M 0 , I 0 is the initial state of the net where M 0 is the initial marking of the net and I 0 is defined as follows: for any transition t enabled by M 0 , I 0 (t) = I s (t), else I 0 (t) = ∅. For a marking M , a transition t is firable at the date θ if and only if:

• t is enabled (i.e. ∀p ∈ pre(t), M (p) > 0) • θ ∈ I(t)
and for all t enabled by M, θ ≤↑ (I(t))

The fire of a transition t at a date θ is denoted: M, I θt -→ M , I and defined such that

• M is such that ∀p ∈ pre(t) \ post(t), M (p) = 0, ∀p ∈ post(t) \ pre(t), M (p) = 1 else M (p) = M (p)
--→ S 1 θ2t2 --→ S 2 . . . θntn ---→ S n .
A timed sequence over an alphabet Σ is a sequence of pairs (d, e) ∈ R + × Σ where d corresponds to the date of firing of symbol e. A run produces a unique timed sequence. Definition 2. The language L(N) of a LTPN N is the set composed by every timed sequence ρ such that there exists r = θ 1 t 1 . . . θ n t n an admissible run for N with ρ = θ 1 (t 1) . . . θ n (t n). [START_REF] Berthomieu | An enumerative approach for analyzing time Petri nets[END_REF] defines a State Class Graph (SCG) which is an abstraction of the LTPN as an automaton. Each state is a class of equivalence between the states of the LTPN that share their marking and their firing domain i.e the time constraints on the firable transitions from the marking. The initial firing domain is defined by I 0 (t) for each t enabled by M 0 . Definition 3. A State Class Graph (SCG) of a LTPN N = P, T, A, Σ, , I s is a triple (C, α 0 , →) such that:

• α 0 = (M 0 , F 0) where M 0 is the initial marking of N and F 0 ∈ (I Q+) T is the initial firing domain of N • C ∈ {0, 1} P × (I Q+) T is the set of all classes corresponding to states reachable in N • →∈ C × T × C is the transition function defined as follows : (M, F)

t - → (M , F) iff • t is firable from (M, F) • M = M -pre(t) + post(t) • F = next(F, t)
where next : (I Q+) T × T → (I Q+) T is the procedure to build the firing domain F associated with a reachable marking M reached from M by the firing of t that is defined as follows:

(1) for each transition t enabled in M , compute the firing of t by adding the two constraints θ ≤ θ and θ = θ + θ upd (θ upd is a substitution variable) (2) eliminate variables relative to transitions enabled in M and not in M (3) add the constraints relative to the newly enabled transitions (in M) (4) determine the canonical form of each constraint in F

Modeling

In this work the system is modeled as a partially observable safe LTPN Θ = P Θ , T Θ , A Θ , Σ Θ , Θ , I s,Θ . Each firing interval is closed with its bounds belonging to Q + . The labeling function Θ is bijective i.e. every event is associated with a unique transition of T Θ . The alphabet is partitioned into two sets: Σ oΘ = {o 1 , . . . , o n } the set of observable events on Θ, and Σ uΘ = {uo 1 , . . . , uo p } the set of unobservable events. Similary T Θ is partitioned into T oΘ the set of transitions labeled by an observable event, and T uΘ the set of transitions labeled by an unobservable event. Some other assumptions are formulated about Θ:

• A0 the SCG of the system is finite • A1 there is no cycle of unobservable event in the system • A2 the system has no zeno run (infinite sequences of transitions that can occur in a finite amount of time) • A3 every transition enabled by the initial marking of the system is observable Condition A0 ensures that for each transition t ∈ T Θ , there is a finite number of arcs in the SCG of Θ labeled by t. Condition A1 ensures that an observable transition will always be fired in a finite amount of time after another one. Condition A2 prevents an infinite number of events from occurring in a finite amount of time. Condition A3 ensures that the start of the system clock is observable.

Time pattern represent faulty behaviours or particular behaviours one wishes to diagnose. Contrary to the patterns investigates in [START_REF] Coquand | Signature of timed patterns in time Petri nets: a formal characterization[END_REF] in which the pattern always occur in a finite time window after the starting of the system (after a certain amount of time it will not occur), the time patterns considered here are unobservable behaviours that can occur on the considered system. Definition 4. A time pattern over a system Θ is a safe acyclic LTPN Ω = P Ω , T Ω , A Ω , Σ Ω , Ω , I sΩ where:

(1) Σ Ω ⊆ Σ uΘ

(2) if (t, t) ∈ T 2 Ω with pre(t) ∩ pre(t) = ∅, then t and t cannot be firable simultaneously (3) there is only one transition enabled in the initial marking M 0Θ and it is such that its firing interval has the form [a init , +∞[. The other transitions have a closed interval. (4) M 0Ω / ∈ Q Ω with M 0Ω and Q Ω respectively the initial marking and the set of final markings of Ω (5) for every marking M reachable in Ω, there exists M reachable from M such that M ∈ Q Ω (6) Ω is deterministic (7) every run starting from a marking of Q Ω necessarily leads to a marking of Q Ω

In this work the study is restricted to pattern without parallelism (Condition 2). Condition 3 states that an occurrence of the pattern can start at any time during the system life, but always ends after a finite amount of time.

Condition 4 ensures that the language of a pattern does not contain the empty sequence i.e the pattern does not represent empty event sequences. Condition 5 ensures that any run of the pattern is a prefix of a run for which the pattern has occurred. Condition 6 ensures that a pattern is written in a unique way. Finally Condition 7 ensures that the occurrence of the pattern in an execution of Θ is definitive.

Example 1. Figures 1a and1b show an example of time pattern Ω 1 on a system Θ 1 . The observable transitions are t 0 , t 1 , t 3 and t 5 (colored in blue here) and the unobservable ones are t 2 and t 4 (colored in red). The final marking of Ω 1 is P t 3 = 1.

The occurrence of a pattern in a run of the system is considered as a pattern matching problem, following the definition of Pencolé and Subias (2021): Definition 5. A timed sequence ρ ∈ L(Θ) matches a pattern Ω (denoted ρ Ω) if there exists a sub-word ρ of ρ such that ρ ∈ L(Ω).

Without ambiguity, it is said that a run r matches a pattern Ω (r Ω) if the timed sequence ρ produced by r matches Ω. Example 2. The run r = 0t 0 .2t 4 .2t 5 .2t 1 .1t 2 .0t 3 .1t 4 .2t 5 is a run of Θ 1 that matches Ω 1 , as it produces the timed sequence ρ = 0o 1 .2f.2o 4 .2o 2 .1init.0o 3 .1f.2o 2 for which ρ = 7init.1f is a sub-word that belongs to L(Ω 1).

The projection of a timed sequence onto the observable alphabet of the system (also called observable timed sequence) is defined as follows:

• P ΣΘ→ΣoΘ (θ 1 e 1 .θ 2 e 2 . . . θ n e n) = θ 1 e 1 .P ΣΘ→ΣoΘ (θ 2 e 2 . . . θ n e n) if e 1 ∈ Σ oΘ • P ΣΘ→ΣoΘ (θ 1 e 1 .θ 2 e 2 . . . θ n e n) = P ΣΘ→ΣoΘ ((θ 1 + θ 2)e 2 . . . θ n e n) otherwise Example 3. The associated observable timed sequence to ρ is ρ o = 0o 1 .4o 4 .2o 2 .1o 3 .2o 2 .

Diagnosis problem statement

Intuitively speaking, the diagnosis problem considered is to determine if a pattern has effectively occurred from the knowledge of a sequence of observable events produced by a system. The answer is given by a diagnosis function called diagnoser (denoted Ω-diagnoser), returning for an observable timed sequence Ω -safe if no run producing this time sequence matches Ω, Ω -certain if every run producing the observable timed sequence matches Ω and Ω -ambiguous otherwise.

p 3 t 2 init [1, 2] p 2 t 3 o3 [0, 3] p 1 t 1 o2 [0, 2] t 4 f [0, 2] p 4 t 0 o1 [0, 0] p 0 t 5 o4 [1, 2] t 5 o4 [1, 2] (a) Θ 1 P t 2 tp 1 init [5, +∞[tp 2 f [0, 2] P t 3 P t 1 (b) Ω 1
In this paper, we aim at proposing an Ω-diagnoser for an extension of the pattern diagnosis problem introduced in Pencolé et al. (2021), that deals with time pattern as defined in Definition 4. As each run of the system that matches the pattern produces a given set of observable events satisfying specific time constraints, the knowledge of these observable events and time constraints can be exploited for a diagnosis purpose. We then propose to formally define the Ω-diagnoser based on the notion of Observable Simple Temporal Network that is defined below: Definition 6. An Observable Simple Temporal Network OSTN is a couple (s, Π) where s is a nonempty sequence of observable events (s ∈ Σ + oΘ) and Π is a set of constraints relative to the occurrence dates of the events of s.

The aim of this work is to diagnose the occurrences of a time pattern Ω in a system Θ thanks to the recognition of a set of OSTN s that capture observable behaviours associated with the system runs that match the pattern i.e. to every possible type of occurrence of Ω in Θ. These so called OSTN s are built following the procedure of Algorithm 1 presented in the next section.

OSTN SYNTHESIS

This section presents the synthesis of the OSTN s based on the analysis of the SCGs of the system and the pattern.

General procedure

Algorithm 1 exposes the calculation procedure of the OSTN s that characterize a time pattern Ω in a system Θ. This algorithm is based on both the SCGs of Θ and Ω. Firstly, Function getObsPredecessors returns for a given transition t init (the one labeled by the init event here) every observable transition that may be the nearest observable predecessor of t init in a run of Θ by exploring the SCG of Θ. In other words, it returns

{t obs ∈ T oΘ s.t. ∃(m, n) ∈ N 2 , m < n, ∃(t i) i∈[1,n] ∈ T n Θ , ∃(α j) j∈[0,n] ∈ C n+1 , α 0 t1 -→ α 1 . . . α m tm --→ α m+1 . . . α n-1 tn -→ α n , t n = t init , t m = t obs (i.e. (t m) ∈ Σ oΘ) ∀i ∈ [m + 1, n], (t j) ∈ Σ uΘ }.
Secondly, starting from t init and exploring in parallel the SCG of Θ and the one of Ω, the procedure extracts Algorithm 1 Synthesis of OST N s for a time pattern Ω and a system Θ input : A system Θ, a time pattern Ω and their SCG (SCG(Θ) and SCG(Ω)), the system transition t init (labeled by event init) output: A set of OST N obsP redecessors ← getObsPredecessors(t init , SCG(Θ)) seqM atch ← getMatchingSeq(SCG(Θ), SCG(Ω), t init) for π ∈ seqM atch, t o ∈ obsP redecessors do OST N s ← OST N s ∪ (obs(t o .π), getConstraints(π, t o , Ω)) end return OST N s from the SCG of Θ the transition sequences from Θ for which there can be an occurrence of Ω i.e the sequences that match the pattern (function getMatchingSeq)). getMatchingSeq actually returns a set of sequences of pairs of interval/transition, where the interval corresponds to the constraints relative to this transition in the firing domain of the class in which the transition is fired in the SCG of Θ. This sequence of pairs called path is denoted π thereafter. Then, for each couple formed by an observable predecessor transition t o and a path π, getConstraints computes the time constraints on the observable transitions of π relative to the occurrence of Ω and results in the synthesis of the OSTN for the couple (t o , π). In this step, the knowledge of the different t 0 (i.e the observable predecessors of t init) allows to shift the time origin of the time constraints to make it observable (see Section 3.2). In the end Algorithm 1 returns a set containing the OSTN s abstracting the different matching. It has been shown in [START_REF] Coquand | Signature of timed patterns in time Petri nets: a formal characterization[END_REF] that this set is finite. Example 4. Let us consider the system and the pattern of Figure 1. The t init transition is t 2 . The observable predecessor of t 2 is t 1 . In the system SCG, starting from t init the path matching Ω 1 is π 1 = [0, 3]t 3 .[0, 2]t 4 .[1, 2]t 5 . The OSTN building based on these results will be developed thereafter. Note that this example is simple for the sake of readability: there is only one path π 1 matching Ω 1 (so the SCG is not given). However, in the general case, there are many possible paths in a system satisfying the modeling assumptions (see Section 2.2).

Constraints synthesis

This section describe the function getConstraints of Algorithm 1. The paths π previously obtained correspond to the system behaviours that may include occurrences of the pattern. For each π obtained, there exists a run r of π that matches Ω, meaning there exists a path π in the SCG of Ω corresponding to the occurrence of Ω in π (in terms of transition sequence). From each path π of the system it is then possible to extract time constraints on the firing dates of the observable transitions of the path according the to the time constraints of π . This step of constraint extraction is formally detailed in [START_REF] Coquand | Signature of timed patterns in time Petri nets: a formal characterization[END_REF] and summarized in this section.

The constraint extraction for a couple (π, π) is performed in three main steps.

The first step is to synchronise the system and the pattern to simulate the matching. As the atemporal match-ing has been previously verified (see getMatchingSeq of Algorithm 1), this step allows to deal with the temporal part of the matching by expressing it in the form of time constraints. To start, the path π returned by getMatchingSeq is reduced to its observable transitions and to the transitions responsible for the occurrence of Ω. The unobservable transitions of the path π that do not participate to the pattern occurrence are removed. Their firing date are deported onto the next non-deleted transition (which can be observable, or unobservable but that participates to the pattern occurrence) by resolving an inequation system built from the firing domains of the classes associated to the path taking into account the firing order of the transitions in π [START_REF] Wang | Diagnosis of time petri nets using fault diagnosis graph[END_REF]).

p 2 tuo 1 [0, 2] p 1 tuo 2 [1, 2] p 3 t 3 [1, 3] p 4 p 0
Fig. 2. Example illustrating the reduction step Example 5. This example illustrates the reduction of a path for a system with one observable transition (t 3) and two unobservable transitions (t uo1 and t uo2) without considering any pattern. Let us consider the net of Figure 2, and more particularly the path

π example = [0, 2]t uo1 .[1, 2]t uo2 .[0, 2]t 3 . The reduction of this path leads to a new path π = [a, b]t 3 where (a, b) ∈ R 2 .
To determine a and b, the inequation system is to establish with y i the variable associated to the absolute date of firing (relative to the start of the net) of t i . Following the firing sequences resulting inequations will be: {0 ≤ y uo1 ≤ 2, 1 ≤ y uo2y uo1 ≤ 2, 0 ≤ y 3 -y uo2 ≤ 2}. As t uo2 and t 3 are enabled simultaneously but t 3 fired after, a new inequation is added: 0 ≤ y 3 -y uo2 (here this last inequation is redundant but in the case of conflicts between transitions this inequation must be considered). The resolution of this inequation system leads to: a = 1, b = 6, so π = [1, 6]t 3 . Let us consider now the path [0, 2]t uo1 .[1, 3]t 3 .[0, 1]t uo2 , the reduction will be performed on t uo1 and t 3 only.

Once the reduced path is obtained, it is then cut into blocks to be synchronized with the pattern transitions following π . A block is part of a path (i.e a sequence of pairs of firing domains/transitions) composed eventually of observable transitions, and of a last transition that is an unobservable transition involved in the pattern occurrence.

π 1 : [0, 2]t p2 π 1 : [0, 3]t 3 [0, 2]t 4 [1, 2]t 5 w 0 w 0 w 1 Fig. 3. Block cutting illustration (Θ (t 4) = Ω (t p2))
Example 6. Back to the example of Figure 1 with π 1 = [0, 3]t 3 .[0, 2]t 4 .[1, 2]t 5 and π 1 = [0, 2]t p2 , the block cutting is performed as shown in Figure 3. The transitions t 4 and t p2 must be synchronized as they share the same label f . The system path π is then composed of two blocks: w 0 = [0, 3]t 3 [0, 2]t 4 and w 1 = [1, 2]t 5 . The second block contains only an observable transition, as it does not need to be synchronized with anything. The pattern is composed of only one block w 0 = [0, 2]t p2 . Proposition 1. The synchronisation of two blocks w = I 1 t 1 . . . I k t k and w = I Ω t Ω with (t k) = (t Ω) defines the following set of constraints (called synchronisation constraints) to be satisfied:

∀r = d 1 t 1 . . . d k t k ⊆ w, r I Ω t Ω ⇔                d 1 ∈ I 1 . . . d k ∈ I k k i=1 d i ∈ I Ω (1)
During the rest of this work, a synchronisation constraint is considered as its canonical form, which is defined as the restriction for a constraint to the set of values for which there exists a solution for the whole set. Example 7. Back to the example with π 1 = [0, 3]t 3 .[0, 2]t 4 .[1, 2]t 5 and π 1 = [0, 2]t p2 , there is no need for reduction in this simple example. The synchronisation of t 4 and t p2 , leads to the following set of constraints:

{d 3 ∈ [0, 3], d 4 ∈ [0, 2], d 3 + d 4 ∈ [0, 2]}.
As there is no solution to this set for values of d 3 between 2 and 3, the canonical form of the synchronisation constraints is:

{d 3 ∈ [0, 2], d 4 ∈ [0, 2], d 3 + d 4 ∈ [0, 2]}.
The second step of the constraint extraction, generates another type of constraints called admissibility constraints, that provide the necessary conditions for a transition sequence of the SCG to correspond to a part of an admissible run in the system. Indeed the SCG contains for each transition every possible firing date for the transition, but a set of firing dates for a sequence of transitions in the SCG may not be admissible for the system (due to parallelism). Such constraints are calculated from the following rule: the time elapsed between the enabling and the firing of a transition belongs to its firing interval in the system. This time elapsed may be the sum of the firing dates of a group of transitions if a transition is enabled at a time and not fired directly. Example 8. The admissibility constraints for

π example = [0, 2]t uo1 .[1, 2]t uo2 .[0, 2]t 3 of Figure 2 will be: 1 ≤ d uo2 + d 3 ≤ 3.
The third step is to transform the previous constraints into observable ones. For the admissibility constraints a variable change is applied reporting the involved dates of firing onto the next observable transition (if they are relative to an unobservable transition) relatively to the previous observable transition fired in the sequence. The same variable change is applied for the constraints issued from the synchronisation, for which the only unobservable transitions are the transitions synchronized with the transitions of the pattern. To complete this step it is necessary to shift the time origin of the constraints to make the constraints relative to an observable transition (as Ω (t init) ∈ Σ uΘ). A similar variable change to the one performed previously is applied on the first variable of the constraints set. This variable change models the time elapsed between the firing of the observable transition preceeding t init and the first transition of each sequence.

o 2 o 3 o 4 [2, 6] [1, 4] [1, 4]
Example 9. As t 3 is observable, the translation into observable constraints is performed with the variable change

d o 5 = d 4 + d 5 .
That leads to the following constraints:

{d 3 ∈ [0, 2], d o 5 ∈ [1, 4], d 3 + d o 5 ∈ [1, 4]}.
The origin shifting is performed with the variable change d o 3 = d 2 + d 3 as the time elapsed since the observable transition preceding the transition labeled by init is d 2 + d 3 (with d 2 ∈ [1, 2] see Figure 1a). The observable set of constraints for the matching of Ω 1 in Θ 1 is:

{d o 3 ∈ [1, 4], d o 5 ∈ [1, 4], d o 3 + d o 5 ∈ [2, 6]}.
For each tuple (t o , π, Π to,π), where Π to,π is the set of constraints associated to (t o , π), the following OST N is computed : OST N = (obs, Π to,π) where obs is the concatenation of the label of t o and of the observable labels of π.

Example 10. The OST N characterizing Ω 1 throughout Θ 1 is:

OST N Ω1 = (o 2 .o 3 .o 4 , {d o 3 ∈ [1, 4], d o 5 ∈ [1, 4], d o 3 + d o 5 ∈ [2, 6]}).
Figure 4 shows a graphical representation of OST N Ω1 . An arc between two events labeled with an interval represents the time elapsing since the firing of the starting node until the firing of the ending node. The time elapsing between the occurrence of o 2 and o 4 (which contains the time between o 3 and o 2 and the time between o 4 and o 3) is bounded between 2 and 6 time units.

In the following for a system Θ and a pattern Ω, N Θ (Ω) denotes the set of OST N abstraction of Ω in Θ. For the example N Θ1 (Ω 1) = {OST N Ω1 }.

RECOGNITION-BASED DIAGNOSIS

In this section, we consider that the system Θ produces the observed timed sequence σ. Let (s, Π) ∈ N Θ (Ω) be an OSTN. We say that the OSTN (s, Π) is recognized on σ iff:

• there exists ρ = u.v.w ∈ L(Θ) such that the observable events in the timed subsequence v are the ones of s and their dates of occurrences satisfy the constraints Π; and • let π ρ be the path of SCG(Θ) associated with the run of Θ producing ρ, the path π based on which the OSTN (s, Π) has been synthetized is a prefix of the path π ρ .

Let O(σ) be the set of OST N 's that are recognized on σ.

Proposition 2.

(1) If a OST N is in O(σ), then there exists a run r of Θ with σ as observable timed sequence such that r Ω. (2) Similarly if a run r of the system produces the observable timed sequence σ = σ .σ with σ not empty and a prefix of r matches Ω while producing σ then O(σ) = ∅.

Sketch proof:

(1) If a OST N is recognized on σ there exists a path of SCG(Θ) associated with a run whose observable part is σ that has, as a prefix, the path π based on which the OST N has been built. Then the result is a direct consequence of the constraints synthesis and the bijectivity of Θ .

(2) The run r is associated with a path π r of SCG(Θ), as it matches Ω, there exists a strict prefix π of π r that belongs to seqM atch in Algorithm 1 from which an OSTN exists and will be recognized on σ.

Based on the previous results, we now propose the definition of two diagnosers. The first one is generic and runs on any type of system Θ. Definition 7. The OSTN-based Ω-diagnoser is the function ∆ Ω : P ΣΘ→ΣoΘ (L(Θ)) → {Ω -saf e, Ω -ambiguous} defined as follows.

•

∆ Ω (σ) = Ω -saf e if O(σ) = ∅.
• ∆ Ω (σ) = Ω -ambiguous otherwise.

This Ω-diagnoser keeps tracking the paths of the SCG that are consistent with σ and checks for the recognition of at least one OSTN. Proposition 2 then ensures that ∆ Ω (σ) = Ω -saf e iff no pattern has occurred on the runs producing σ. The second version of the diagnoser is more accurate but requires Θ to be Ω-diagnosable (see Pencolé and Subias, 2021). Definition 8. A system Θ is said to be Ω-diagnosable iff ∃τ ∈ R + s.t. ∀(ρ 1 , ρ 2) ∈ L(Θ) 2 , ρ 1 = ρ 1 ρ 1 , time(ρ 1) ≥ τ , ρ 1 Ω ∧ P Σ→ΣoΘ (ρ 2) = P Σ→ΣoΘ (ρ 1) ⇒ ρ 2 Ω.

where time is the function returning for a timed sequence the time elapsed during this sequence. Definition 9. Let Θ be a Ω-diagnosable system. The Ω diagnoser is the function ∆ d Ω : P ΣΘ→ΣoΘ (L(Θ)) → {Ωsaf e, Ω -ambiguous, Ω -certain} such that:

• ∆ d Ω (σ) = Ω -saf e if O(σ) = ∅. • ∆ d Ω (σ) = Ω -certain if O(σ) = {OST N π , ∀π ∈ Π SCG(Θ) (σ)} • ∆ d Ω (σ) = Ω -ambiguous otherwise.
Π SCG(Θ) (σ) denotes the set of paths from SCG(Θ) ending with an observable transition that at least produces a run whose observable part is σ and OST N π denotes an OST N that has been synthetized based on a SCG path that is a prefix of π. Proposition 3. If ∆ d Ω (σ) = Ω -certain then Ω has definitely occurred in the system. Sketch proof: If ∆ d Ω (σ) = Ω-certain, we know that for any path of Π SCG(Θ) (σ) there exists at least a possible run of Θ that generates σ and matches Ω (Proposition 2). Now, whatever the observable future of σ is, it will be associated with a path of the SCG whose prefix is in Π SCG(Θ) (σ) so there will always be a possible run that matches Ω. But as the system is Ω-diagnosable, then the current real run necessarily matches Ω already.

CONCLUSION This paper adresses the problem of diagnosis in time

Petri nets of time patterns that may occur anytime. The diagnosis method is based on the recognition of Observable Simple Temporal Networks (OST N s) that capture the occurrence of observable events constrained by time. These OST N s are an abstraction of pattern occurrences of in the system. The provided diagnosis helps either to conclude the pattern has not occurred, or to indicate the result is ambiguous. A diagnoser for diagnosable systems is presented using the diagnosability to conclude, that can bring a predictable character to the result. Future work will include diagnosability analysis for such types of time pattern.

Fig. 1 .

 1 Fig.1. A system Θ 1 and a pattern on this system Ω 1

Fig. 4 .

 4 Fig. 4. Graphical representation of OST N Ω1

θ 1 t 1 . . . θ n t n of a LTPN is said to be admissible if there exist S 1 , . . . S n reachable states of N such that S 0 θ1t1

	and still enabled by M , I(t) = [a, b] ⇒ I (t) =
	[max(0, a -θ), b -θ]	
	• for every transition t enabled by M and not by M ,
	I (t) = I s (t)	
	A state S is reachable in a marked LTPN if there exists
	a run r = θ 1 t 1 . . . θ n t n , n ∈ N * such that S 0	θ1t1 --→ S 1	θ2t2 --→
	S 2 . . .	θntn ---→ S. The set of reachable states of a LTPN N is
	denoted R(N, S 0).	
	A run r =	

• for any transition t ∈ T (t = t) enabled by M