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Human-Robot Handovers using Task-Space Quadratic Programming

Mohamed Djeha, Antonin Dallard, Ahmed Zermane, Pierre Gergondet
and Abderrahmane Kheddar, Fellow, IEEE

Abstract— Bidirectional object handover between a human
and a robot enables an important functionality skill in robotic
human-centered manufacturing or services. The problem in
achieving this skill lies in the capacity of any solution to
deal with three important aspects: (i) synchronized timing
for the handing over phases; (ii) the handling of object pose
constraints; and (iii) understanding the haptic exchanging to
seamlessly achieve some steps of the (i). We propose a new
approach for (i) and (ii) consisting in explicitly formulating
the handover process as constraints in a task-space quadratic
programming control framework to achieve implicit time and
trajectory encounters. Our method is implemented on Panda
robotic arm taking objects from a human operator.

I. INTRODUCTION

Human-centered robotics trends aim at close contact inter-
actions in different areas: hospitals, industry, malls, homes,
restaurants, etc. This cohabitation implies a large taxonomy
of human-robot interactions. Among the most challenging
one, seamlessly exchanging objects between a human and
robot as giver and receiver agents through (bi-directional)
handovers. Indeed, handing objects between humans is a very
frequent daily form of interaction in almost all domains [1].
Therefore, embedding human-centered robotic systems in
automation and services with handovers capabilities, is a
key enabler for rich cognitive interaction [2], [3]. Although
human-human handover is an intuitive behavior, it is a
result of complex and sophisticated learned social-cognitive
communication channels [4]. Grasping such a complexity in
an equivalently robot control formulation strategy is not a
trivial problem.

Indeed, how to codify the human-robot handover process
has been thoroughly addressed in the research community.
The state-of-the-art studies split the handover process in
two main phases: the pre-grasping phase [5]–[12] and the
grasping phase [13]–[17]. Such a breakdown is simply
chronological: the former focuses on detecting the object,
estimating/predicting the human movement and planning the
robot reaching motion toward the meeting point, whereas
the latter consists of understanding the interaction forces
(haptics) applied at the object by the two handing over agents
during the exchange such that to ensure a stable grasping.
In [15] a retraction phase is considered, which describes how
the giver and receiver move away after the latter gets the full
control of the object. Yet, for an exhaustive handover survey,
please refer to the excellent recent review in [1].
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Fig. 1. Proposed seamless handover process executed without any prior
knowledge about the HOL and final object orientation.

Despite the huge amount of works addressing human-robot
handover, one issue remains open: how to ensure/codify an
adaptive behavior of the robot w.r.t to a human versatile
intention on where to exchange the object, aka HandOver
Location (HOL), with the robot, and in which configuration
(orientation). A large amount of existing works required
the knowledge of the HOL as a precondition either for
motion planning or control formulations of the pre-grasping
phase. In particular, the HOL is often considered either
as fixed (the robot moves systematically to a fixed spot
to pick-up the object) or pre-planned (real-time detection
and estimation of the object fixed-location) [1, Tables 1-2].
There are works that provide HOL estimation and on-line
prediction methods [15], [18]–[22]. However, such existing
approaches have at least one of the following shortcomings:

• Collecting data sets to train motion prediction models;
• Time-consuming computations leading to a hashed or a

slow handover;
• Magic-numbers of meta-parameters to be tuned;
• Conservatism in the HOL prediction policy;
• Non-systematic success of the handover performance;
• The object orientation at the HOL is often kept the same

during the experiments;
• Knowledge of the HOL is very often required.

In this work, we formulate the premises of a generic robot
control-strategy that ensures high fidelity and reliability of
reaching motion for bi-directional handover scenarios and
guarantees adaptability w.r.t the HOL and object orienta-
tion (Fig. 1). Particularly, our control formulation gathers
the advantages from both methods in [15], [17]. Indeed,
our method is HOL knowledge free. We only assume that
the object structural properties and dimensions are known,
and there exists a sensor that provides the pose (Cartesian
position and orientation) of the object of interest, e.g. [23].
Conversely to [17], our method ensures/codifies a real-time



proactive and adaptive robot motion w.r.t to the human
versatile intention on where to exchange the object with the
robot and in which configuration (orientation) without the
need of offline acquired data. Our aim is to build on our
existing multi-objective task-space optimization Quadratic-
Programming (QP) framework [24], [25] that prove to be
very powerful in an industrial context [26] and a human-
assistance context [27]. In particular, our proposed idea
relies on the concept of coupled tasks where the state of
one task is forwarded as the reference for another task.
More precisely, we formulate an observation task that es-
timates either human hand or object full-state in terms of
pose, velocity and acceleration which are then forwarded
as references for a trajectory-tracking task for the robot
end-effector to track. Leveraging multi-objective QP control
paradigm, these two tasks run concurrently in a leader-
follower fashion: the object (leader) moves and converges
to the HOL while the robot end-effector (follower) moves
proactively toward the object while adjusting its orientation
accordingly. From this standpoint, our approach is similar to
the coupled Dynamical Systems (DS) in [15]. Except that
our approach is computationally cheap and does not require
the estimation of the HOL nor to separately learn human and
robot DS models. To sum-up, our contributions to coupled
task-space observer-controller are as follows:

• Systematic approach (no conservative policy of HOL
prediction) with less parameter to tune (task gains only);

• No need for planning and time consuming processes of
collecting data and model training;

• Requires no time-consuming computations resulting in
a smooth (fluid) and seamless handover motion;

• Codifies rich behaviors with multi-objective QP control
paradigm: proactive position and orientation control
while accounting for safety constraints (collision avoid-
ance, joint and actuation limits, etc.);

• Generalizes to bi-directional human-robot handovers;
• Needs only a sensor or estimator that provides the object

pose, e.g. [23], [28], [29].
Notations: x? ∈ R3 is expressed in frame R?. R??? ∈

SO(3) denotes the rotation matrix of the frameR?? w.r.tR?.
If R? = Rw, the world-frame, then R??? = R??.

[
ω×
]

=
skew(ω) denotes the skew-symmetric matrix associated with
the vector ω ∈ R3. αx denotes the velocity of x ∈ X . If X
is an Euclidean space then αx = ẋ. qT? =

[
q̄? q̂?

]
∈ R4

is the unit quaternion representation of R? where q̄ ∈ R
and q̂ ∈ R3 with

∥∥q?∥∥ = 1, and q−1
?

T
=
[
q̄? −q̂?

]
. The

vector part of the quaternion product q?⊗q?? is denoted as
q̂? 	 q̂?? = q̄??q̂? + q̄?q̂?? +

[
q̂?×

]
q̂?? ∈ R3. If q?? =

q−1
? then q̂? 	 q̂?? = 0. P? ∈ R3 denotes the Cartesian

coordinates of R? origin. Ṗ?, P̈? ∈ R3 are is linear velocity
and acceleration. The angular velocity and acceleration of
R? frame are ω?, ω̇? ∈ R3, respectively.

II. HANDOVER PARADIGM

A. Handover Control Problem
In order to perform object handover efficiently, the robot

reaching-motion toward the HOL shall be synchronized

with the object’s motion to achieve a one-shot continuous
and smooth motion. If the HOL is known in advance, the
control formulation resumes to perform simply a set-point
reaching task for the end-effector. Nevertheless, the HOL
and its timing as well as the object orientation are highly
versatile: they may change during the handover motion or
between two successive processes depending on the human
intention and her/his posture. Handing over an object can
even be aborted on the human decision while moving. Hence,
planning the robot motion is likely to fail in such conditions.
Alternatively, a reactive control method is more suitable for
its ability to adjust the robot motion in real-time. We denote
by end-effector the robot terminal link used to pick-up the
object. It encompasses two-finger grippers, multi-finger hand
and even a non-human like devices as a suction-cup or an
electromagnetic gripper [30].

Our approach is to tackle the human-robot handover prob-
lem from a reactive closed-loop control perspective. We shall
explain our approach when the human is the giver, then we
show how it applies when s/he is the receiver. The HOL can
be seen as an attractor toward which the object is converging
(steered by the human). Since the HOL is not known a priori,
the robot end-effector can track the object trajectory leading
to a proactive motion such that when the object converges
to the HOL, its trajectory becomes a point to which the end-
effector converges. The same reasoning can be applied for
the orientation. The remaining question is how to obtain
the object trajectory in terms of pose Xobj ∈ R7, linear
and angular velocity αXobj

∈ R6 and linear and angular
acceleration α̇Xobj

∈ R6? These terms are encompassed as
the object full-state

sobj =

Xobj

αXobj

α̇Xobj

 ∈ R19. (1)

Often, sobj cannot be directly obtained by the sensors as
generally they provide only Xobj. Hence, an estimation of
sobj needs to be constructed from Xobj and it is denoted as

sobs =

Xobs

αXobs

α̇Xobs

 ∈ R19. (2)

To this end, the observation task is formulated as a PD
controller that drives Xobs toward Xobj, e.g., [23]. While
converging, the observation task outputs also αXobs

and
α̇Xobs

, e.g. [31]. sobs terms are then used as references for
the trajectory-tracking task formulated for the end-effector.
Note that the observation task allows to generate trajectories
for the orientation tracking without the need for offline
planning methods [32]. The same approach can be adapted
if the human is a receiver. In such case, the end-effector
already holds the object and its full-state known by forward
kinematics. Instead, the observation task constructs the full-
state of the human hand [31].

Multi-objective task-space QP control has been extensively
used as it enables to specify various tasks objectives while
explicitly accounting for a set of convex constraints [33].



In [25], one single QP controller can be formulated for multi-
robots systems either decoupled or interacting with each
other using contact forces. In particular, the pre-grasping
handover phase can be suitably formulated using the multi-
robots QP by considering the robotic arm and the object as
two decoupled robots where the former is a redundant multi-
body system where all the joints are actuated, and the latter as
a floating-base rigid-body system. Moreover, the observation
task is formulated for the object to compute sobs and the
trajectory-tracking task is formulated for the end-effector.
The following subsections explicit in details our approach.

B. Background

Consider a n degree-of-freedom redundant robotic arm
such that its joint configuration is defined by q ∈ Rn. The
robot is governed by the following equation of motion:

M(q)q̈ +N(q, q̇) = τ + JTc f, (3)

where M(q) ∈ Rn×n is the inertia matrix, N(q, q̇) ∈ Rn
encompasses Coriolis, centrifugal and gravity torques, τ ∈
Rn is the joint-torque, Jc ∈ R6×n is the Jacobian at the
contact point and f ∈ R6 is the contact wrench. Let us
consider the frame Ree rigidly attached to the end-effector
and which pose is

Xee =

[
Pee

qee

]
∈ R7. (4)

Its velocity and acceleration are given as

αXee
=

[
Ṗee

ωee

]
= Jeeq̇ ∈ R6, (5)

α̇Xee =

[
P̈ee

ω̇ee

]
= Jeeq̈ + J̇eeq̇ ∈ R6, (6)

where Jee ∈ R6×n is the end-effector Jacobian. Let us
consider the object as a one-rigid-link robot with 6 DoF to
which a frame Robj is rigidly attached and which pose is

Xobj =

[
Pobj

qobj

]
∈ R7, (7)

where Xobj is assumed to be provided by a sensor. Its
velocity and acceleration are given as

αXobj
=

[
Ṗobj

ωobj

]
∈ R6, α̇Xobj

=

[
P̈obj

ω̇obj

]
∈ R6. (8)

The object structural and dimension properties are known.

C. Observation Task

Let us consider an observed object to which a frame Robs

is rigidly attached which pose is

Xobs =

[
Pobs

qobs

]
∈ R7. (9)

Assuming that the object (linear and angular) velocity and
acceleration (8) are not provided by the sensor (which is
likely the case), the observation task aims at constructing
these non-measured states by estimating sobs in (2). This
is achieved by the observation task that steers Xobs toward

Xobj by keeping the observation error eobs as small as
possible such that

eobs =

[
Pobs − Pobj

q̂obs 	 q̂−1
obj

]
∈ R6. (10)

The observation error velocity and acceleration are given as

αeobs = αXobs
, α̇eobs = α̇Xobs

. (11)

The observation task state is defined as

ηobs =

[
eobs
αeobs

]
∈ R12. (12)

Thus, the observation task is formulated as follows

η̇obs =

[
0 I
0 0

]
ηobs +

[
0
I

]
µobs, µobs = α̇Xobs

(13)

Choosing µobs in (13) a linear state feedback

µobs = − [Ksobs Kdobs ] ηobs = −Kobsηobs, (14)

with Ksobs ,Kdobs ∈ R6×6 are diagonal positive-definite
matrices denoting the stiffness and damping gains; it yields
to the observation-task closed-loop dynamics

η̇obs = Aobsηobs, Aobs =

[
0 I

−Ksobs −Kdobs

]
, (15)

with Aobs Hurwitz [34]. Note that ηobs only converges
asymptotically to zero if the object is static (Xobs constant).
However, choosing high gain values typically enables a fast
convergence and keeps

∥∥eobs∥∥ sufficiently small.
The benefits of the observation task are three folds: (i)

allows a bounded estimation of sobs in (2) given (13)–(15);
(ii) Xobj is low-pass filtered by the closed-loop observation
task dynamics (15); (iii) enables an online generation of
a smooth twice-differentiable trajectory1 for the Cartesian
and orientation coordinates of Robs without the needs of
an offline planning methods [32]. The latter advantage is the
core idea presented in this paper: the observation task outputs
trajectory references required by the trajectory-tracking task
in order to achieve a proactive handover process. More
importantly, theses two tasks are integrated in the multi-
objective QP controller as shown in Section II-F.

Once having sobs, we can compute the full-state for
any other frame R? attached to the object (for which the
local pose Xobs

? is known) by simply applying the classical
kinematic relations for position, velocity and acceleration:

P?=Pobs +RobsP
obs
? , (16)

Ṗ?= Ṗobs +
[
ωobs×

]
RobsP

obs
? , (17)

P̈?= P̈obs+
[
ω̇obs×

]
RobsP

obs
? +

[
ωobs×

]2
RobsP

obs
? , (18)

R?=RobsR
obs
? . (19)

Note that the rigid body assumption implies that Ṗ obs
? = 0,

Ṙobs
? = 0, ω? = ωobs and ω̇? = ω̇obs.

1This is also known as a reference model-based approach for trajectory
references generation [34, Chapter 13]. In addition, the trajectory feedfor-
ward terms are generated in real-time since the observation task is updated
at the same frequency of QP no matter the sampling-frequency of the sensor.



Fig. 2. Illustrative scheme showing the frames Rw, Ree, Robj, Robs

and Rgrasp. The observed object is tracking the actual object giving the
data from sensor thanks to the observation task. The end-effector tracks
the observation task state yielding an anticipatory motion toward the HOL
where it ultimately meets the object. The colored unit vectors in Ree track
their corresponding inRgrasp. For instance, if the object is cylindrical, only
the yellow unit vectors must be aligned.

D. Trajectory-Tracking Task

Let Rgrasp be the grasping frame rigidly attached to the
object and which pose is defined as

Xgrasp =

[
Pgrasp

qobs

]
∈ R7, (20)

such that Pgrasp ∈ R3 denotes the coordinates of the point
where the end-effector grasps the object and is computed
from (16), and qobs is obtained from Rgrasp in (19). Rgrasp

velocity and acceleration are computed as

αXgrasp
=

[
Ṗgrasp

ωobs

]
∈ R6, α̇Xgrasp

=

[
P̈grasp

ω̇obs

]
∈ R6. (21)

Let us define the trajectory-tracking task error as

ett =

[
Pee − Pgrasp

q̂ee 	 q̂−1
grasp

]
∈ R6, (22)

and which derivative is given as

αett =

[
Ṗee − Ṗgrasp

ωee − ωobs

]
= αXee

− αXgrasp
∈ R6. (23)

Let us denote the trajectory-tracking task state

ηtt =

[
ett
αett

]
∈ R12. (24)

Hence, the trajectory-tracking task dynamics is formulated

η̇tt =

[
0 I
0 0

]
ηtt +

[
0
I

]
µtt, (25)

µtt = α̇Xee − α̇Xgrasp = Jeeq̈ + J̇eeq̇ − α̇Xgrasp . (26)

Then, choosing µtt in (26) as

µtt = − [Kstt Kdtt ] ηtt = −Kttηtt, (27)

with Kstt ,Kdtt ∈ R6×6 are diagonal positive-definite matri-
ces denoting the stiffness and damping gains; it yields to the
following trajectory-tracking task closed-loop dynamics

η̇tt = Attηtt, Att =

[
0 I

−Kstt −Kdtt

]
. (28)

where Att is Hurwitz. This enables a global asymptotic
convergence of ηtt to the origin [34]. Commonly, the tra-
jectory is planned such that the initial reference trajectory
pose is as close as possible to the current end-effector
pose Xee(t0) which indeed ensures that the tracking error
ett(t0) is small and thereby enforces the end-effector pose
to stick on trajectory forward in time. However, when the
trajectory starts far from the initial end-effector pose, the
latter converges to the trajectory with an asymptotic decay of
the tracking error ηtt. This property enables the anticipatory
motion of the end-effector which moves proactively toward
the object grasping position (see Fig. 2).

E. Posture Task

The posture task is mainly intended to solve the remaining
redundant states (q, q̇) and keep them bounded. Let qref ∈ Rn
be a given reference posture designed generally to represent
a suitable robot posture (e.g., elbow up). Let us define the
posture task state as

ηpos =

[
epos
ėpos

]
=

[
q − qref

q̇

]
. (29)

The posture task dynamics is thereby

η̇pos =

[
0 I
0 0

]
ηpos +

[
0
I

]
µpos, µpos = q̈. (30)

Choosing µpos in (30) as

µpos = −
[
Kspos

Kdpos

]
ηpos = −Kpos, (31)

leads to the posture task closed-loop dynamics

η̇pos = Aposηpos, Apos =

[
0 I

−Kspos
−Kdpos

]
, (32)

where Apos is Hurwitz given that the stiffness and damping
gains Kspos

, Kdpos
are diagonal positive-definite. Eq. (32)

yields asymptotic convergence of ηpos to the origin. How-
ever, this is only the case when the posture task is not in
conflict with the other tasks and constraints among which
the posture task has the lowest priority. Alternatively, epos is
only ensured to be uniformly ultimately bounded [24].

F. Multi-Tasks QP Formulation

Let us denote χT =
[
q̈T α̇Tobs fT

]
∈ Rn+6+3 the

vector encompassing the linear and angular acceleration of
the observed rigid-body object, the joint-acceleration of the
robotic arm, and the contact force. Given the affinity of (13)
w.r.t α̇Xobs

, that of (26)(30) w.r.t q̈ and that of (3) w.r.t q̈
and f , then we can combine all the tasks and constraint in
a single weighted-prioritized QP formulation

min
χ

∑
i

wi
∥∥Eiχχ+ F iχ

∥∥2 (33a)

S.t: Cχχ ≤ dχ (33b)

where wi > 0 is the associated weight to each task i.
QP formulation (33) enables to: (i) combine the different
competing tasks in (33a) by settling a soft prioritization
scheme; (ii) account for unilateral constraints (33b) that



Fig. 3. Perception Neuron motion capture sensor-suit used for the handover
experiments and mounted on the left arm. Three IMUs (highlighted in
colored squares) mounted on the left hand are used to provide an estimation
of the hand pose (the orange square).

embed limitations like joint-position, velocity, acceleration
and torque limits, as well as safety aspects like (self)-
collision avoidance to ensure safe grasping [35]; (iii) find
optimal q̈ that generates the robotic arm motion that achieve
at best all the tasks while fulfilling all the constraints; and
(iv) handle multi-robot control where the robotic arm and
the object are considered as two distinct robots entities
which opens the possibility to add other robots to achieve
the handover (e.g., bi-arm handover) while still using one
compact formulation [25].

III. EXPERIMENTAL RESULT

For demonstration, we implemented our approach on
the open-source code implementation of the QP controller
interface mc rtc2. Based on the embedded sensors data,
mc rtc builds and solves the QP problem at each control
cycle (1 ms). Experiments are conducted using 7-DoF robotic
arm Panda. Perception Neuron3 sensor-suit has been used for
the pose measurement (Fig. 3). An API provides the hand
pose in an arbitrarily fixed-frame at a frequency of 60 Hz.
A calibration step is necessary to correctly coincides the
sensor frame with Rw. The calibration process is repeated
at the beginning of each handover experiment to avoid
drifting. When the human is a giver, the object is assumed
to be rigidly attached to the hand, and thereby its pose can
be computed based on the hand’s one. Several handover
scenarios have been performed where the robot starts from
different configurations. In addition, multiple HOLs have
been tried (Fig. 4). The observation task gains have been set
to high values Ksobs

= 1500I , Kdobs
= 2
√
Ksobs

to ensure
an accurate object pose estimation sobj (1). Fig. 5 shows how
Xobs tracks Xobj. The high observation task gains allow an
accurate pose tracking. Concurrently, it allows obtaining a
good estimation of αXobj

and α̇Xobj
by computing αXobs

and
α̇Xobs

from (15). sobj is then forwarded to the trajectory-
tracking task where the gains of the orientation part have
been chosen twice bigger than those of the translation to
ensure that end-effector reaches the object while its ori-
entation has already converged to the target. The stiffness
of the translation part is fixed at I and the corresponding

2https://jrl-umi3218.github.io/mc_rtc/index.html
3https://neuronmocap.com/

Fig. 4. Different HOLs (red) desired by the human operator. The object
is a black cylindrical container. The transparent robots represent the initial
configuration.

Fig. 5. Position (left) and orientation (right with RPY angles) of Robj

(dashed) and its estimation Robs (solid) obtained by the observation task.

damping 2
√
I . From Fig. 6, the object and the end-effector

meet seamlessly and smoothly at the HOL without being
specified a priori, see Fig. 7. Furthermore, the end-effector
adapts reactively to the variation of the grasping point as
shown in the attached video.

IV. CONCLUSION

We propose an original new approach for human-robot
handovers formulated using task-space optimization con-
troller. The core idea is based on a novel implementation
of tasks interdependency, which consists in providing the
state of a task (of estimation nature) as an input to another
task so that both meet at the HOL without explicit time or
object configuration specification. Our experimental results
confirmed very promising performances of simple handovers
focusing mainly on the reaching phase. This new approach
raised very promising novel features of the task-space opti-
mization control schemes. Extension in terms of functional-
ities and theoretical investigation on how observer-tasks can

Fig. 6. Position (left) and orientation (right with RPY angles) of the frames
Rgrasp (dashed) and Ree (solid) obtained by the trajectory-tracking task.
The sudden variation in the yaw angle is sound because the angle is bounded
between −π and π. This does not induce any singularity issue since the
orientation is implemented using unit quaternions.

https://jrl-umi3218.github.io/mc_rtc/index.html
https://neuronmocap.com/


Fig. 7. 3D trajectories of Rgrasp (blue) and Ree (orange). The initial and
terminal points are denoted with a square and a circle, respectively.

be embedded in a unified task-space observer/control frame-
work through task interdependencies and constraints between
task errors opens perspectives in embedding scheduling in
the task-space control formalism. Our on-going and future
research is focusing on this issue together with complete-
phases and more complex handovers considering force cues.
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