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Learning Micro-Macro Models for Traffic Control
Using Microscopic Data

Jonathan Krook Mladen Čičić Karl Henrik Johansson

Abstract—Connected and Automated Vehicles (CAVs)
are likely to have a large impact on the traffic in the
near future. Assuming we are able to communicate some
commands directly to them, it is of interest to know how
CAVs can be used for traffic control. In order to achieve
this, we need to understand how such controls affect the
rest of the traffic. In this work, we study the influence of a
CAV acting as a moving bottleneck, using the CAV’s speed
as a control input. We discuss the interpretation of the
microscopic traffic data in the macroscopic framework,
and propose nonparametric methods for learning the
micro-macro model describing the interaction between
the CAV and the surrounding traffic. We use only the
local traffic data in the vicinity of the CAV, and design
simple, targeted data collection experiments. This learned
model is then used to predict the evolution of the traffic,
and the predictions are compared with corresponding
data from microscopic simulations.

I. INTRODUCTION

One of the most lauded potential benefits of Connected and
Automated Vehicles (CAVs) is their contribution to increased
road throughput [1], increasing safety and flow stability,
despite their generally more conservative driving behaviour
compared to human drivers [2]. Unless eclipsed by network-
wide phenomena, e.g. induced demand, this improvement
should reduce congestion, and emissions. Additionally, a new
traffic control paradigm is becoming viable, using CAVs
within the traffic as sensors and actuators, collecting local
traffic measurements, and issuing reference speeds or other
commands to them as control inputs. Thus, in order to
implement such control laws, the effects of these control
inputs need to be well understood and properly modeled.

Both the microscopic and the macroscopic traffic mod-
elling paradigm have own advantages and disadvantages
regarding capturing the influence of individual vehicles on
the rest of the traffic. In microscopic models, the behaviour
of each vehicle is described separately, allowing for easy
implementation of CAV-actuated traffic control. While their
implementation in microscopic traffic simulators such as
SUMO [3] is widely accepted to be a good representa-
tion of the actual traffic, these models are, prohibitively
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computationally expensive and hard to use as prediction
models for calculating the control inputs. On the other hand,
macroscopic models such as the Lighthill-Whitham-Richards
(LWR) model [4] describe the aggregate behaviour of the
traffic, and are thus applicable for analysing and predicting
the evolution of the traffic state.

Micro-macro approaches combining these two paradigms
have recently been garnering much attention, as the aggregate
behaviour of vehicles in microscopic models has been shown
to converge to its macroscopic counterpart [5, 6]. Macro-
scopic quantities may be obtained from the microscopic data
by using e.g. kernel estimation [7]. One of the most direct
ways a CAV can influence the rest of the traffic is by reducing
its speed and acting as a moving bottleneck [8, 9], which
has been considered for traffic control [10, 11, 12]. Before
this type of traffic control can be implemented, more work
is required on identifying and validating the model of this
interaction using real and synthetic traffic data.

The problem of fitting the flux function of the traffic
(i.e., the fundamental diagram) to measurements has been
approached from many perspectives [13, 14]. Conventionally,
a parametric form of the flux function is assumed, and then
calibrated using the collected traffic measurements. Similarly,
the moving bottleneck flux function can be estimated using
the measurements of the overtaking flow [15].

In this paper, we study the influence of a controlled
vehicle acting as a moving bottleneck on the surrounding
traffic, using microscopic traffic simulation data. We model
the interaction between them by assuming the traffic at the
position of the moving bottleneck is governed by a different
flux function, using the LWR model with space-dependent
flux functions. By assuming both of these flux functions
are continuous and piecewise-linear, we are able to fit them
nonparametrically, and can use the Front-tracking Transition
System Model (FTSM) [16] to predict the evolution of traffic.
We design experiments including a single controlled vehicle,
and obtain local measurements of the traffic state in its
vicinity. This data is used to simultaneously learn the flux
functions of the moving bottleneck and the rest of the traffic.
Finally, the predictions acquired from the learned model are
compared against the simulation data.

The remainder of the paper is organized as follows. In
Section II, we discuss a macroscopic model for traffic flow
with a moving bottleneck, describe how it is connected to
the microscopic traffic data, and outline the traffic prediction
model learning problem. Next, in Section III, we propose
the structure of the prediction model, describe the data
collection experiments, and present methods for learning the
flux functions used in the model from microscopic data.
Thereafter, in Section IV, we present a numerical evaluation
of the proposed traffic prediction model learning methods
through simulations, and finally conclude in Section V.



II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we give some preliminaries, defining the
macroscopic traffic model that will be used and the connec-
tions between its states and microscopic traffic data. Then, we
outline the traffic prediction model learning problem which
will be tackled in the following section.

A. Macroscopic traffic model
The evolution of the traffic state on the considered road

segment can be described by the Lighthill-Whitham Richards
model [4] with space-dependent flux function, given by

∂tρ(x, t) + ∂xQ(ρ(x, t), x, t) = 0, (1)

where we denote by x the position along the road, t the
time, ρ(x, t) the traffic density at position x and time t, and
Q(ρ, x, t) the flux function. We let the flux function Q(ρ, x, t)
be piecewise defined in space and time, with different flux
functions Qi(ρ) mapping the traffic density to the traffic flow
in each interval x ∈ (Xi−1(t), Xi(t)).

In particular, we model the influence of a controlled vehicle
ξ slowing down to some constant low speed uξ and acting
as a moving bottleneck, restricting the capacity of the road
around it, by using a space-dependent flux function

Q(ρ, x, t)=


Q0(ρ), x < xξ(0)− lξ + uξt,

Qξ(ρ), xξ(0)−lξ+uξt<x<xξ(0)+uξt,

Q0(ρ), xξ(0) + uξt < x,

(2)

for t ∈ [tξslow, t
ξ
fast] when we assume the controlled vehicle

travels at constant speed ẋξ(t) = uξ. Here, we denote by
xξ(t) = xξ(0)+uξt the position of the front of the controlled
vehicle, lξ its length, Q0 the flux function of the unimpeded
road, with homogeneous geometry, and Qξ the reduced flux
function for the portion of the road where one of the lanes
is blocked by the moving bottleneck.

Letting lξ → 0, in order for the Rankine-Hugoniot con-
dition to hold on the up- and downstream boundary of the
zone described by flux function Qξ, we require that

Qξ(ρξ)−Q0(ρ−) = uξ(ρξ − ρ−),

Q0(ρ+)−Qξ(ρξ) = uξ(ρ+ − ρξ),
where ρ− = ρ((xξ(t))−, t) and ρ+ = ρ((xξ(t))+, t) are the
traffic densities immediately upstream and downstream of the
controlled vehicle, respectively, and ρξ is the traffic density
in the zone described by Qξ. The traffic flow overtaking the
controlled vehicle is given by

ωξ(t) = min

{
Q0(ρ−)− uξρ−,max

ρ≥0
(Qξ(ρ)− uξρ)

}
.

Assuming both Q0 and Qξ can be approximated as con-
tinuous piecewise-linear functions, the solution to (1), with
piecewise-constant initial conditions

ρ(x, 0) =


ρ1, x < X1,...
ρi, Xi−1 < x < Xi,...
ρN+1, XN < x,

and Q(ρ, x, t) given by (2) can be found exactly using the
front-tracking method [17]. This approach was formalised

as a transition system in [16], and the FTSM given therein
will be used to predict the evolution of the system state.
Additionally, assuming this form of flux functions allows us
to employ nonparametric methods to fit them.

B. Connection with microscopic traffic data
The traffic state of microscopic traffic models is given by

describing the dynamics of each vehicle. For each vehicle
i ∈ I(t), where I(t) is the set of indices of all vehicle on
the road at time t, its trajectory xi(t) is determined by

ẋi(t) = vi(t),

v̇i(t) = ai(t),

where its acceleration ai(t) depends on the state of nearby
vehicles, and is determined by some car-following (e.g. Intel-
ligent Driver Model (IDM) [18]), and lane-changing model.

Considering a road segment x ∈ [Xl, Xr], we may
calculate the macroscopic average traffic density and har-
monic mean traffic speed of the vehicles in it. Denoting by
IXr

Xl
(t) ⊂ I(t) the set of indices of all vehicles on [Xl, Xr],

IXr

Xl
(t) = {i ∈ I(t) : Xl ≤ xi(t) ≤ Xr} ,

we can write the mean traffic density of the segment as

ρ̄δ(Xl, Xr, t) =

∣∣∣IXr

Xl
(t)
∣∣∣

Xr −Xl
=

∫Xr

Xl

∑
i∈I(t)

δ(x− xi(t))dx

Xr −Xl
,

where | · | denotes set cardinality, and δ is the Dirac delta
function. Similarly, the harmonic mean speed is given by

v̄δ(Xl, Xr, t) =

∣∣∣IXr

Xl
(t)
∣∣∣∑

i∈IXr
Xl

(t)

1
vi(t)

=

∫Xr

Xl

∑
i∈I(t)

δ(x− xi(t))dx∫Xr

Xl

∑
i∈I(t)

δ(x−xi(t))
vi(t)

dx
.

In order to capture the effect individual vehicles have on
their vicinity, as well as to smooth the traffic density, we
represent the presence of a vehicle with a Gaussian kernel
centered on its position instead of a Dirac delta. This allows
us to define the traffic density at any point of the road as

ρ̌(x, t) =
∑
i∈I(t)

1

L
ϕ

(
x− xi(t)

L

)
, (3)

where ϕ is the unit Gaussian kernel, and L is an empirical
parameter reflecting the range in which individual vehicles
directly influence the behaviour of vehicles around them. The
traffic speed and flow at any point on the road are then

v̌(x, t) =
ρ̌(x, t)∑

i∈I(t)

ϕ
(
x−xi(t)

L

)
Lvi(t)

,

q̌(x, t) = ρ̌(x, t)v̌(x, t). (4)
The flow of vehicles overtaking the controlled vehicle ξ

can be calculated by counting the overtaking vehicles within
some time interval t ∈ [t1, t2],

ω̄δξ(t1, t2) =

∣∣∣I∞xξ(t2)(t2)
∣∣∣− ∣∣∣I∞xξ(t1)(t1)

∣∣∣
t2 − t1

,

which yields Gaussian kernel instantaneous overtaking flow

ω̌ξ(t)=
∑
i∈I(t)

vi(t)− vξ(t)
L

ϕ

(
xi(t)− xξ(t)

L

)
.



C. Problem formulation
In practice, the traffic model is not likely to be known a

priori, and would instead need to be identified from experi-
mental data. We study the problem of learning a prediction
model for the evolution of the traffic state on a road segment,
that captures the influence of a slow-moving CAV on the rest
of the traffic. Describing the evolution of traffic by (1) and
(2), the problem reduces to finding flux functions Q0 and
Qξ, assumed to be continuous and piecewise-linear.

We assume that the only traffic data available are the tra-
jectories of vehicles close to CAV ξ, and that we can col-
lect these measurements from multiple experiments, selecting
different CAV control inputs for each experiment. The traffic
state prediction is intended to be used to calculate the control
actions, typically by predicting the future flow through some
point on the road, given the control action at the current time.
Therefore, for each experiment s, we use the relative differ-
ence in the total flow through some point Xq downstream of
the controlled vehicle, from some start time t0q until time tξ,sq
when the controlled vehicle ξ reaches Xq , xsξ(t

ξ,s
q )=Xq ,

es=1−

(∫ tξ,sq

t0q

q̂(Xq, t)dt

)(∫ tξ,sq

t0q

q̌(Xq, t)dt

)−1

(5)

to evaluate prediction accuracy and model performance.

III. TRAFFIC PREDICTION MODEL LEARNING

We now propose a solution to the traffic model learning
problem. First, we outline the overall procedure of building a
traffic prediction model and using it to predict the flow down-
stream of the controlled CAV. Then, methods for learning the
model components are described.

A. Solution structure
The evolution of traffic state given the control actions of

a CAV acting as a moving bottleneck can be predicted us-
ing the FTSM [16], given that continuous piecewise-linear
flux functions Q0 and Qξ are known. In order to gather
the relevant measurements, we design experiments s ∈ S ,
where the controlled vehicle ξ slows down to speed usξ at
some time tξslow, and speeds up again at time tξfast. During
t ∈ [tξslow, t

ξ
fast], we collect local traffic state measurement

directly upstream and downstream of the controlled vehicle
ξ, given by (ρs−, q

s
−) and (ρs+, q

s
+), respectively, as well as

measure the overtaking flow ωsξ . We assume that the traffic
flows can be measured indirectly, by measuring the space-
averaged traffic speed vs±, qs± = ρs±v

s
±. Experiments are

executed for different reference speeds usξ and levels of inflow
at the start of the road segment qsin, s ∈ S.

Once Q0 and Qξ are learned, we may use the result-
ing prediction model to predict the traffic density evolution
ρ̂(x, t). For each experiment, the prediction is calculated at
time t = 0, before CAV ξ enters the road, assuming only the
average traffic inflow to the considered road segment qsin is
known. Mimicking the simulation scenario, the traffic density
of the prediction model is initialized at t = 0 to

ρ̂(x, 0) =

{
Q−1

0 (qsin), x < 0,

0, x > 0,

where x = 0 is the position of the start of the road segment.
Until the time tξ0, when the controlled vehicle arrives, the
traffic flow on the whole road is modeled by Q0. At time tξ0,
a zero-length zone described by flux function Qξ, with its
boundaries moving at the reference speed of the controlled
vehicle λ±ξ = vmax

ξ , is added to the prediction model. The
propagation speed of these boundaries is reduced to λ±ξ = usξ
at time tξslow, potentially causing congestion to start accumu-
lating, and then returned to λ±ξ = vmax

ξ at tξfast. Finally, the
predicted flow through a downstream point Xq in (5) is

q̂(Xq, t) = Q0 (ρ̂(Xq, t)) .

B. Learning the traffic flux function Q0

According to (1), (2), if CAV ξ is travelling at a speed uξ
slower than the surrounding traffic, it will act as a moving
bottleneck, and, given a high enough traffic inflow qin, cause
a traffic density discontinuity at its position,

ρ(x, t) =

{
ρ−, x < xξ(t),

ρ+, x > xξ(t),

for x ≈ xξ(t). Here, ρ− and ρ+ both need to satisfy

ωξ = Q0(ρ)− uξρ,
where ωξ is the flow overtaking the CAV ξ, and all collected
measurements should follow Q0(ρs±) = qs±.

We assume that the traffic flux function Q0 is concave, with
Q0(0) = Q0(P ) = 0, where P is the jam density which can
be set empirically as the bumper-to-bumper traffic density.
Then Q0 can be approximated as an upper concave envelope
of points M,
Q0(ρ)=inf{Q(ρ)|(∀(ρ, q)∈M)Q(ρ)≥q,Q concave on [0,P ]},

M={(0, 0),(P, 0)}∪{(ρs−, qs−)|s∈S}∪{(ρs+, qs+)|s∈S},
and as such is a continuous piecewise-linear function. By
executing experiments with a wide range of different mov-
ing bottleneck speeds usξ, s ∈ S , we are able to sample
different points on Q0, covering the most relevant part of
the flux function. As the set of experiments grows, we may
approximate any continuous concave flux function with thus
defined Q0 arbitrarily well.

The described fitting method tacitly assumes that the mea-
sured traffic state follows the flux function Q0 exactly. In
presence of noise and variability of human driving behaviour,
the method produces an overestimation of the flux function.
Therefore, it is important that the influence of noise is elim-
inated as much as possible from measurements (ρs±, q

s
±),

s ∈ S, e.g. by averaging the measurements over a long time
horizon and only considering the steady-state measurements.

C. Learning the moving bottleneck flux function Qξ
Using the measurements from the same set of experiments,

we can identify the moving bottleneck flux function Qξ si-
multaneously with identifying the traffic flux function Q0.
Although points of this function cannot be directly measured,
we may use the fact that lines ωsξ + usξρ, s ∈ S should be
tangent to Qξ to learn the relevant parts of Qξ, allowing us
to capture the influence of moving bottlenecks. We have

Qξ(ρ) ≤ ωsξ + usξρ, ρ ∈ [0, Pξ] (6)



where Pξ ≈ βP is the jam density of the moving bottleneck
flux functions, and β is the ratio of lanes not occupied by
the moving bottleneck to the total number of lanes.

Thus, we can upper-bound Qξ(ρ) ≤ “Qξ(ρ) by
“Qξ(ρ) = sup{Q(ρ)|Q(ρ) ≤ ωsξ +usξρ, ρ ∈ [0, Pξ], s ∈ S},

according to (6), with Qξ(ρ) = “Qξ(ρ) for those ρ in which
lines ωsξ + usξρ, s ∈ S are tangent to Qξ. As long as Qξ fol-
lows the aforementioned constraints, its exact shape is incon-
sequential, so we approximate it by a continuous piecewise-
linear function concave on [0, Pξ],

Qξ(ρ) = sup

{
vmaxρ, “Qξ(ρ),

“Qξ(βσmax
0 )(Pξ − ρ)

Pξ − βσmax
0

}
,

σmax
0 = arg max

ρ∈[0,P ]
Q0(ρ).

We select this form for Qξ(ρ), ρ ∈ [βσmax
0 , Pξ] in order to

make Qξ achieve maximum for ρ = βσmax
0 .

The influence of noise and behavioural variability is even
more pronounced in case of fitting Qξ than for Q0, and
the described method produces an underestimation of Qξ. In
this case, it can be beneficial to use a parametric approach,
assuming a triangular from of Qξ,

Q∆
ξ (ρ) = qmax

ξ min

{
ρ

σmax
ξ

,
Pξ − ρ

Pξ − σmax
ξ

}
,

which is parametrized by the critical density σmax
ξ , capacity

qmax
ξ , and jam density Pξ ≈ βP . The point (σmax

ξ , qmax
ξ ) can

be calculated as a least-squares fit,(
σmax
ξ , qmax

ξ

)
= arg min

(ρ,q)∈([0,P ],R≥0)

∑
s∈S

(
ωsξ + usξρ− q

)2
.

IV. NUMERICAL EVALUATIONS

A. Simulation set-up
We executed the simulations in SUMO [3], using the In-

telligent Driver Model as the car-following model and the
default lane-changing model. Model parameters were based
on those given in [2], selected to reflect realistic driver be-
haviour, and can be found in Table I. We conducted prelim-
inary simulations in order to determine the parameters that
produce reasonable lane-changing behaviour, and found that
lcAssertive= 3 achieves good results.

The simulations take place on a 30 km long two-lane
road segment. We execute K = 5 simulation runs for each
simulation scenario s ∈ S defined by the inflow to the road
qsin, and control vehicle reference speed usξ. The traffic enters
the road at t=0, at inflow level qsin, and the controlled vehicle
is introduced to the road at tξ0 =100 s, with default reference
speed set to vmax

ξ = 100 km/h. Then, at tξslow =250 s, we
reduce the reference speed of the controlled vehicle to usξ,
and at tξfast =750 s increase it back to vmax

ξ =100 km/h. The
simulation ends at tend = 1000 s.

accel 2.6 m/s2 maxSpeed 30 m/s
decel 7.4 m/s2 lcSpeedGain 0.887
length 5 m lcKeepRight 0.835

minGap 2.5 m lcAssertive 3

TABLE I: Parameters used for microscopic simulations.

All measurements from the simulations were collected with
sampling period of T = 10 s using TraCI, and then prepro-
cessed in a Python script to obtain suitable data for fitting
flux functions Q0 and Qξ, and provide illustrations and com-
parison with the predicted data. The main data processing
was done in MATLAB. Only the local measurements in the
vicinity of the controlled vehicle ξ are used for flux function
fitting. Traffic densities ρ̌(x, t) and flows q̌(x, t) are calcu-
lated from the trajectories of the simulated vehicles according
to (3) and (4), with influence range L = 50 m. For the
overtaking flow measurements, we simply count the number
of vehicles that overtake the controlled vehicle within the
sampling period T , and use ω̄δξ(t− T, t).

When calculating points (ρs±, q
s
±) for fitting Q0, we used a

single value for each scenario s. In order to reduce the influ-
ence of noise and eliminate transient behaviour, we calculate
these values by using the averaged “steady state” measure-
ments. For each measurement f (either ρ or q), scenario s,

and simulation run k, the “steady state” interval [t
ξ,f̄s,k±
ss , tξfast],

t
ξ,f̄s,k±
ss =min

{
t∈ [tξslow,t

ξ
fast]

∣∣∣∣∣ (∀τ ∈ [t,tξfast]
) ∣∣∣∣1− f̄s,k± (τ)

f̄s,k± (tξfast)

∣∣∣∣≤C
}
,

when the relative deviation of the measurement from its value
at time tξfast is not larger than some constant C. Here, f̄−(t)
and f̄+(t) are the measurements upstream and downstream
of the controlled vehicle ξ, respectively,

f̄s,k− (t)= f̄s,k(xs,kξ (t)− 2L, xs,kξ (t), t).

f̄s,k+ = f̄s,k(xs,kξ (t) + L, xs,kξ (t) + 3L, t).

Finally, we calculate (ρs±, q
s
±) as

fs± =

(
K

(
tξfast − t

ξ,f̄s,k±
ss

))−1 K∑
k=1

∫ tξfast

t
ξ,f̄

s,k
±

ss

f̄s,k± (t)dt. (7)

B. Simulation results
Finally, we put the presented flux function learn-

ing methods, and the FTSM prediction model, to test,
by executing the second batch of simulations, with
(qsin, u

s
ξ)∈q

SQ,1
in ×u

SQ,1
ξ ∪ q

SQ,2
in ×uSQ,2ξ . The first set, qSQ,1in ×u

SQ,1
ξ ,

Fig. 1: Flux functions Q0, Qξ, and Q∆
ξ (parametrically

estimated), learned from simulation data.



(a) SUMO simulation, usξ = 54 km/h, qsin = 2500 veh/h (b) FTSM prediction, usξ = 54 km/h, qsin = 2500 veh/h

(c) SUMO simulation, usξ = 54 km/h, qsin = 2000 veh/h (d) FTSM prediction, usξ = 54 km/h, qsin = 2000 veh/h

Fig. 2: Comparison between the traffic density of the SUMO simulations and FTSM predictions for two scenarios. Traffic
density is colour-coded, with warmer colours signifying denser traffic.

gives us a dense sampling of regular operating con-
ditions, with q

SQ,1
in = {2000, 2200, 2400} veh/h, and ref-

erence speeds u
SQ,1
ξ = {54, 57.6, 61.2, 64.8, 68.4, 72} km/h,

and the second set considers a wider range of usξ in
case of high inflow, with q

SQ,2
in = {2500} veh/h, and

u
SQ,2
ξ = {50.4, 57.6, 64.8, 72, 79.2, 86.4} km/h.
The nonparametrically learned flux functions Q0 and Qξ,

as well as the parametrically learned Q∆
ξ , are shown in Fig. 1.

The measurement collected everywhere on the considered
road are shown by grey points, and averaged downstream and
upstream measurements (ρs±, q

s
±), defined by (7), are shown

by blue and red points, respectively. The two methods of
learning Qξ yield similar results, both achieving a maximum
of approximately 2000 veh/h, consistent with the observations
of the previous simulations batch.

The conspicuous absence of data points in the congestion
regime, for ρ > 70 veh/km, is a result of lack of simula-
tion runs with very low moving bottleneck speeds, omitted
because such reference speeds are likely to be outside of
the permitted control input range, and could be hazardous. If
scenarios with any uξ≥0 are allowed, we are able to estimate
Q0 for densities up to maximum ρ for which Q0(ρ)≥ qmax

ξ .
Note that for very low uξ, the overtaking flow is not well
represented by a single moving bottleneck flux function Qξ,
and we need to instead consider Qξ dependent on uξ.

In Fig. 2 we show a comparison of the evolution of the
simulated and predicted traffic density in two scenarios. We
use the parametrically learned Q∆

ξ as the moving bottleneck

flux function in the FTSM-based prediction model. Fig. 2a
and 2c show the Gaussian-smoothed aggregate traffic density
(3), based on vehicle trajectories from SUMO simulations
with qin = 2500 veh/h and qin = 2000 veh/h respectively,
and Fig. 2b and 2d show the FTSM-based prediction for
the corresponding scenarios. We can see that in case of
high incoming traffic flow qin = 2500 veh/h, the FTSM-
based prediction captures the buildup of congestion after
the controlled vehicle slows down, as well as its discharge
after the controlled vehicle speeds up again. Interestingly,
the predicted time when the congestion is discharged is very
close to the one observed in SUMO simulation, even though
only the local measurements in the vicinity of the moving
bottleneck while it was active were used for model learning.
For qin = 2000 veh/h, we correctly predict that almost no
congestion builds up in the wake of the controlled vehicle.

A more quantitative way to compare the predictions to
simulations is by considering the relative difference in the
total flow through some point defined by (5). We measure
the cumulative flow through point Xq = 15 km during the
time interval indicated in Fig. 2 by dashed white lines, from
t0q = 9.6 min until the time the controlled vehicle reaches
Xq . This relative prediction error over the five executed
simulation runs for each scenarios shown in Fig. 3. We
can see that the average es is consistently negative for all
scenarios, so an alternative way to calibrate the moving
bottleneck flux function could be by minimising the absolute
average of this performance index.



Fig. 3: Relative prediction error of the cumulative flow
through Xq = 15 km. Solid lines are average errors and
dashed lines are minimum and maximum errors.

V. CONCLUSIONS

In this work, we discuss using local traffic measurements
in the vicinity of a controlled vehicle to learn a model of how
it affects the rest of the traffic. The traffic measurements were
acquired from the microscopic traffic data from simulations
executed in SUMO, on a two-lane highway. We showed that a
slow-moving controlled vehicle can be modelled as a moving
bottleneck, through describing the traffic flow with a different
flux function at the controlled vehicle’s position. The same
experimental set-up was used to simultaneously learn the flux
function of the moving bottleneck and the flux function of
the rest of the traffic. Thus learned flux functions were used
in FTSM to predict the traffic state evolution, which was
shown to be close to the simulation results. The prediction
model captured all the relevant interaction mechanisms, with
the predicted cumulative overtaking flow within 10% of its
simulated counterpart on average.

While the work presented herein relies on simulations,
the methodology is fully able to incorporate real-world mea-
surements. As a requirement for autonomous driving, CAVs
need to track the trajectories of all vehicles in their vicinity
using on-board sensors, and this data could readily replace
the synthetic data acquired in simulations. Additionally, more
general scenarios should be considered, with multiple con-
nected vehicles, more complex manoeuvres, and different
road geometries. Finally, the learned prediction model is
intended to be used in traffic control implementation, using
controlled moving bottlenecks for congestion dissipation in
microscopic simulations or real traffic.
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