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Learning Micro-Macro Models for Traffic Control Using Microscopic Data

Connected and Automated Vehicles (CAVs) are likely to have a large impact on the traffic in the near future. Assuming we are able to communicate some commands directly to them, it is of interest to know how CAVs can be used for traffic control. In order to achieve this, we need to understand how such controls affect the rest of the traffic. In this work, we study the influence of a CAV acting as a moving bottleneck, using the CAV's speed as a control input. We discuss the interpretation of the microscopic traffic data in the macroscopic framework, and propose nonparametric methods for learning the micro-macro model describing the interaction between the CAV and the surrounding traffic. We use only the local traffic data in the vicinity of the CAV, and design simple, targeted data collection experiments. This learned model is then used to predict the evolution of the traffic, and the predictions are compared with corresponding data from microscopic simulations.

I. INTRODUCTION

One of the most lauded potential benefits of Connected and Automated Vehicles (CAVs) is their contribution to increased road throughput [START_REF] Talebpour | Influence of connected and autonomous vehicles on traffic flow stability and throughput[END_REF], increasing safety and flow stability, despite their generally more conservative driving behaviour compared to human drivers [START_REF] Berrazouane | Analysis and initial observations on varying penetration rates of automated vehicles in mixed traffic flow utilizing sumo[END_REF]. Unless eclipsed by networkwide phenomena, e.g. induced demand, this improvement should reduce congestion, and emissions. Additionally, a new traffic control paradigm is becoming viable, using CAVs within the traffic as sensors and actuators, collecting local traffic measurements, and issuing reference speeds or other commands to them as control inputs. Thus, in order to implement such control laws, the effects of these control inputs need to be well understood and properly modeled.

Both the microscopic and the macroscopic traffic modelling paradigm have own advantages and disadvantages regarding capturing the influence of individual vehicles on the rest of the traffic. In microscopic models, the behaviour of each vehicle is described separately, allowing for easy implementation of CAV-actuated traffic control. While their implementation in microscopic traffic simulators such as SUMO [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF] is widely accepted to be a good representation of the actual traffic, these models are, prohibitively computationally expensive and hard to use as prediction models for calculating the control inputs. On the other hand, macroscopic models such as the Lighthill-Whitham-Richards (LWR) model [START_REF] Lighthill | On kinematic waves II. a theory of traffic flow on long crowded roads[END_REF] describe the aggregate behaviour of the traffic, and are thus applicable for analysing and predicting the evolution of the traffic state.

Micro-macro approaches combining these two paradigms have recently been garnering much attention, as the aggregate behaviour of vehicles in microscopic models has been shown to converge to its macroscopic counterpart [START_REF] Helbing | Micro-and macro-simulation of freeway traffic[END_REF][START_REF] Colombo | On the micro-macro limit in traffic flow[END_REF]. Macroscopic quantities may be obtained from the microscopic data by using e.g. kernel estimation [START_REF] Fan | Comparative model accuracy of a data-fitted generalized aw-rascle-zhang model[END_REF]. One of the most direct ways a CAV can influence the rest of the traffic is by reducing its speed and acting as a moving bottleneck [START_REF] Lebacque | Introducing buses into first-order macroscopic traffic flow models[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF], which has been considered for traffic control [START_REF] Piacentini | Traffic control via moving bottleneck of coordinated vehicles[END_REF][START_REF] Čičić | Traffic regulation via individually controlled automated vehicles: a cell transmission model approach[END_REF][START_REF] Garavello | A multiscale model for traffic regulation via autonomous vehicles[END_REF]. Before this type of traffic control can be implemented, more work is required on identifying and validating the model of this interaction using real and synthetic traffic data.

The problem of fitting the flux function of the traffic (i.e., the fundamental diagram) to measurements has been approached from many perspectives [START_REF] Knoop | Automatic fitting procedure for the fundamental diagram[END_REF][START_REF] Seo | Fundamental diagram estimation by using trajectories of probe vehicles[END_REF]. Conventionally, a parametric form of the flux function is assumed, and then calibrated using the collected traffic measurements. Similarly, the moving bottleneck flux function can be estimated using the measurements of the overtaking flow [START_REF] Fadhloun | Macroscopic analysis of moving bottlenecks[END_REF].

In this paper, we study the influence of a controlled vehicle acting as a moving bottleneck on the surrounding traffic, using microscopic traffic simulation data. We model the interaction between them by assuming the traffic at the position of the moving bottleneck is governed by a different flux function, using the LWR model with space-dependent flux functions. By assuming both of these flux functions are continuous and piecewise-linear, we are able to fit them nonparametrically, and can use the Front-tracking Transition System Model (FTSM) [START_REF] Čičić | Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation[END_REF] to predict the evolution of traffic. We design experiments including a single controlled vehicle, and obtain local measurements of the traffic state in its vicinity. This data is used to simultaneously learn the flux functions of the moving bottleneck and the rest of the traffic. Finally, the predictions acquired from the learned model are compared against the simulation data.

The remainder of the paper is organized as follows. In Section II, we discuss a macroscopic model for traffic flow with a moving bottleneck, describe how it is connected to the microscopic traffic data, and outline the traffic prediction model learning problem. Next, in Section III, we propose the structure of the prediction model, describe the data collection experiments, and present methods for learning the flux functions used in the model from microscopic data. Thereafter, in Section IV, we present a numerical evaluation of the proposed traffic prediction model learning methods through simulations, and finally conclude in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section we give some preliminaries, defining the macroscopic traffic model that will be used and the connections between its states and microscopic traffic data. Then, we outline the traffic prediction model learning problem which will be tackled in the following section.

A. Macroscopic traffic model

The evolution of the traffic state on the considered road segment can be described by the Lighthill-Whitham Richards model [START_REF] Lighthill | On kinematic waves II. a theory of traffic flow on long crowded roads[END_REF] with space-dependent flux function, given by

∂ t ρ(x, t) + ∂ x Q(ρ(x, t), x, t) = 0, (1) 
where we denote by x the position along the road, t the time, ρ(x, t) the traffic density at position x and time t, and Q(ρ, x, t) the flux function. We let the flux function Q(ρ, x, t) be piecewise defined in space and time, with different flux functions Q i (ρ) mapping the traffic density to the traffic flow in each interval x ∈ (X i-1 (t), X i (t)).

In particular, we model the influence of a controlled vehicle ξ slowing down to some constant low speed u ξ and acting as a moving bottleneck, restricting the capacity of the road around it, by using a space-dependent flux function

Q(ρ, x, t) =    Q 0 (ρ), x < x ξ (0) -l ξ + u ξ t, Q ξ (ρ), x ξ (0)-l ξ +u ξ t < x < x ξ (0)+u ξ t, Q 0 (ρ), x ξ (0) + u ξ t < x, (2) 
for t ∈ [t ξ slow , t ξ fast ] when we assume the controlled vehicle travels at constant speed ẋξ (t) = u ξ . Here, we denote by x ξ (t) = x ξ (0)+u ξ t the position of the front of the controlled vehicle, l ξ its length, Q 0 the flux function of the unimpeded road, with homogeneous geometry, and Q ξ the reduced flux function for the portion of the road where one of the lanes is blocked by the moving bottleneck.

Letting l ξ → 0, in order for the Rankine-Hugoniot condition to hold on the up-and downstream boundary of the zone described by flux function Q ξ , we require that

Q ξ (ρ ξ ) -Q 0 (ρ -) = u ξ (ρ ξ -ρ -), Q 0 (ρ + ) -Q ξ (ρ ξ ) = u ξ (ρ + -ρ ξ ),
where ρ -= ρ((x ξ (t)) -, t) and ρ + = ρ((x ξ (t)) + , t) are the traffic densities immediately upstream and downstream of the controlled vehicle, respectively, and ρ ξ is the traffic density in the zone described by Q ξ . The traffic flow overtaking the controlled vehicle is given by

ω ξ (t) = min Q 0 (ρ -) -u ξ ρ -, max ρ≥0 (Q ξ (ρ) -u ξ ρ) .
Assuming both Q 0 and Q ξ can be approximated as continuous piecewise-linear functions, the solution to (1), with piecewise-constant initial conditions

ρ(x, 0) =          ρ 1 , x < X 1 , . . . ρ i , X i-1 < x < X i , . . . ρ N +1 , X N < x,
and Q(ρ, x, t) given by ( 2) can be found exactly using the front-tracking method [START_REF] Holden | Front Tracking for Hyperbolic Conservation Laws[END_REF]. This approach was formalised as a transition system in [START_REF] Čičić | Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation[END_REF], and the FTSM given therein will be used to predict the evolution of the system state. Additionally, assuming this form of flux functions allows us to employ nonparametric methods to fit them.

B. Connection with microscopic traffic data

The traffic state of microscopic traffic models is given by describing the dynamics of each vehicle. For each vehicle i ∈ I(t), where I(t) is the set of indices of all vehicle on the road at time t, its trajectory x i (t) is determined by

ẋi (t) = v i (t), vi (t) = a i (t)
, where its acceleration a i (t) depends on the state of nearby vehicles, and is determined by some car-following (e.g. Intelligent Driver Model (IDM) [START_REF] Treiber | Congested traffic states in empirical observations and microscopic simulations[END_REF]), and lane-changing model.

Considering a road segment x ∈ [X l , X r ], we may calculate the macroscopic average traffic density and harmonic mean traffic speed of the vehicles in it. Denoting by

I Xr X l (t) ⊂ I(t) the set of indices of all vehicles on [X l , X r ], I Xr X l (t) = {i ∈ I(t) : X l ≤ x i (t) ≤ X r } , we can write the mean traffic density of the segment as ρδ (X l , X r , t) = I Xr X l (t) X r -X l = Xr X l i∈I(t) δ(x -x i (t))dx X r -X l ,
where | • | denotes set cardinality, and δ is the Dirac delta function. Similarly, the harmonic mean speed is given by vδ (X l , X r , t) =

I Xr X l (t) i∈I Xr X l (t) 1 vi(t) = Xr X l i∈I(t) δ(x -x i (t))dx Xr X l i∈I(t) δ(x-xi(t)) vi(t) dx .
In order to capture the effect individual vehicles have on their vicinity, as well as to smooth the traffic density, we represent the presence of a vehicle with a Gaussian kernel centered on its position instead of a Dirac delta. This allows us to define the traffic density at any point of the road as

ρ(x, t) = i∈I(t) 1 L ϕ x -x i (t) L , (3) 
where ϕ is the unit Gaussian kernel, and L is an empirical parameter reflecting the range in which individual vehicles directly influence the behaviour of vehicles around them. The traffic speed and flow at any point on the road are then

v(x, t) = ρ(x, t) i∈I(t) ϕ x-x i (t) L Lvi(t) , q(x, t) = ρ(x, t)v(x, t). (4) 
The flow of vehicles overtaking the controlled vehicle ξ can be calculated by counting the overtaking vehicles within some time interval

t ∈ [t 1 , t 2 ], ωδ ξ (t 1 , t 2 ) = I ∞ x ξ (t2) (t 2 ) -I ∞ x ξ (t1) (t 1 ) t 2 -t 1 ,
which yields Gaussian kernel instantaneous overtaking flow

ωξ (t) = i∈I(t) v i (t) -v ξ (t) L ϕ x i (t) -x ξ (t) L .

C. Problem formulation

In practice, the traffic model is not likely to be known a priori, and would instead need to be identified from experimental data. We study the problem of learning a prediction model for the evolution of the traffic state on a road segment, that captures the influence of a slow-moving CAV on the rest of the traffic. Describing the evolution of traffic by ( 1) and ( 2), the problem reduces to finding flux functions Q 0 and Q ξ , assumed to be continuous and piecewise-linear.

We assume that the only traffic data available are the trajectories of vehicles close to CAV ξ, and that we can collect these measurements from multiple experiments, selecting different CAV control inputs for each experiment. The traffic state prediction is intended to be used to calculate the control actions, typically by predicting the future flow through some point on the road, given the control action at the current time. Therefore, for each experiment s, we use the relative difference in the total flow through some point X q downstream of the controlled vehicle, from some start time t 0 q until time t ξ,s q when the controlled vehicle ξ reaches X q , x s ξ (t ξ,s q ) = X q , e s = 1-

t ξ,s q t 0 q q(X q , t)dt t ξ,s q t 0 q q(X q , t)dt -1 (5) 
to evaluate prediction accuracy and model performance.

III. TRAFFIC PREDICTION MODEL LEARNING

We now propose a solution to the traffic model learning problem. First, we outline the overall procedure of building a traffic prediction model and using it to predict the downstream of the controlled CAV. Then, methods for learning the model components are described.

A. Solution structure

The evolution of traffic state given the control actions of a CAV acting as a moving bottleneck can be predicted using the FTSM [START_REF] Čičić | Front-tracking transition system model for traffic state reconstruction, model learning, and control with application to stop-and-go wave dissipation[END_REF], given that continuous piecewise-linear flux functions Q 0 and Q ξ are known. In order to gather the relevant measurements, we design experiments s ∈ S, where the controlled vehicle ξ slows down to speed u s ξ at some time t ξ slow , and speeds up again at time t ξ fast . During t ∈ [t ξ slow , t ξ fast ], we collect local traffic state measurement directly upstream and downstream of the controlled vehicle ξ, given by (ρ s -, q s -) and (ρ s + , q s + ), respectively, as well as measure the overtaking flow ω s ξ . We assume that the traffic flows can be measured indirectly, by measuring the spaceaveraged traffic speed v s ± , q s ± = ρ s ± v s ± . Experiments are executed for different reference speeds u s ξ and levels of inflow at the start of the road segment q s in , s ∈ S. Once Q 0 and Q ξ are learned, we may use the resulting prediction model to predict the traffic density evolution ρ(x, t). For each experiment, the prediction is calculated at time t = 0, before CAV ξ enters the road, assuming only the average traffic inflow to the considered road segment q s in is known. Mimicking the simulation scenario, the traffic density of the prediction model is initialized at t = 0 to

ρ(x, 0) = Q -1 0 (q s in ), x < 0, 0, x > 0,
where x = 0 is the position of the start of the road segment. Until the time t ξ 0 , when the controlled vehicle arrives, the traffic flow on the whole road is modeled by Q 0 . At time t ξ 0 , a zero-length zone described by flux function Q ξ , with its boundaries moving at the reference speed of the controlled vehicle λ ± ξ = v max ξ , is added to the prediction model. The propagation speed of these boundaries is reduced to λ ± ξ = u s ξ at time t ξ slow , potentially causing congestion to start accumulating, and then returned to λ ± ξ = v max ξ at t ξ fast . Finally, the predicted flow through a downstream point X q in (5) is q(X q , t) = Q 0 (ρ(X q , t)) .

B. Learning the traffic flux function Q 0

According to (1), ( 2), if CAV ξ is travelling at a speed u ξ slower than the surrounding traffic, it will act as a moving bottleneck, and, given a high enough traffic inflow q in , cause a traffic density discontinuity at its position,

ρ(x, t) = ρ -, x < x ξ (t), ρ + , x > x ξ (t), for x ≈ x ξ (t).
Here, ρ -and ρ + both need to satisfy

ω ξ = Q 0 (ρ) -u ξ ρ,
where ω ξ is the flow overtaking the CAV ξ, and all collected measurements should follow Q 0 (ρ s ± ) = q s ± . We assume that the traffic flux function Q 0 is concave, with Q 0 (0) = Q 0 (P ) = 0, where P is the jam density which can be set empirically as the bumper-to-bumper traffic density. Then Q 0 can be approximated as an upper concave envelope of points M, Q 0 (ρ) = inf{Q(ρ)|(∀(ρ, q) ∈ M)Q(ρ)≥q, Q concave on [0,P ]}, M = {(0, 0),(P, 0)}∪{(ρ s -, q s -)|s ∈ S}∪{(ρ s + , q s + )|s ∈ S}, and as such is a continuous piecewise-linear function. By executing experiments with a wide range of different moving bottleneck speeds u s ξ , s ∈ S, we are able to sample different points on Q 0 , covering the most relevant part of the flux function. As the set of experiments grows, we may approximate any continuous concave flux function with thus defined Q 0 arbitrarily well.

The described fitting method tacitly assumes that the measured traffic state follows the flux function Q 0 exactly. In presence of noise and variability of human driving behaviour, the method produces an overestimation of the flux function. Therefore, it is important that the influence of noise is eliminated as much as possible from measurements (ρ s ± , q s ± ), s ∈ S, e.g. by averaging the measurements over a long time horizon and only considering the steady-state measurements.

C. Learning the moving bottleneck flux function Q ξ

Using the measurements from the same set of experiments, we can identify the moving bottleneck flux function Q ξ simultaneously with identifying the traffic flux function Q 0 . Although points of this function cannot be directly measured, we may use the fact that lines ω s ξ + u s ξ ρ, s ∈ S should be tangent to Q ξ to learn the relevant parts of Q ξ , allowing us to capture the influence of moving bottlenecks. We have

Q ξ (ρ) ≤ ω s ξ + u s ξ ρ, ρ ∈ [0, P ξ ] (6) 
where P ξ ≈ βP is the jam density of the moving bottleneck flux functions, and β is the ratio of lanes not occupied by the moving bottleneck to the total number of lanes. Thus, we can upper-bound

Q ξ (ρ) ≤ " Q ξ (ρ) by " Q ξ (ρ) = sup{Q(ρ)|Q(ρ) ≤ ω s ξ + u s ξ ρ, ρ ∈ [0, P ξ ], s ∈ S}, according to (6), with Q ξ (ρ) = "
Q ξ (ρ) for those ρ in which lines ω s ξ + u s ξ ρ, s ∈ S are tangent to Q ξ . As long as Q ξ follows the aforementioned constraints, its exact shape is inconsequential, so we approximate it by a continuous piecewiselinear function concave on [0, P ξ ],

Q ξ (ρ) = sup v max ρ, " Q ξ (ρ), " Q ξ (βσ max 0 )(P ξ -ρ) P ξ -βσ max 0 , σ max 0 = arg max ρ∈[0,P ] Q 0 (ρ).
We select this form for Q ξ (ρ), ρ ∈ [βσ max 0 , P ξ ] in order to make Q ξ achieve maximum for ρ = βσ max 0 . The influence of noise and behavioural variability is even more pronounced in case of fitting Q ξ than for Q 0 , and the described method produces an underestimation of Q ξ . In this case, it can be beneficial to use a parametric approach, assuming a triangular from of Q ξ ,

Q ∆ ξ (ρ) = q max ξ min ρ σ max ξ , P ξ -ρ P ξ -σ max ξ ,
which is parametrized by the critical density σ max ξ , capacity q max ξ , and jam density P ξ ≈ βP . The point (σ max ξ , q max ξ ) can be calculated as a least-squares fit,

σ max ξ , q max ξ = arg min (ρ,q)∈([0,P ],R ≥0) s∈S ω s ξ + u s ξ ρ -q 2 .

IV. NUMERICAL EVALUATIONS A. Simulation set-up

We the simulations in SUMO [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF], using the Intelligent Driver Model as the car-following model and the default lane-changing model. Model parameters were based on those given in [START_REF] Berrazouane | Analysis and initial observations on varying penetration rates of automated vehicles in mixed traffic flow utilizing sumo[END_REF], selected to reflect realistic driver behaviour, and can be found in Table I. We conducted preliminary simulations in order to determine the parameters that produce reasonable lane-changing behaviour, and found that lcAssertive= 3 achieves good results.

The simulations take place on a 30 km long two-lane road segment. We execute K = 5 simulation runs for each simulation scenario s ∈ S defined by the inflow to the road q s in , and control vehicle reference speed u s ξ . The traffic enters the road at t = 0, at inflow level q s in , and the controlled vehicle is introduced to the road at t ξ 0 = 100 s, with default reference speed set to v max ξ = 100 km/h. Then, at t ξ slow = 250 s, we reduce the reference speed of the controlled vehicle to u s ξ , and at t ξ fast = 750 s increase it back to v max ξ = 100 km/h. The simulation ends at t end = 1000 s. All measurements from the simulations were collected with sampling period of T = 10 s using TraCI, and then preprocessed in a Python script to obtain suitable data for fitting flux functions Q 0 and Q ξ , and provide illustrations and comparison with the predicted data. The main data processing was done in MATLAB. Only the local measurements in the vicinity of the controlled vehicle ξ are used for flux function fitting. Traffic densities ρ(x, t) and flows q(x, t) are calculated from the trajectories of the simulated vehicles according to (3) and ( 4), with influence range L = 50 m. For the overtaking flow measurements, we simply count the number of vehicles that overtake the controlled vehicle within the sampling period T , and use ωδ ξ (t -T, t). When calculating points (ρ s ± , q s ± ) for fitting Q 0 , we used a single value for each scenario s. In order to reduce the influence of noise and eliminate transient behaviour, we calculate these values by using the averaged "steady state" measurements. For each measurement f (either ρ or q), scenario s, and simulation run k, the "steady state" interval [t

ξ, f s,k ± ss , t ξ fast ], t ξ, f s,k ± ss = min t ∈ [t ξ slow ,t ξ fast ] ∀τ ∈ [t,t ξ fast ] 1- f s,k ± (τ ) f s,k ± (t ξ fast ) ≤ C ,
when the relative deviation of the measurement from its value at time t ξ fast is not larger than some constant C. Here, f-(t) and f+ (t) are the measurements upstream and downstream of the controlled vehicle ξ, respectively,

f s,k -(t) = f s,k (x s,k ξ (t) -2L, x s,k ξ (t), t). f s,k + = f s,k (x s,k
ξ (t) + L, x s,k ξ (t) + 3L, t). Finally, we calculate (ρ s ± , q s ± ) as

f s ± = K t ξ fast -t ξ, f s,k ± ss -1 K k=1 t ξ fast t ξ, f s,k ± ss f s,k ± (t)dt. (7)

B. Simulation results

Finally, we put the presented flux function learning methods, and the FTSM prediction model, to test, by executing the second batch of simulations, with (q s in , u s ξ ) ∈ q

S Q,1 in ×u S Q,1 ξ ∪ q S Q,2 in ×u S Q,2
ξ . The first set, q

S Q,1 in ×u S Q,1
ξ , Fig. 1: Flux functions Q 0 , Q ξ , and Q ∆ ξ (parametrically estimated), learned from simulation data. 1. The measurement collected everywhere on the considered road are shown by grey points, and averaged downstream and upstream measurements (ρ s ± , q s ± ), defined by [START_REF] Fan | Comparative model accuracy of a data-fitted generalized aw-rascle-zhang model[END_REF], are shown by blue and red points, respectively. The two methods of learning Q ξ yield similar results, both achieving a maximum of approximately 2000 veh/h, consistent with the observations of the previous simulations batch.

The conspicuous absence of data points in the congestion regime, for ρ > 70 veh/km, is a result of lack of simulation runs with very low moving bottleneck speeds, omitted because such reference speeds are likely to be outside of the permitted control input range, and could be hazardous. If scenarios with any u ξ ≥ 0 are allowed, we are able to estimate Q 0 for densities up to maximum ρ for which Q 0 (ρ) ≥ q max ξ . Note that for very low u ξ , the overtaking flow is not well represented by a single moving bottleneck flux function Q ξ , and we need to instead consider Q ξ dependent on u ξ .

In Fig. 2 we show a comparison of the evolution of the simulated and predicted traffic density in two scenarios. We use the parametrically learned Q ∆ ξ as the moving bottleneck flux function in the FTSM-based prediction model. Fig. 2a and 2c show the Gaussian-smoothed aggregate traffic density (3), based on vehicle trajectories from SUMO simulations with q in = 2500 veh/h and q in = 2000 veh/h respectively, and Fig. 2b and 2d show the FTSM-based prediction for the corresponding scenarios. We can see that in case of high incoming traffic flow q in = 2500 veh/h, the FTSMbased prediction captures the buildup of congestion after the controlled vehicle slows down, as well as its discharge after the controlled vehicle speeds up again. Interestingly, the predicted time when the congestion is discharged is very close to the one observed in SUMO simulation, even though only the local measurements in the vicinity of the moving bottleneck while it was active were used for model learning.

For q in = 2000 veh/h, we correctly predict that almost no congestion builds up in the wake of the controlled vehicle.

A more quantitative way to compare the predictions to simulations is by considering the relative difference in the total flow through some point defined by [START_REF] Helbing | Micro-and macro-simulation of freeway traffic[END_REF]. We measure the cumulative flow through point X q = 15 km during the time interval indicated in Fig. 2 by dashed white lines, from t 0 q = 9.6 min until the time the controlled vehicle reaches X q . This relative prediction error over the five executed simulation runs for each scenarios shown in Fig. 3. We can see that the average e s is consistently negative for all scenarios, so an alternative way to calibrate the moving bottleneck flux function could be by minimising the absolute average of this performance index. V. CONCLUSIONS In this work, we discuss using local traffic measurements in the vicinity of a controlled vehicle to learn a model of how it affects the rest of the traffic. The traffic measurements were acquired from the microscopic traffic data from simulations executed in SUMO, on a two-lane highway. We showed that a slow-moving controlled vehicle can be modelled as a moving bottleneck, through describing the traffic flow with a different flux function at the controlled vehicle's position. The same experimental set-up was used to simultaneously learn the flux function of the moving bottleneck and the flux function of the rest of the traffic. Thus learned flux functions were used in FTSM to predict the traffic state evolution, which was shown to be close to the simulation results. The prediction model captured all the relevant interaction mechanisms, with the predicted cumulative overtaking flow within 10% of its simulated counterpart on average.

While the work presented herein relies on simulations, the methodology is fully able to incorporate real-world measurements. As a requirement for autonomous driving, CAVs need to track the trajectories of all vehicles in their vicinity using on-board sensors, and this data could readily replace the synthetic data acquired in simulations. Additionally, more general scenarios should be considered, with multiple connected vehicles, more complex manoeuvres, and different road geometries. Finally, the learned prediction model is intended to be used in traffic control implementation, using controlled moving bottlenecks for congestion dissipation in microscopic simulations or real traffic.

  Parameters used for microscopic simulations.

Fig. 2 :

 2 Fig. 2: Comparison between the traffic density of the SUMO simulations and FTSM predictions for two scenarios. Traffic density is colour-coded, with warmer colours signifying denser traffic. gives us a dense sampling of regular operating conditions, with q S Q,1 in = {2000, 2200, 2400} veh/h, and reference speeds u S Q,1 ξ = {54, 57.6, 61.2, 64.8, 68.4, 72} km/h, and the second set considers a wider range of u s ξ in case of high inflow, with q S Q,2 in = {2500} veh/h, and u S Q,2 ξ= {50.4, 57.6, 64.8, 72, 79.2, 86.4} km/h. The nonparametrically learned flux functions Q 0 and Q ξ , as well as the parametrically learned Q ∆ ξ , are shown in Fig.1. The measurement collected everywhere on the considered road are shown by grey points, and averaged downstream and upstream measurements (ρ s ± , q s ± ), defined by[START_REF] Fan | Comparative model accuracy of a data-fitted generalized aw-rascle-zhang model[END_REF], are shown by blue and red points, respectively. The two methods of learning Q ξ yield similar results, both achieving a maximum of approximately 2000 veh/h, consistent with the observations of the previous simulations batch.The conspicuous absence of data points in the congestion regime, for ρ > 70 veh/km, is a result of lack of simulation runs with very low moving bottleneck speeds, omitted because such reference speeds are likely to be outside of the permitted control input range, and could be hazardous. If scenarios with any u ξ ≥ 0 are allowed, we are able to estimate Q 0 for densities up to maximum ρ for which Q 0 (ρ) ≥ q max ξ . Note that for very low u ξ , the overtaking flow is not well represented by a single moving bottleneck flux function Q ξ , and we need to instead consider Q ξ dependent on u ξ .In Fig.2we show a comparison of the evolution of the simulated and predicted traffic density in two scenarios. We use the parametrically learned Q ∆ ξ as the moving bottleneck
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 3 Fig. 3: Relative prediction error of the cumulative flow through X q = 15 km. Solid lines are average errors and dashed lines are minimum and maximum errors.
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