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Abstract — In order to be used into a critical system, a software 

or an hardware component must come with strong evidences 

that the designer’s intents have been correctly captured and im-

plemented. This activity is already complex and expensive for 

classical systems despite a very large corpus of verification 

methods and tools. But it is even more complicated for systems 

embedding Machine Learning (ML) algorithms due to the very 

nature of the functions being implemented using ML and the 

very nature of the ML algorithms. This paper focuses on one 

specific verification technique, testing, for which we propose a 

four-pronged approach combining performance testing, robust-

ness testing, worst-case testing, and bias testing. 

Keywords— machine learning, testing, performance, robust-

ness, worst-case, bias, safety 

I. MOTIVATION AND OBJECTIVES 

How to engineer mission- or safety-critical systems embed-

ding Machine-Learning (ML) is a very hot topic raising many 

challenges, in particular concerning verification, validation, 

and certification activities [1] [2] [3]. Formal verification 

techniques are making their way in the domain of Artificial 

Intelligence (AI) and ML [4], but their applicability is still 

limited to specific use cases and specific properties (e.g., 

properties around a specific input point). As of today, verifi-

cation of ML system essentially relies on the only verification 

technique applicable on a large scale: testing. Hence, to reach 

the required dependability level, a rigorous testing strategy is 

mandatory [5]. This is particularly true for perception sys-

tems (e.g. computer vision, natural language recognition) 

where the dimension of the input space is huge, making the 

efficiency of testing highly arguable if no appropriate strategy 

is defined. Testing ML implies to revisit classical compo-

nents of testing, such as the definition of equivalence classes 

or the definition of test oracles. 

From these considerations, the goals of this paper are the fol-

lowings: 

 propose a testing strategy for systems of perception 

based on ML 

 identify the different categories of tests supporting 

this strategy 

 consider how test results can be used to improve the 

performances of the systems.  

Towards those goals, we first briefly describe the target sys-

tem chosen to illustrate our approach, which is a railway sig-

nal detection system based on image recognition (Section II). 

Then, we introduce the generic elements that constitute a test 

and detail our approach (Section III). In the following sec-

tions, we successively consider four categories of tests: per-

formance testing (Section IV), robustness testing (Section 

V), worst-case testing (Section VI), and bias testing (Section 

VII). Finally, we review related works in section VIII and 

conclude our work.  

II. USE CASE 

To illustrate our approach, we consider a railway Automatic 

Signal Processing system (ASP). The ASP is aimed at recog-

nizing the state of a light signal applicable to a train, a task 

that is currently performed by train drivers. The ASP shall 

remain vision-based in order to limit the impact on the infra-

structure and limit the cost of its deployment.  

Figure 1 gives an overview of the actions performed by a train 

driver. The ASP must locate the signal, check the integrity of 

the signaling device (e.g., it is neither broken nor maliciously 

modified) and determine the indication of the signal automat-

ically. As the ASP performs a critical function with potential 

safety effects, it shall be certified at SIL4 level according to 

EN50126 and EN50128 standards. In terms of error rate, and 

according to studies carried out at SNCF on train drivers, a 

maximum error rate of 10-5 per signal is a sensible objective. 

For operational reasons, the ASP shall operate in environ-

mental conditions and tracks contexts that are both very com-

plex and variable. In addition, the signal can be occluded or 

damaged. In our case, the ASP uses ML-based algorithm.  

This use case shows two interesting properties with respect to 

the objective of our study: it implements a simple task (rec-

ognizing a light signal) and it operates in an open and weakly 

structured environment.  

 
Figure 1 : Action performed by a train driver. 

III. APPROACH 

A. Context and hypotheses 

In this study, we consider the following hypotheses. 

 About the system: 

 The ML system is a neural network, even if the pro-

posed approach may be applied to other ML models 
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 The learning phase is completed (offline learning) 

 The architecture of the network is known 

 The parameters of the model are known and are ac-

cessible. 

 About the test objectives: 

 Intentional faults (cybersecurity) are not considered, 

even if the testing strategies proposed in this may 

also be applied in that case 

 Implementation faults are not considered. We esti-

mate that those faults can be addressed using classi-

cal software testing techniques. 

B. What is testing 

Testing aims at demonstrating empirically that a system sat-

isfies some properties.  

A test may be used to reveal the presence of a fault in the 

specification or the design of a system. In that case, the test 

aims at activating some dormant fault and at propagating the 

resulting latent error up to the interface of the system to make 

it observable. In that case, the test may be targeted towards a 

specific class of faults.  In the hardware domain, for instance, 

some tests targets stuck-at faults while, in the software do-

main, tests target incorrect coding of conditions or incorrect 

handling of input domains boundaries.  

A test may also be used to verify the compliance of the system 

with some performance requirements. Performance may be 

functional (e.g., the accuracy and precision of a decision, a 

response time) or non-functional (e.g., the tolerance to some 

unintentional or intentional fault).  

More generally, test is used to verify the satisfaction of some 

high-level properties, such as the robustness with respect to 

incorrect inputs, the fairness of the decisions, the quality of 

an explanation, etc. 

C. Test construction 

To perform testing, several elements are required: a system to 

be tested (the system under test), an environment to provide 

the inputs to the system, and an oracle to determine whether 

the system behaves correctly or not (i.e., the test passes or 

fails). In addition, a test-stopping criterion is usually defined 

in order to stop the testing activity since, except for trivial 

systems, the number of possible tests is usually infinite. The 

criterion may be structural (e.g., to cover all requirements, all 

lines of source code, all execution paths, etc.), statistical, or 

simply driven by the amount of effort deemed acceptable to 

perform this activity. 

The quality of the test may also be evaluated. Referring to the 

previous definition of testing, the quality may be measured 

by the capability of the test to reveal errors. Traditionally, 

several strategies are used: fault/error injection to check if the 

test reveals the error, coverage analysis. 

D. Operational Design Domain 

The input domain depends on the purpose of the test. For per-

formance evaluation purposes, the input domain is the “Op-

erational Design Domain1” (ODD). In the automotive do-

main, the ODD is defined as the specific conditions under 

which a given driving automation system or feature thereof is 

designed to function, including, but not limited to, driving 

                                                           
1 Defined in Section 3.17 of « Taxonomy and definitions for terms related 

to driving automation systems for on road motor vehicle. SAE recom-

manded practices J3016, Sept 2016 , https://www.sae.org/stand-
ards/j3016_201609/ 

modes. In the aeronautical domain, the ODD concept is re-

lated to the concept of foreseeable conditions, i.e., the envi-

ronment in which a system is assumed to operate, given its 

intended function, including operating in normal, non-nor-

mal, and emergency conditions. 

Defining precisely the ODD is extremely difficult since it 

shall ideally include all the elements that may affect the func-

tion to be performed via its inputs, and all configurations (or 

states) of these elements. In general, the definition of the 

ODD cannot be formally “complete”, because the environ-

ment may be too complex to characterize (i.e., it involves too 

many variables), or because it is simply unpredictable. There-

fore, some of the operational situations remain unknown, and 

possibly unsafe [4]. As proposed in [6], the elaboration of the 

ODD may combine the points of view of the various actors 

involved in the operation and design of the system, e.g., the 

train driver, the image processing chain designer, etc.   

Considering our use case, the ODD encompasses the state of 

the sensors, train, rails, signals, and, more generally, of the 

complete environment of the system.  

Tests exercise the system on situations sampled according to 

the ODD. Therefore, missing a complete definition of the 

ODD makes testing a challenge since situation not captured 

by the ODD will not be considered.  The next section elabo-

rates on this challenge.  

E. Why is testing ML components difficult? 

First, it is important to notice that testing are the primary 

means to verify ML components today. For systems devel-

oped using non-ML techniques, testing may be replaced or 

complemented by other means such as formal techniques 

(model checking, abstract interpretation, formal proof, etc.). 

But even though some successes have already been obtained 

[7], those techniques are still in infancy in the ML domain.  

ML components are particularly difficult to test for various 

reasons: 

 The input space is often extremely large (for example all 

the train signal of France in all weather conditions), 

which poses the problem for the stopping criteria defini-

tion. 

 ML components often address problems which specifi-

cation is difficult to express in a comprehensive way.  

 ML components often address problems where the envi-

ronment is very complex and difficult to predict (see sec-

tion on ODD).  

 The test oracle is often a human, because the tasks per-

formed with ML usually cannot be performed with clas-

sical methods. 

 Fault models are unknown (yet) which imposes empiri-

cal performance and robustness evaluations. 

 Test coverage metrics used for non-ML software are not 

useful since the behavior of the ML component depends 

essentially on data, not on control. 

Test equivalence classes are difficult to define for ML com-

ponents. A test equivalence is such that any test case taken in 

a class reveals the same faults as any other test in the same 

class. It is a fundamental rationale in software testing (see e.g. 

[8]). 
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F. Our strategy 

To cope with the ML based system particularities, we propose 

a strategy based on 4 testing activities: 

 Performance testing aims at verifying the performance 

of the ML model against its specification. 

 Robustness testing aims at verifying the behavior of the 

system in the presence of invalid inputs or stressful en-

vironmental conditions" [9]. Robustness analysis can be 

seen as the system behavior analysis regarding any envi-

ronmental or operating perturbation (known and un-

known). The goal is different from performance testing 

in that robustness testing uses specifically perturbed in-

puts in or out the operational domain.  

 Worst-case testing consists in exercising the system in 

the “worst” situations of the ODD  and observe its per-

formance. 

 Bias testing aims at detecting that no bias is present in 

the decisions of the model itself, i.e. that the model has 

used relevant features to output the decisions which have 

led to the recorded performances. 

 

All these activities bring complementary point of views on 

the component/system at hand. Figure 2 summarizes the test-

ing approach proposed in this paper. 

 
Figure 2 : Testing strategy.  

 

G. Expected Test Results Definition 

In order to check whether a test is successful or not, some 

pass-fail property must be expressed. The pass-fail property 

takes the form of a predicate involving the output produced 

by the system and, possibly, some reference value (expected 

test result, oracle, ground truth ...).   

The pass-fail property normally derives from the require-

ments specification. The test passes if all requirements are 

satisfied. Unfortunately, requirements are sometimes very 

difficult to establish for the kind of systems concerned by 

ML, and so are the tests. This is why a particular care must 

be taken in the tests and the test data definition and creation.  

                                                           
2 This may not be the case if a huge number of tests are required. See section 
on performance testing.  

The oracle may be another system possibly implemented us-

ing non-ML technologies (for testing, performance may be 

less important than for operations2) by using a back-to-back 

configuration or, more generally, any scheme that can be used 

for runtime monitoring (OOD detection, explicability-based 

monitoring, continuity/consistency of outputs, etc.). Here, 

any triggering of the monitoring is considered as a test fail 

condition.  

A specific case is the one where the oracle is the human op-

erator himself/herself. This applies in the situation where the 

system under test is embedded in an operational system (e.g., 

a train) and its outputs are compared with the ones of the op-

erator. In our use case, we would for instance compare the 

decisions taken by the train driver with the outputs of the sys-

tem under test, and check the compatibility of the decisions 

with the signal state reported by the system under test.  

Another particular case is simulation. Here, the construction 

of the scenarios can be performed with respect to precise 

specification, and the expected output may be known a priori. 

Unfortunately, simulation and reality are different, and the 

effect of this difference are difficult to estimate. Therefore, 

testing based on simulation only cannot be considered as an 

acceptable means of verification.  

Finally, some verification can still be carried out without any 

oracle by leveraging some invariants of the system. This is 

what is exploited by metamorphic testing techniques. See 

e.g.,  [10] [11]. 

H. Test Dataset quality and bias in the Dataset 

As discussed in the paragraph “Test Construction”, the qual-

ity of the actual tests must be verified.  As we will see in the 

next sections, testing strongly relies on datasets. Then test va-

lidity is related to test datasets quality. Datasets quality rep-

resent different aspects like a proper dataset size, data accu-

racy and a small amount of untended bias.   

The notion of bias in the test dataset is closely linked with the 

notion of representativeness. If the test dataset is biased, i.e. 

if some features combinations are not representative of the 

actual operational distribution, then the estimated perfor-

mance will not hold for the general operational use. For ex-

ample, if the system is only tested by day and never by night 

while it will be operated by night, the actual performance may 

significantly vary. Section IV.C proposes some strategies to 

ensure representativeness of the test dataset.  

Biases have been identified even in well-known datasets for 

ML [12], and therefore, their representativeness has to be 

questioned [13]. The work of [12] could be used as an exam-

ple to detect biases in the test dataset. Alternatively, weights 

for the data can be computed through an optimization prob-

lem [14]. Another way to reduce the bias is to perform a syn-

thetic data augmentation [15].  

IV. PERFORMANCE TESTING 

A. Test objectives definition 

The purpose of performance testing is to verify that the ML 

model meets some performance requirement expressed using 

some performance metrics.  

1) Performance metrics 

For classification problems, four basic performance metrics 

are usually considered [16]. 
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 Accuracy:   𝑎 =
number of inputs assigned to their correct class

total number of inputs
 

 Precision: 𝑝 =
number of inputs correctly assigned to class i

number of inputs assigned to class i
 

 Recall:  𝑟 =
number of inputs correctly assigned to class i

number of inputs belonging to class i
 

 F1-score:  𝑓 = 2𝑝𝑟 / (𝑝 + 𝑟) 

These performance metrics allow measuring a mean perfor-

mance on a given test dataset.  

Obviously, performance metrics are application dependent. 

For example in the case of depth prediction from an RGB im-

age by a Convolutionnal Neural Network, the performance 

metric is Root Mean Square Error (RMSE) on the depth pre-

dictions (with respect to a ground truth) [17]. In the following 

we consider only performance metrics related to a classifica-

tion task.  

2) Performance requirements 

To specify performance requirements, the following infor-

mation are necessary 

 A scope, i.e., the conditions in which the performance 

objectives must be satisfied (ex: all operating conditions, 

low visibility operations, red lights, green lights…) 

 One or several performance metrics (ex: accuracy, pre-

cision, recall…), as described in §1) 

 One or several performance objectives expressed using 

the previous metrics (ex:𝑝 ≥  99.9%, 𝑎 ≥ 99.99% …) 

 A confidence level, possibly expressed as the probability 

for the actual performance of the ML component to be 

greater or equal to the estimated performance (e.g. 

99,9%, 99,99%). 

The performance objectives may be class-dependent. For ex-

ample, in our use case, classifying red lights correctly is more 

critical with respect to safety than classifying green lights 

correctly. Therefore, the performance objective for red lights 

will be higher than the one for green lights as far as safety is 

concerned. 

The performance requirements also depend on the scope. For 

instance, in the railway domain, certification of systems relies 

on a concept called “GAME” (Globalement Au Moins Equiv-

alent / Overall At Least Equivalent) that requires a new sys-

tem to be at least as safe as the existing system it will replace. 

In our use case, this means that a misclassification may be 

considered acceptable if a train driver would have also mis-

classified the signal in similar conditions. Practically, this 

means that performance requirements in poor visibility envi-

ronments may be lower than in normal operating conditions. 

 

3) Examples of performance requirements 

The table below provides examples of possible performance 

objectives for our use case: 

 
 Example #1 Example #2 Example #3 

Scope All operating 

conditions 

All signals 

All operating 

conditions 

Red signal 

Poor visibility 

All signal 

Metric Accuracy Accuracy Accuracy 

Obj. 99,9999% 99,99999% 99,999% 

Conf. 

level 

10-5 10-6 10-4 

 

B. Test stopping criteria 

A test campaign must stop when the performance objective 

(e.g. 99,999%) is met with the target confidence level (e.g. 

10-5). Statistical test stopping criteria may be distribution-in-

dependent or distribution-dependent.  

Distribution-independent criteria requires no assumption on 

the test dataset distribution with respect to the actual opera-

tional distribution, but are often intractable in practice, 

whereas the second one requires some assumptions. 

The following notations are used in the next paragraphs: 

 ℙ(𝑋) denotes the probability of an event 𝑋 

 𝑛 denotes the size of the test dataset 

 �̂�𝑛denotes the probability of an incorrect classification 

observed on the test dataset 

 𝑝 denotes the actual unknown probability of an incorrect 

classification 

 𝛿 denotes the desired confidence level. 

 

1) Distribution-independent criteria 

 

Without assumption on the test dataset distribution, a gener-

alization bound can be derived as explained in the course “In-

troduction to Statistical Learning Theory”, in pages 191 and 

192 in [18] : for some absolute constant 𝐶1 and 𝐶2 , the gen-

eralization bound reads [18] 

ℙ (𝑝 ≤ �̂�𝑛 + 𝐶1√
𝑉𝐶

𝑛
+ 𝐶2√

log(1 𝛿⁄ )

𝑛
) ≥ 1 − 𝛿 

In this formula, 𝑉𝐶 denotes the Vapnik and Chervonenkis di-

mension (VC dimension) [18].  

Currently, these generalization bounds are often too loose to 

be usable. For example, if we take 𝛿 = 10−5 with 𝑉𝐶 = 105 

(typical order of magnitude for a Deep Neural Network made 

of 10 layers and 104 weights [19]) the size 𝑛 of the test dataset 

should be greater or equal to 1015 , which is impossible to 

achieve. Improving these generalization bounds is an ongo-

ing research topic. Therefore, in this paper, this type of dis-

tribution-independent criteria is not retained.  

2) Distribution-dependent criteria 

If we assume that the samples of the test dataset: 

(i) are independent and identically distributed (i.i.d) 

(ii) have the same distribution as the operational distri-

bution relevant to the scope of the requirement. 

Note: Relevant operational distribution is defined 

with respect to the scope of the test. For example, if 

the scope is “all operating conditions, red traffic 

lights only”, then the relevant operational distribu-

tion is the true operational distribution of red traffic 

lights, actually encountered by trains in operation. 

 

Then the following relation holds, as given in lemma B.10 in 

page 427 in [20] : 

ℙ (𝑝 ≤ �̂�𝑛 + √
2�̂�𝑛

𝑛
ln (

1

𝛿
) +

2

𝑛
ln (

1

𝛿
)) ≥ 1 − 𝛿 

This bound is much tighter than the previous one. For exam-

ple, if we take �̂�𝑛 = 10−5 and 𝛿 = 10−5, the size of the test 

dataset should be  𝑛 ≈ 106, which is manageable. 

But this bound requires a careful selection of the test dataset 

to make sure that the assumptions (i) and (ii) are met. 

C. Test dataset collection and verification 

In this section, we assume that the distribution-dependent 

stopping criterion is used. This choice implies a careful selec-

tion and verification of the test dataset in order to meet the 
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two assumptions: (i) the samples included in the test dataset 

are i.i.d and (ii) the test dataset distribution is identical to the 

relevant operational distribution [21]. 

1) Collection 

In order to meet those two assumptions, we propose two ap-

proaches. 

 Random collection. Data collected in operation are ran-

domly sampled. Data collection and sampling are per-

formed uniformly in order to reproduce the operational 

distribution. The challenge with this approach is to en-

sure that randomness and uniformity are effective, with-

out bias.  

Example: for a test of “all operating conditions on a spe-

cific train line”, all trains operating on the line are 

equipped with cameras during the whole year, and the 

test dataset is built by randomly sampling the collected 

data. 

 Planned collection.  The operational distribution is ana-

lyzed to identify all the relevant features and their fre-

quency. Then, data collection is planned in order to 

gather a dataset with the same features at the same fre-

quency as the operational distribution. The main chal-

lenge with this approach is to properly specify the oper-

ational distribution, without introducing bias in the spec-

ification.  

Example: for a test of “all operating conditions on a spe-

cific train line”, the relevant features are identified: it in-

cludes weather conditions, light conditions, background 

type, traffic light types… Then the frequency of each sit-

uation is assessed, and collection is planned to have sam-

ples of each situation at the expected frequency. 

2) Verification 

The test dataset should be verified in order to check that it 

satisfies the assumptions. For the first assumption of inde-

pendent and identically distributed (i.i.d), the verification ap-

proach differs depending on the collection approach: 

 Random collection. The i.i.d assumption is satisfied by 

design, so the verification activity only aims at assuring 

that randomness was effective during collection. 

 Planned collection. The i.i.d assumption may be more 

difficult to achieve with planned collection, and verifica-

tion activities should assure that independence is effec-

tive. 

In both cases, various tests exist to verify the i.i.d. assump-

tion; such as autocorrelation plot, lag plot or turning point test 

[22]. None of these techniques can provide certainty, but they 

increase confidence. 

The second assumption (consistency of the test dataset distri-

bution with the operational distribution) is verified through 

an analysis of the consistency between the data collection 

conditions and the expected operational conditions. This 

analysis can be qualitative (expert judgement) and/or quanti-

tative (comparison of features frequency). 

Notes:  

 Expert judgment is used several times places in our 

testing process. However, this is not a way to by-

pass more formal and less subjective solution when 

available. In addition, expert selection and judg-

ment still relies on a rigorous process, as shown for 

instance in [23] in the context of Assurance Cases. 

 The operational distribution may evolve over time, 

for example when changes on the traffic signals or 

their environment happens. Therefore, the con-

sistency of the test dataset distribution with the op-

erational distribution may degrade over time. A 

mechanism to monitor the evolutions of the opera-

tional distribution should be implemented to identify 

such situation. 

D. Test results analysis 

At the end of the test, two analyses are performed on the test 

results: 

 Performance analysis: this first analysis is simple, as it 

only consists in verifying that the ML model meets its 

performance objectives. The distribution-dependent cri-

teria defined in section B.2) is applied, and the result is 

pass or fail. If the result is fail, then the ML model should 

be retrained, and performance testing redone, with a new 

test dataset in order to avoid an iterative learning of the 

test dataset that would introduce bias in the test results. 

In case of reuse of the same test dataset, the distribution-

dependent criteria is no longer valid, and other bounds 

should be applied, to account for the reuse.  

 Failure analysis: additionally, if the ML model failed on 

some samples of the test dataset, and even if the overall 

performance is acceptable, each failure must be analyzed 

in order to find the root cause, and ensure that the under-

lying failure condition is local and not systemic. This 

failure analysis could be performed using explainability 

techniques [21]. 

V.  ROBUSTNESS TESTING 

A. Test objectives definition 

According to IEEE Std 610.12-1990 , robustness is the degree 

to which a system or component can function correctly in the 

presence of invalid inputs or stressful environmental condi-

tions. 

We can see from this definition that robustness is twofold. In 

machine learning, among potential stressful situations we 

consider:  adversarial attacks [23], worst cases or edge cases, 

and  invalid inputs that are defined relatively to the distribu-

tion of the training data [24].  Edge cases will be discussed in 

the “Worst case section” because their study may be very spe-

cific to the application while adversarial robustness and out 

of distribution robustness share a lot of common point from 

one application to the other. Then we will focus on these two 

last situations in the following.  

Adversarial attacks consist in transformations of the original 

data which are in general not visible for the human eye but 

which have the ability to change the response of the system. 

Synthesizing sophisticated adversarial examples and elabo-

rating defense strategies are the topics of many research 

works [25] [26]. These invisible attacks, when used for ro-

bustness assessment, aim at providing a better understanding 

of the algorithm behavior in the neighbourhood of the test 

points. To do so, an optimization process is used to find a 

perturbation that provokes a decision change in the limit of a 

maximum perturbation radius is around a test data. If this pro-

cess is often successful, the model is considered not robust.  

Adversarial attacks can be visually visible and constructed to 

assess algorithm robustness [27] [28]. In the case of an out-

door application, like our use case, these visible perturbations 

can represent realistic situations like fog or damage caused to 

a signal.  

Lastly, a technically very different approach but which goal 

is very similar to adversarial attack based approaches are 
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based on abstract interpretation of the ML component [29]. 

In this approach, a theoretical perturbation ball is defined 

around a testing point and is “forwarded” through a neural 

network using abstract interpretation theory. This ball is 

transformed by the network accordingly to its layers. At the 

end the transformed ball is compared with the decision 

boundaries. If it does not cross them, the network is robust to 

the tested amount of perturbation at this testing point.   

The other concern about robustness corresponds to data 

which have not been learnt by the system, often referred as 

out-of-distribution (OOD) data, anomaly, outlier, or novelty 

[30] [31]. As a result, the behavior of the system on these data 

is often not predictable and needs to be evaluated. Neverthe-

less, it is often critical to assess that a data is in or out of the 

training distribution of the system. Consequently, it is neces-

sary to develop tools to identify out-of-distribution data for 

observing the behavior of the system on these data only.  The 

performance degradation should be progressive with respect 

to the distance between out of distribution data and in distri-

bution ones. If it is the case the ML based system is consid-

ered as robust.   

B. Test stopping criteria 

As explained earlier robustness testing data are designed to 

explore potentially difficult situations. It is worthy to note 

that, benchmarks of model robustness are proposed in the lit-

erature [32]. However, in this document we consider evaluat-

ing robustness of a particular model dedicated to a particular 

use case.  To do so, it is mandatory to be able to introduce a 

progression of the test cases difficulty in order to be able to 

measure the degree of robustness of the algorithm otherwise 

robustness analysis is nonsense. This graduation is easy to 

obtain in standard perturbation test cases:  

 Noise gradation is based on noise level in dB, 

 Signal frequency modification (e.g. blur) is controled by 

the applied filter transfer function profile,  

 Geometric distortion are parametrized by geometric pa-

rameters like rotation angle.  

 Percentage of occultation of a targeted object in the case 

of partial occultation perturbations. 

It may be less obvious as for adversarial robustness testing. 

The natural choice is to monitor the amount of data modifi-

cation through the attack radius ρ (the modified data must be 

comprised in a distance at most equal to ρ from an actual test 

set data). This idea has been extended to Wasserstein distance 

in [33]. Wasserstein attacks are interesting  for robustness 

testing as they produce more realistic  contents with respect 

to the data distribution than classical attacks; When studying 

the possibility of attacks in the physical world [34] and the 

ratio between efficiency and realization difficulty cannot be 

assessed by a radius criteria. However, we can draw some test 

stopping criteria  

 Stop when: the algorithm resists to a predefined list of  

adversarial attacks with a radius less or equal to the nat-

ural noise amount (noise measures in the training data for 

instance). 

 Stop when physical sticker attacks covering less than 

20% (or what ever the specification) of the object of in-

terest fail.  

Concerning out of distribution (OOD) robustness, it is very 

difficult  to establish. OODs are in the class of the “Known 

unknowns”, that is “One knows OOD may occur, but does 

not know what it will be”.  Moreover, the notion of progres-

sivity is very difficult to define and to obtain. However once 

again we consider that it is a very important characteristic that 

a robustness test must have. To fulfill this requirement we 

propose two approaches.  

The first approach relies on an operational domain expert’s 

analysis.  The expert knowing well the operational domain, 

he should be able to express its limit and possible variations. 

From this analysis, out of definition data can be gathered or 

created through a simulation process. 

The second approach computes the distance between the 

nominal data distribution and some gathered OOD data dis-

tributions. To do so one can estimate the Wasserstein distance 

between OOD sets and genuine distribution [35]. 

The test stopping criteria is based on the OODness measure 

(proposed by the expert or through the Wassertein distance). 

The test are stopped when the robustness limit of the system 

is encountered (observed through a performance drop) or the 

system performances are maintained for “far enough” OOD 

data. The rigorous gradation of all robustness tests allows to 

determine the ML component  breaking points (similarly to 

mechanical testing). These breaking points can be compared 

to the system specification.  

C. Test dataset collection 

To evaluate robustness to data perturbation, a simple ap-

proach is to take all the available test data and to apply several 

adversarial transformations on it. A good practice is to list all 

the adversarial transformations that require to be tested (sim-

ple one like [23] or more complex one like [33]). A survey on 

adversarial attacks can be found in [26]. Then, it is necessary 

to tune their magnitude in order to make sure that the trans-

formation remains realistic with respect to the application..  

Building a dataset for OOD robustness assessment involves 

two steps. First, human experts may identify situations that 

should not be encountered by the system in the operational 

domain then that are not present in the training set. They can 

also imagine some shift in the operational environment of the 

system.  

From these analysis the OOD datasets can be specified. OOD 

data are then gathered manually to represent these situations. 

Another method is to apply style transfer on the test data [36]. 

This allows evaluating the behavior of the system in realistic 

situations but with different appearance.  

D. Test results analysis 

It is impossible to prove that an ML algorithm is robust to 

every possible stressful situation.   

To analyze the model robustness we observe the amount of 

perturbation that must be injected in the datasets before ob-

serving a significant performance drop. A finer observation 

of the results can enlighten in what kind of stress the system 

does perform most badly.  

What can we do with the results? If the tests are performed at 

the final validation step, they should be compliant with spec-

ification to be considered as passed. If the tests are performed 

during algorithm development, adversarial attack can be in-

troduced in the training data (adversarial training). If possible 

this approach can be done with OOD data but this will make 

more difficult OOD robustness assessment, new distribution 

of OOD data will need to be imagined and generated.   

VI. WORST-CASE TESTING 

A. Test objectives definition 

Worst-case testing consists in observing the performance of 

the system in situations considered as being the “worst”, or 

the most difficult, by experts of the operational domain. It is 
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important to note that this scale of difficulty is strongly re-

lated to human capabilities (processing, sensing, and actua-

tion capabilities) and that they may not match with the actual 

“difficulty” for the ML system. For our use case, it means the 

worst cases as perceived by the train drivers, but also by the 

experts in Image acquisition and processing (used in the data 

acquisition chain).  

Because performance testing only considers an average per-

formance, and robustness testing activates the weaknesses of 

the ML model mostly independently from the operational do-

main, worst-case testing is a necessary complement to specif-

ically observe the behavior of the model in difficult opera-

tional situations.  Then, we are specifically interested here in 

the inputs that are likely to be generated in the real world but 

having the particularity of a low occurrence.  

B. Test stopping criteria 

Here the challenge is not to reach the exhaustiveness of the 

situations that could arise (i.e. the field is infinite), we focus 

on observing how the ML based system performs. It is clear 

that its average performances on these situations will be 

lower than what expected in the average conditions but our 

goal is to track to what extent of bad situation the system can 

go and if the operational limits we find are acceptable in prac-

tice.  

Then stopping criterion is simple: Have all the worst  cases 

identified by the experts been tested ?  

C. Test dataset collection 

Our use case is an outdoor perception one. Then first worst 

cases identified by an expert will concern weather, light con-

ditions, scene clutter and etc. More specific situations like 

tunnel exit can also be identified as worst cases. Then the da-

taset must be defined from this comprehensive expert list of 

situations. These situations are frequently identifiable in the 

PHA (Preliminary Hazard Analysis). It is advised to also test 

in the neighborhood of the specified limits. Then, we propose 

a qualitative approach, which consists in classifying, based 

on an expert opinion, the most problematic situations to be 

managed for the train driver or the operator in general.  

A non-exhaustive list could be: 

 Test exceptional situations found in the ODD (with al-

most no sample in learning database) 

 Based on expert knowledge, test critical situations 

(weather condition, occlusion, background, speed, vibra-

tion, line of sight, curve, etc.)  

 Test safety critical scenarios (where missing the recog-

nition leads to a critical situation) 

 Test combination of already difficult cases, combination 

of robustness tests applied to worst-case images. 

As explained earlier, these situations are rare by definition, 

then acquiring data representing them  necessitate some ded-

icated effort. Real data will be acquired in the limit of feasi-

bility and cost. To find a solution to this limitation, simulation 

based testing may be used [37] [38].  

D. Test results analysis 

The analysis of these tests allow determining the limit be-

tween the safe and unsafe domains. Beyond we could study 

the options of safety mitigation (e.g. failure mode, redun-

dancy, etc.) and the way to monitor these critical situations, 

even redefine the operational domain. Then, the worst-case 

tests could provide a clue of confidence in the generalization 

in the real world and will highlight the limits of the safe do-

main of ML.   

Some difficulties remains in:  

 limited amount of real data representing worst cases, 

 difficulty to guaranty the representativity of simulations.   

VII. BIAS TESTING 

A. Test objectives definition 

Once it is ensured that the overall performance of the ML 

model is successfully tested with an unbiased test dataset, as 

described in section IV, it is also necessary to ensure that no 

bias is present in the decisions of the model itself. The model 

shall indeed use relevant features to output the decisions that 

have led to the recorded performances. In particular, the per-

formance results shall not be obtained due to some attributes 

in the data (in images, color or texture, for instance) which 

possibly introduce a bias in the response of the system. This 

bias in the response corresponds to a flaw in the model’s rep-

resentation which is often due to a bias in the training set itself 

[39]. 

If the ML model returns biased responses, then it may be sig-

nificantly more effective in some situations than others. This 

may not be acceptable: for example, the traffic signals detec-

tion should not be degraded on some tracks whereas it per-

forms well on other tracks.  

The absence of bias in the decisions of the model can be as-

sessed using fairness and explicability techniques. Fairness 

techniques enable the detection of biased behavior of the 

model, whereas explainability techniques allow the analysis 

of the feature that most influenced the decisions made. 

1) Fairness 

Fairness is related to ensuring that the system applies a fair 

treatment to the data whatever the values of some of its at-

tributes are [40]. The worst-case testing proposed in section 

VI, or the performance testing described in section IV used 

on subsamples of the dataset in order to compare the relative 

performances in different situations, may contribute to the de-

tection of unfair data processing by the model. 

2) Explainability 

Due to bias in the training set, the ML model may also return 

its outputs based on irrelevant features of the input. A famous 

example is presented in [41], where a husky is classified as a 

wolf based on a snowy background. Using explainability 

techniques helps detecting such erroneous behaviors. Nor-

mally, such bias in a ML model should be detected through 

the performance testing approach described in section IV, 

with an unbiased test dataset. Additionally, explainability 

techniques could be used, such as LIME [41], or an occlusion 

sensitivity analysis as described in [42]. Nevertheless, cau-

tion should be taken with explainability techniques, since 

most of them have hyper parameters that greatly influence 

their results [43]. 

B. Test stopping criteria 

Bias testing should be carried out on all relevant classes of 

bias, and stopped when the review of all these classes is com-

pleted. It is not expected that bias testing will enable the de-

tection of unknown class of bias, because each testing tech-

niques addresses a particular class of bias. Identification of 

all possible sources of bias cannot be achieved in practice. 

Therefore the identification of relevant classes of bias relies 

on expert judgement, in agreement with the certifying author-

ities. 
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Therefore, the following approach is suggested: 

  Identification of relevant classes of bias: this activity 

should involve experts with various backgrounds, in-

cluding data scientist, acquisition system expert, opera-

tor, etc. 

 Bias testing: for each potential class of bias, one or sev-

eral bias detection techniques should be applied to con-

firm or infirm the bias in the ML model. Fairness or ex-

plainability techniques, as presented in A, could be used 

depending on the type of bias. For each type of bias, the 

number of samples tested can be chosen based on the ex-

pected confidence interval, using criteria similar to the 

one described in section IV.B.2). 

 Stop:  bias testing stops when all known potential 

sources of bias have been tested on a sufficient number 

of samples. 

C. Test dataset collection 

The test dataset is defined by the potential sources of bias 

identified. For each potential source of bias, a representative 

test dataset should be collected, in a similar way as the one 

described in section IV.C. 

For example, if the potential source of bias to be tested is “the 

ML model performs better on yellow lights than on red 

lights” (fairness problem), the dataset should extract two sub-

samples from the test dataset gathered in section 4.3: one sub-

sample containing yellow lights, and one subsample contain-

ing red lights. 

If the potential source of bias to be tested is “the ML model 

builds its decisions on the shape of the signal instead of its 

color” (explainability problem), then a dataset containing 

various combinations of signal shapes and colors can be used. 

D. Test results analysis 

For each confirmed source of bias, its acceptability should be 

checked with respect to the  requirements. If the bias is con-

firmed and not acceptable, the ML model should be retrained 

to remove the identified bias(es). The analysis differs depend-

ing of the type of bias: 

 Fairness: some degree of unfairness may be accepted. 

For example, it may be acceptable to have a ML model 

that performs better on red lights than on green lights, 

because it does not compromise safety. Therefore a care-

ful safety assessment may support the acceptance of un-

fair ML model. 

 Explainability: if the ML model makes decisions based 

on irrelevant features of the input, the ML model should 

not be accepted, except if the occurrence of such situa-

tion is proven to be rare enough. 

VIII. RELATED WORKS  

As of today, even if there is already a large number of on-

going initiatives about the engineering of Machine Learning 

in the context of critical systems, results are essentially fo-

cused on the identification of high-level challenges [1][2], or 

certification-level guidance [3] [45]. Our paper proposes so-

lutions to address the challenge of verification and refines the 

relevant development phases down to practical engineering 

activities (definition of test stopping criteria, definition of da-

taset, etc.). However, our proposal remains partial for it only 

consider verification by testing and does not cover other ver-

ification means such as, for instance, formal verification. 

A survey of 144 papers in Machine Learning Testing is given 

in [1]. This paper, which provides a comprehensive and struc-

tured analysis of the recent results concerning testing, identi-

fies a large set of methods and tools to support this activity. 

Those methods and tools are some of the “building blocks” 

that we integrate in the testing strategy proposed in this paper. 

Our proposal is complementary to these papers in the sense 

that it proposes to organize in a sensible and practical way the 

various testing activities. 

IX. CONCLUSION  

To test safety-critical systems based on machine learning, we 

have presented an approach divided into four activities: per-

formance assessment, robustness verification and worst-case 

testing. For each of these, we have given objectives and stop-

ping criteria, and some solutions to collect the appropriate 

data.  

In addition, we have illustrated our propositions in our use 

case of railway signal identification. As usual in machine 

learning domain, data are of particular importance. To ensure 

valid testing, we have underlined several considerations, 

which must be taken into account like the definition of the 

operational domain, or the detection of unintended biases in 

the datasets or in the model’s decisions. Particularly for 

worst-case testing, due to the scarcity of worst-case situa-

tions. 

As it can be seen, our approach intends to use complementary 

point of views of the system at hand to construct an efficient 

testing strategy.  

 

REFERENCES 

 

[1]  IRT Saint-Exupéry; ANITI, "White Paper Machine 

Learning in Certified Systems," Toulouse, 2021. 

[2]  I. Stoica and et a., "A Berkeley View of Systems 

Challenges for AI," Berkeley, 2017. 

[3]  EASA, "Concepts of Design Assurance for Neural 

Networks (CoDANN)," 2020. 

[4]  2. ISO/PAS, "Road Vehicles - Safety of the Intended 

Functionality (SOTIF)," Jan. 2019.  

[5]  F. Maleki, N. Muthukrishnan, K. Ovens, C. Reinhold 

and R. Forghani, "Machine Learning algorithm 

validation : from essentials to advanced applications 

and implications for regulatory certification and 

deployment," Neuroimaging Clinics, vol. 30, pp. 433-

445, 2020.  

[6]  S. Picard, E. Jenn, C. Chapdelaine, B. Lefevre, C. 

Cappi and L. Gardes, "Ensuring Dataset Quality for 

Machine Learning Certification," in 10th IEEE 

International Workshop on Software Certification, 

2020.  

[7]  C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barret and 

M.-J. Kochenderfer, "Algorithms for Verifying Deep 

Neaul Networks," Found. Trends. Optim, vol. 4, 2019.  

[8]  I.-2. RTCA, (DO-248C) Supporting information for 

DO-178C and DO-278A, Dec. 2011.  

[9]  I. s. 6. IEEE, IEEE Standard Glossary of Software 

Engineering Terminoloy (IEEE 610), 1990.  

[10]  T. Chen, F.-C. Kuo, H. Liu and P.-L. Poon, 

"Metamorphic Testing: A Review of Challenges and 

Opportunities," ACM Computing Surveys, 2018.  



 

9 

[11]  X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xy and T. Y. 

Chen, "Testing and Validating Machine Learning 

Classifiers byMetamorphic Testing," Journal of system 

and sofware, 2011.  

[12]  A. Torralba and A. A. Efros, "Unbiased look at dataset 

bia," in IEEE International Conference on Computer 

Vision and Pattern Recognition (CVPR), 2011.  

[13]  A. Paullada, I. D. Raji, E. M. Bender, E. Denton and A. 

Hanna, "Data and its (dis) contents: A survey of dataset 

development and use in machine learning research," in 

Advances in Neural Information Processing Systems 

Workshop : ML Retrospectives, Surveys & Meta-

analyses (ML-RSA), 2020.  

[14]  Y. Li and N. Vasconcelos, "Repair : Removing 

representation bias by dataset resampling," in 

Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2019.  

[15]  N. Jaipuria, X. Zhang, R. Bhasin, M. Arafa, P. 

Chakravarty, S. Shrivastava, S. Manglani and V. N. 

Murali, "Deflating dataset bias using synthetic data 

augmentation," in Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern 

Recognition Workshops, 2020.  

[16]  I. J. Goodfellow, Y. Bengio and A. Courville, Deep 

Learning, MIT Press.  

[17]  M. Moukari, S. Picard, L. Simon and F. Jurie, "Deep 

Multi-scale architectur for monocular depth 

estimation," in ICIP, 2019.  

[18]  O. Bousquet, U. von Luxburg and G. Rätsch, Advanced 

Lectures on Machine Learning : ML Summer Schools 

2003, Canberra, Australia, February 2-14, 2003, 

Tübingen, Germany, August 4-16, 2003, Revised 

Lectures, Springer, 2003.  

[19]  P. L. Barlett, N. Harvey, Liam, C. Liaw and A. 

Mehrabian, "Nearly-tight VC-dimension and 

Pseudodimension Bounds for Piecewise Linear Neural 

Networks," Journal of Machine Learning Research, 

2017.  

[20]  S. Shalev-Shwartz and S. Ben-David, Understanding 

machine learning : From theory to algorithms, 

Cambridge University Press, 2014.  

[21]  D. Bau, B. Zhou, A. Khosla, A. Oliva and A. Torralba, 

"Network Dissection:Quantifying Interpretability of 

Deep Visual Representations," MIT, 2020. [Online]. 

Available: http://netdissect.csail.mit.edu/final-

network-dissection.pdf. 

[22]  J.-Y. Le Boudec, Performance evaluation of computer 

and communication systems., EPFL Press, 2010.  

[23]  P. J. McGee and J. C. Knight, "Expert judgment in 

Assurance Cases," in 10th IET System Safety and 

Cyber-Security Conference 2015, Bristol, UK, 2015.  

[24]  I. J. Goodfellow, J. Shlens and C. Szegedy, "Explaining 

and harnessing adversarial examples," in International 

Conference on Learning Representations (ICLR), 

2015.  

[25]  C. M. Bishop, "Novelty detection and neural network 

validation," in IEE Proceedings-Vision, Image and 

Signal processing, 1994.  

[26]  A. Athalye, L. Engstrom, A. Ilyas and K. Kwok, 

"Synthesizing Robust Adversarial Examples," in 

International Conference on Machine Learning 

(ICML), 2018.  

[27]  X. Yuan, P. He, Q. Zhu and X. Li, "Adversarial 

Examples : Attacks and Defenses for Deep Learning," 

IEEE Transactions on Neural Networks and Learning 

Systems, vol. 30, no. 9, pp. 2805-2824, 2019.  

[28]  K. Pei, Y. Cao, J. Yang and S. Jana, "DeepXplore: 

automated whitebox testing of deep learning systems," 

Commun. ACM, vol. 62, no. 11, p. 137–145, Oct. 2019.  

[29]  A. Odena, C. Olsson, D. G. Andersen and I. 

Goodfellow, "TensorFuzz: Debugging Neural 

Networks with Coverage-Guided Fuzzing," 2018.  

[30]  T. Gehr, M. Mirman, D. Drachsler-Cohen and P. 

Tsankov, "AI2: Safety and Robustness Certification of 

Neural Networks with Abstract Interpretation," in 2018 

IEEE Symposium on Security and Privacy, 2018.  

[31]  R. Chalapathy and S. Chawla, "Deep learning for 

anomaly detection : A survey," arXiv preprint 

arXiv:1901.03407, 2019.  

[32]  H. Wang, M. J. Bah and M. Hammad, "Progress in 

Outlier Detection Techniques : A Survey," IEEE 

Access, vol. 7, pp. 107964--108000, 2019.  

[33]  D. Hendrycks and T. Dietterich, "Benchmarking neural 

network robustness to common corruptions and 

perturbations," in ICLR, 2019.  

[34]  K. Wu, A. H. Wang and Y. Yu, "Stronger and Faster 

Wasserstein Adversarial Attacks," in ICML, 2020.  

[35]  K. Eykholt, I. Evtimov,, E. Fernandes, T. Kohno, B. Li, 

A. Prakash, A. Rahmat and D. Song, "Robust Physical-

World Attacks on Deep Learning Visual 

Classification," in CVPR, 2018.  

[36]  C. Villani, Optimal Transport: Old and New, Springer, 

2009.  

[37]  L. Gatys, A. S. Ecker and M. Bethge, "Image Style 

Transfer Using Convolutional Neural Networks.," in 

Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR), (pp. 2414-

2423)., 2016.  

[38]  T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. 

Ravanbakhsh and M. Vazquez-Chanlatte, "VerifAI: A 

Toolkit for the Formal Design and Analysis of 

Artificial Intelligence-Based Systems," in 31st 

International Conference on Computer Aided 

Verification (CAV), 2019.  

[39]  M. Mousavi, A. Khanal and R. Estrada, "AI 

Playground: Unreal Engine-based Data Ablation Tool 

for Deep Learning," 2020. [Online]. Available: 

https://arxiv.org/pdf/2007.06153v1.pdf. 

[40]  Q. Zhang, W. Wang and S.-C. Zhu, "Examining cnn 

representations with respect to dataset bias," in 

Proceedings of the AAAI Conference on Artificial 

Intelligence, 2018.  

[41]  E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. 

Loubes, "Obtaining Fairness using Optimal Transport 

Theory," in International Conference on Machine 

Learning (ICML), 2019.  



 

10 

[42]  M. T. Ribeiro, S. Singh and C. Guestrin, "" Why should 

I trust you ?" Explaining the predictions of any 

classifier," in Proceedings of the 22nd ACM SIGKDD 

international conference on knowledge discovery and 

data mining, 2016.  

[43]  C.-H. Cheng, C.-H. Huang, H. Ruess and H. Yasuoka, 

"Towards dependability metrics for neural networks," 

in The 16th ACM/IEEE International Conference on 

Formal Methods and Models for System Design 

(MEMOCODE), 2018.  

[44]  N. Bansal, C. Agarwal and A. Nguyen, "SAM : the 

sensitivity of attribution methods to hyperparameters," 

in Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, 2020.  

[45]  DGA, "Guide méthodologique pour la spécification et 

la qualification des systèmes intégrant des mo-dules 

d’intelligence artificielle," 2020. 

 

 

 

 


