
HAL Id: hal-03694752
https://hal.science/hal-03694752

Submitted on 19 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orbit slot allocation in earth observation constellations
Sara Maqrot, Stéphanie Roussel, Gauthier Picard, Cédric Pralet

To cite this version:
Sara Maqrot, Stéphanie Roussel, Gauthier Picard, Cédric Pralet. Orbit slot allocation in earth obser-
vation constellations. Conference on Prestigious Applications of Intelligent Systems (PAIS), Jul 2022,
Vienna, Austria. pp.3–16, �10.3233/FAIA220061�. �hal-03694752�

https://hal.science/hal-03694752
https://hal.archives-ouvertes.fr

Orbit Slot Allocation
in Earth Observation Constellations

Sara MAQROT, Stéphanie ROUSSEL, Gauthier PICARD and Cédric PRALET
ONERA/DTIS, Université de Toulouse

Abstract. In the context of Earth observation constellations, we consider the prob-
lem of allocating orbit slots to clients requesting some ownership of orbit por-
tions overflying desired regions on Earth. This problem arises prior to operational
scheduling of observation tasks, in constellations where users can directly commu-
nicate with the satellites using their own ground stations. Observation scheduling
in the exclusive slots is then delegated to the clients themselves. To perform the
allocation of exclusive slots, we propose a two-level optimization approach, where
the optimization process (led by either utilitarian or fair criterion) explores the so-
lution space using a feasibility checker based on a constraint solver. We experimen-
tally evaluate and analyze their performance on randomly generated order books
and real constellation configurations.

Keywords. Constraint programming, Earth observation, orbit slot allocation,
utilitarianism, leximin fairness

1. Introduction

Every day, Earth observation satellites perform a huge number of images of the Earth
surface and deliver the associated image products to the end-users that posted observa-
tion requests for various purposes (observation of critical areas due to natural disasters or
crisis situations, infrastructure observation, environment monitoring, etc.). In such sys-
tems, the users post requests to the main mission center, this mission center computes
observation plans, the latter are sent to the satellite when it overflies a ground control
stations, and then the satellite performs its images and communicates the collected data
when it overflies a ground reception station. In this context, constellations of Earth obser-
vation satellites have also been developed, one ambition being to deliver images as soon
as possible after imaging requests are formulated. Based on these new observation ca-
pabilities, another ambition is to allow the end-users to express more complex requests,
such as periodic requests that consist in observing an area of interest every H hours.
However, despite the increase in the number of satellites, the system can still be over-
constrained, meaning that it is not possible to complete all user requests over a short time
period. As a result, the main mission center needs to select the subset of requests that
will be performed for the next period, for instance the next day, based on some request
prioritization depending on various features (nature of the observation goal, long-term
relationship with some users, financial reward for the request, etc.).

With such a request selection process, users are never guaranteed to have their re-
quests quickly fulfilled. Therefore, another paradigm is currently being developed in the

PAIS 2022
A. Passerini and T. Schiex (Eds.)
© 2022 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA220061

3

r1 (periodic-4h)

r2 (periodic-4h)

r3 (periodic-4h)

r4 (global-30min)

9am 1pm 5pm

sat1

sat2

Figure 1. An orbit slot allocation example involving two satellites and four requests, with all slot opportunities
for each request over each satellite, together with the slots that could be selected by the system.

space domain. In this new paradigm, the users can buy in advance so-called exclusive
time windows over some satellites, and then exploit these reserved windows to commu-
nicate with the satellites, using their own ground stations, or to perform observations.
For instance, a user having a ground station X might be interested in first booking time
window [10:32:05-10:41:23] over satellite s8, when this satellite overflies station X with
a sufficient elevation angle, and then exploit this window at execution time to (1) send
an activity plan to s8 over window [10:32:05-10:32:40], (2) perform two observations of
areas located around X over time windows w1=[10:35:09-10:35:52] and w2=[10:37:21-
10:37:40], (3) get the data back at station X over time window [10:39:00-10:41:23]. In
addition to strong guarantees over the access to satellites of the constellation, the exclu-
sivity booking paradigm also allows the users to keep some privacy over the observations
performed, since for instance in the previous example no third-party can inspect the pre-
cise images collected over time windows w1 and w2. Moreover, several end-users may
formulate exclusivity requests and there is a need to allocate exclusivity windows, given
that the set of exclusivity windows associated with a single satellite must be disjoint. Fig-
ure 1 provides an example involving four exclusivity requests and two satellites. It gives,
for each satellite, the candidate orbit slots associated with each of the four exclusivity
requests. Requests r1, r2, r3 are periodic requests of period 4h, where the goal for each
request is to get one orbit slot around 9am, one orbit slot around 1pm, and one orbit slot
around 5pm. Request r4 is a global reservation request where the goal for the end-user
is to have 30 minutes of satellite useful time over the whole day. A possible allocation is
also given in the figure. In this allocation, we can see that periodic requests r1 and r3 get
three satellite slots over the day, periodic request r2 is not fully satisfied and only gets 2
satellite slots over the day, while request r4 gets all its slots over satellite number 1.

For the exclusive window allocation process, a first baseline approach consists in
never simultaneously considering users whose window requirements overlap, such as
users having ground stations that are too near to each other. This is however not fully
satisfactory since it prevents the satellite constellation manager from dealing with sce-
narios such as the one given in Figure 1 where ground station visibility cones associated

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations4

with different requests overlap. Another option is to use a FIFO approach where win-
dows are allocated to users in the same order as exclusivity requirements are formulated.
However, some requests can be simultaneously available since the main mission center
might decide to allocate exclusive orbit slots not continuously but on an everyday basis.
It can also be relevant to partially satisfy some exclusivity requirements and to share the
satellites of the constellations in a fair way. In case of an over constrained problem, this
also ensures that end-users all have access to satellites. Additionally, there is a need for
the main mission center to keep satellite time windows for itself, to still be able to satisfy
the requests formulated by all the other end-users.

All in all, the system targeted involves several constraints and many objective func-
tions, and using a manual orbit slot allocation approach is not so easy in this case, which
is why we develop an automatic orbit slot allocation process. Given the nature of the
problem, we exploit a Constraint Programming (CP) engine, namely CpOptimizer, to
explore various slot allocation alternatives. More specifically, we explore two options,
including (1) a full CP approach where a global allocation model is defined to get a
fair sharing of the satellites of the constellation among the users, and (2) a decomposi-
tion approach where the fair sharing is handled outside CpOptimizer to try and get good
solutions more quickly.

With regards to existing works, the orbit slot allocation problem can be related to the
shared ground station allocation problem. Basically, in this other problem, we consider a
set of ground stations and a set of satellites for which communication windows must be
reserved over the ground stations, and the goal is to allocate communication windows to
the different satellites while satisfying numerous constraints (minimum communication
duration available over a given period, minimum and maximum time between two suc-
cessive communication windows, minimum duration for each communication window
allocated, etc.). This problem was considered for several systems, including: (i) the Air
Force Satellite Control Network (AFSCN), which is composed of 16 ground station an-
tennas that receive around 500 requests for communication windows [1], and where the
goal is to maximize the number of communication requests that are satisfied; the associ-
ated allocation engine is based on MIP, heuristic search, or genetic algorithms [2,3,4,1];
(ii) the Deep Space Network (DSN), which is used for deep space missions and missions
beyond geostationary orbits, that is composed of 13 ground station antennas and used
by 35 users [5]; the resolution approaches are based on MIP [6], local search [7,8], ge-
netic algorithms [9], or interactive resolution [10,5]; (iii) the ESA Tracking network (ES-
TRACK) which is composed of more than 10 ground stations used by 10 missions of the
European Space Agency in the version described in [11,12]; the first resolution schemes
included a constructive approach that tries to satisfy one more communication request
at each step and that uses temporal constraint reasoning techniques to check some basic
constraints [11]; optimization was also considered based on dynamic programming and
local search [12]; (iv) the academic ground stations network [13] for which communica-
tion windows must be allocated to a set of small satellites (CubeSats), and for which the
fair sharing of communications among the different users matters a lot [14].

In these existing works, the goal is to share ground station time instead of sharing the
satellite time, and the partial satisfaction of a single communication request is often not
considered. The rest of the paper is organized as follows. Section 2 formally introduces
the problem tackled. Section 3 provides a CP model of this problem. Section 4 details
the decomposition approach where a CP engine is called by a global orbit slot allocation

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations 5

process that takes care of all fair sharing issues. Section 5 presents experimental results
for orbit slot allocation problems given a constellation containing 8 satellites. Section 6
provides perspectives for this work.

2. Core Concepts and Problem Definition

This section formally introduces the Orbit Slot Allocation Problem (OSAP) for a set of
satellites referred to as S . As shown below, we consider two kinds of allocation re-
quests, namely global allocation requests and time-tagged allocation requests. A global
allocation request corresponds to a demand for a minimum total duration of orbit slots
over a given period, while a time-tagged allocation request expresses demands for orbit
slots around a few number of fixed time references over the day. Also, given the number
of requests in real world instances, a feasible solution that fulfills all requests generally
does not exist. Moreover, the reward associated with a request that is not completely ful-
filled is generally not null. Therefore, we consider partial fulfillment of requests that we
call mode. Intuitively, a mode consists in considering a weaker observation pattern.

Definition 1 (Satellite reservation window). A satellite reservation window w is defined
by a satellite satw and a time window [startw,endw] during which a reservation can be
made on satellite satw. A reservation window w also has an individual score ωw that can
depend on various features such that the angular position of the satellite with regards to
points of interest (which has an impact on image quality) or cloud cover forecast.

Definition 2 (Allocated orbit slot). An allocated orbit slot o within satellite reservation
window w correspond to a time window [starto,endo] included in [startw,endw].

Definition 3 (Global allocation request). A (multi-mode) global allocation request r is
defined by:

• a set of satellite reservation windows Vr during which satellites might be booked;
• a minimum duration minSlotDurr required for each reserved orbit slot;
• a list of allocation modes Mr = [Mr,1, . . . ,Mr,K], where each mode defines an

alternative to fulfill the request and is defined by a quantity globalDurm, for each
m ∈ Mr, specifying the global duration required for the orbit slots reserved over
windows belonging to Vr.

Definition 4 (Allocation for a global request). An allocation Ar for a global request r
is defined by a mode m(Ar) ∈ Mr chosen for r and by one orbit slot Ar,w booked within
each reservation window w ∈ Vr (with Ar,w = /0 if no orbit slot is reserved within w).

An allocation Ar is valid if and only if (1) the sum of the duration of the orbit slots
defined by Ar is greater than or equal to globalDurm(Ar), and (2) the duration of each
non-empty orbit slot Ar,w is not less than minSlotDurr.

Assumption 1. For a global allocation request r, we assume that Mr,i+1 is always
preferred to mode Mr,i from the point of view of the user, or in other words that
globalDurMr,i

< globalDurMr,i+1
.

Definition 5 (Time-tagged allocation request). A time-tagged allocation request r is de-
fined by:

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations6

• a set of satellite reservation windows Vr during which satellites might be booked;
• a minimum duration minSlotDurr required for each reserved orbit slot;
• a set of time references Tr, with for each time reference t ∈ Tr a subset V r

t ⊆ Vr
that defines the reservation windows associated with t, with the assumption that
no reservation window is shared by two distinct time references;

• a list of allocation modes Mr = [Mr,1, . . . ,Mr,K], where each allocation mode
m ∈ Mr is defined by a subset Tm ⊆ Tr of time references around which an orbit
slot must actually be reserved.

Definition 6 (Allocation for a time-tagged request). An allocation Ar for a time-tagged
allocation request r is defined by a mode m(Ar) ∈ Mr chosen for r and by one orbit slot
Ar,t associated which each time reference t ∈ Tm(Ar).

An allocation Ar satisfies request r if and only if, for each time reference t ∈Tm(Ar),
(1) orbit slot Ar,t is contained within one of the candidate reservation windows in Vr,
and (2) the duration of slot Ar,t is not less than minSlotDurr.

Assumption 2. For a time-tagged allocation request r, we assume that Mr,i+1 is always
preferred to mode Mr,i from the point of view of the user. More precisely, we assume that
TMr,i ⊂ TMr,i+1 always holds.

Definition 7 (Orbit Slot Allocation Problem). An Orbit Slot Allocation Problem (OSAP)
is defined by: a set of satellites S , and a set of requests R = RG ∪RT , with RG a set of
global allocation requests, and RT a set of tagged-time allocation requests.

Definition 8 (Solution for an OSAP). A solution A for an OSAP is defined by one
allocation Ar for each r ∈ R. A solution is said to be feasible if and only if:

• for every request r, allocation Ar satisfies request r;
• for each satellite s ∈ S , there is no overlapping between the orbit slots booked

over s for all allocations in {Ar |r ∈ R}.

To be able to get a fair sharing of the satellites among the requests, we introduce a
unified concept of reward associated with each mode m that represents the total satellite
duration booked for m.

Definition 9 (Mode reward). For a global allocation request r and a possible mode
m ∈ Mr, the reward Ωm associated with m corresponds to quantity globalDurm.

For a time-tagged allocation request r and a possible mode m ∈ Mr, the reward Ωm
associated with mode m corresponds to quantity |Tm| ·minSlotDurr, that is to the total
satellite time required by m over all its relevant time references.

This concept of reward based on a common time scale makes it easier to compare the
different modes of the different requests and get a fair sharing in situations where some
requests have numerous modes while others only have a few. Additionally, mode rewards
can be refined in a second step based on the scores ωw associated with the possible
reservation windows, that do not need to have a common scale for all the users.

Definition 10 (Optimal solution for an OSAP: mode utility). Let us consider an OSAP
containing a list of requests [r1, . . . ,rn]. A valid solution A is said to be utilitarian-

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations 7

sat1

sat2

v1

v3v2

v4

v5

Time ref 1 Time ref 2
time10 20 30 40 50 60 70 80 90

(a) Utilitarian-optimal allocation

sat1

sat2

v1

v3v2

v4

v5

Time ref 1 Time ref 2
time10 20 30 40 50 60 70 80 90

(b) Fair-optimal allocation

Figure 2. Solutions associated with example 1

optimal if it maximizes the global utility u(A) = ∑r∈R Ωm(Ar) among all valid solutions.
A valid solution A is said to be fairness-optimal if utility vector

�u(A) = [Ωm(Ar1)
, . . . ,Ωm(Arn)

] (1)

is leximin-optimal, meaning that the priority is always given to the requests whose
satisfaction level is the lowest (more formally, given two vectors a = [a1, . . . ,an] and
b = [b1, . . . ,bn], a is leximin-dominated by b if and only if when sorting a and b by in-
creasing values, the sorted versions of a is lexicographically smaller than the sorted
version of b).

Definition 11 (Optimal solution for an OSAP: window utility). Let A be a valid allo-
cation for an OSAP. The window utility of A , denoted uslot(A), is equal to the sum of
rewards of visibility windows v selected in A . Formally, uslot(A) = ∑r∈R ∑v∈Ar ωv.

Example 1. Let us consider two satellites sat1 and sat2, a time-tagged allocation request
A and a global allocation request B. Minimum slot duration for A and B are respectively
equal to 10 and 15 time units. The set of satellite reservation windows for A is VA =
{v1,v2,v3} with v1 = [10,25], v2 = [25,40], v3 = [50,65], satv1 = sat1 and satv2 = satv3 =
sat2. Two time references t1 and t2 are associated with A, with V t1

r1 = {v1,v2} and V t2
r1 =

{v3}. We consider modes a1, a2 and a3 for A. Their associated time references are:
Ta1 = /0, Ta2 = {t1} and Ta3 = {t1, t2}. Their respective rewards are 0, 10 and 20.1

The set of satellite reservation windows for B is VB = {v4,v5} with v4 = [15,30],
v5 = [50,80], satv4 = sat1 and satv5 = sat2. We consider modes b1, b2, b3 for B. The global
duration associated with b1, b2 and b3 are respectively equal to 0, 15 and 40 time units.

An utilitarian-optimal allocation Autil is illustrated on Figure 2a. It selects modes
a2 for A and b3 for B, which gives a total mode utility equal to 50. The utility vector
associated with this allocation is�u(Autil) = [10,40]. Such a vector is not leximin-optimal.
In fact, a fairness-optimal allocation Afair, illustrated on Figure 2b, consists in selecting
modes a3 for A and b2 for B (it is not possible to reach duration of 40 for request B
with v5 and v4). The associated utility vector is �u(Afair) = [20,15]. This vector leximin-
dominates �u(Autil). The global utility of this allocation is u(Afair) = 35, which is lower
than u(Autil).

Theorem 1 (NP-hardness). OSAP is NP-hard.

1Note that, depending on the satellites orbits, time references of time-tagged requests might not be included
in any reservation window.

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations8

Proof sketch. The decision problem associated to OSAP, i.e. deciding whether there ex-
ists a solution with a mode utility greater than U is NP-complete. In fact, checking the va-
lidity of a solution is polynomial. For NP-hardness, the NP-hard Resource-Constrained
Project Scheduling Problem (RCPSP) with disjunctive resources, activities that consume
at most one resource and no precedence ([15]) can be reduced to an OSAP. An RCPSP
instance is defined by a set of activities A , a set of resources R and a makespan Cmax
to reach. Each resource r in R is modelled by a satellite satr, each activity a in A that
consumes r is modelled by a global request ga with a minSlotDurga equal to a’s duration.
ga has a unique mode with a reward equal to 1 and with a unique reservation window v
on satr such that v = [0,Cmax]. It is possible to schedule all activities within Cmax if and
only if the OSAP has a mode utility greater than or equal to the number of activities.

3. Constraint Model for Allocation Optimization

In this section, we present CP encodings for computing utilitarian-optimal and fair-
optimal allocations.

Utilitarian CP Encoding. We first describe the decision variables used for the utilitar-
ian CP encoding. (i) For each request r in R and for each reservation window v ∈ Vr, itvv
is an interval variable in [startv,endv]. We recall that an interval variable is a CP Opti-
mizer structure that encompasses several features: a start date, an end date and a boolean
variable that represents the presence of the interval in the generated allocation. In our
case, itvv is optional and if present, it indicates an orbit slot is booked in v, along with its
start and end dates. We also assign minSlotDurr as a minimum size for itvv. (ii) For each
request r in R and for each mode m in Mr, xm is a boolean variable that is true if mode
m is chosen for request r.

We now formally define the constraints associated with an OSAP.

∀r ∈ R, ∑
m∈Mr

xm = 1 (2)

∀s ∈ S, noOverlap({itvv|v ∈
⋃

r∈R

Vr ∧ satv = s}) (3)

∀r ∈ RT ,∀m ∈ Mr,∀t ∈ Tm, ∑
v∈V t

r

presenceOf (itvv)≥ xm, (4)

∀r ∈ RT ,∀t ∈ Tr, ∑
v∈Vt

presenceOf (itvv)≤ 1 (5)

∀r ∈ RG,∀m ∈ Mr, ∑
v∈Vr

lengthOf (itvv)≥ xm ·globalDurr (6)

Through Constraint (2), exactly one mode is selected for each request. Constraint
(3) expresses that orbit slots of a given satellite cannot overlap. Constraints (4) and (5)
address time-tagged requests. The first ensures that at least one orbit slot is booked for
each time reference of each mode that is selected. The second guarantees that at most
one orbit slot is booked for each time reference. Constraint (6) addresses global requests.
It expresses that the global duration of booked orbit slots reaches the global duration
associated with the selected mode.

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations 9

The utilitarian-optimality of an OSAP is expressed through Eq. (7) and consists in
maximizing the sum of selected mode rewards.

max ∑
r∈R

∑
m∈Mr

Ωm · xm (7)

s.t. (2),(3),(4),(5),(6)

Leximin CP Encoding. In order to handle leximin optimality, we follow [16] and
solve several CP optimization problems. Intuitively, the k-th CP problem allows to com-
pute the k-th component of the sorted leximin vector �u = [u1, . . . ,un]. Each component
ur ∈ [0,umax

r] represents the utility for request r ∈ R. umax
r denotes here the best utility

value for request r considered alone, i.e. the best mode that can be chosen. In leximin
optimization, the objective is to lexicographically maximize vector Λ = [Λ1, . . . ,Λn] ob-
tained after ordering [u1, . . . ,un] following an increasing order.

Suppose we have already optimized over the first K −1 components [Λ1, . . . ,ΛK−1]
of Λ, for K ∈ [1..n]. Then, one can use the program presented thereafter to optimize the
Kth component ΛK of the leximin profile of �u. In this model, λ is a real variable repre-
senting the utility obtained at level K in Λ, with λ ∈ [ΛK−1,maxr∈R umax

r] (by convention
Λ0 = 0). yrk is a binary variable equal to 1 if request r ∈ R plays the role of the request
associated with level k ∈ [1..K−1] in [Λ1, . . . ,ΛK−1], 0 otherwise. ur is a real variable in
[0,umax

r] representing the utility of request r. The optimization of ΛK can be performed
using the program given below:

max λ (8)

s.t. (2),(3),(4),(5),(6)

∀r ∈ R, ur = ∑
m∈Mr

Ωm · xm (9)

∀k ∈ [1..K −1], ∑
r∈R

yrk = 1 (10)

∀r ∈ R, ∑
k∈[1..K−1]

yrk ≤ 1 (11)

∀r ∈ R, λ ≤ ur +M ∑
k∈[1..K−1]

yrk (12)

∀r ∈ R, ur ≥ ∑
k∈[1..K−1]

Λk · yrk (13)

Constraint (9) expresses the utility of each request. Utility values computed at pre-
vious iterations are all allocated (10) and to exactly one request (11). In Constraint (12),
M = maxr∈R umax

r is used to ignore requests associated with levels strictly lower than K
when optimizing λ (big-M formulation). Constraint (13) ensures that the utility obtained
for the request associated with level k is not less than Λk. To implement the leximin rule,
it then suffices to solve a sequence of such problems for K ∈ [2..|R|] to optimize the
value of each component of the utility profile.

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations10

Candidate Mode
Generation

Mode Optimization

Utilitarian CP

Leximin CP

Iterative Optim.

Mode Upgrade

Slot CheckingSlot Optimization

selected
modes

Figure 3. Optimization architecture

4. Optimization Framework and Algorithms

This section presents optimization algorithms we investigate to solve OSAP. As shown
in Figure 3, the optimization architecture is composed of several modules that are ex-
ecuted sequentially. The first module, namely Candidate Mode Generation, consists in
generating candidate modes to consider for each request. We present such a generation
in the experiments section. The second module, Mode Optimization aims at optimally
selecting modes wrt the utilitarian criteria or to the leximin criteria. Modes selected by
this module are then given as an input to the third module, namely Slot Optimization,
that aims at finding the best slot allocation wrt the window utility. As the mode utility
is (lexicographically) more important than the window utility, splitting the optimization
module into a mode dedicated one and a slot dedicated one does not remove optimal
solutions from the search space and is therefore not an approximation of the problem.

Candidate Mode Generation. The first step consists in the generation of mode candi-
dates. We assume that the modes are generated so that the allocation where all requests
r are assigned their worst modes Mr,1 is a feasible solution.

Mode optimization. We consider three approaches for the Mode Optimization module,
as illustrated on Figure 3. The Utilitarian CP and the Leximin CP approaches correspond
to the encodings presented previously. As expected and as highlighted by the experimen-
tal results, Utilitarian CP (resp. Leximin CP) performs quite well wrt the utilitarian (resp.
the leximin) criterion but has a lower quality wrt the leximin (resp. the utilitarian) cri-
terion. Moreover, these approaches can struggle finding good quality solutions for large
instances.

In order to handle the balance between the two criteria, we introduce a third ap-
proach, namely Iterative Optimization, that is composed of two layers. The first layer is
entitled Mode Upgrade and aims at producing allocations for the requests so that Con-
straint (2) is satisfied and the two Criteria (7) and (8) are optimized. The mode alloca-
tion produced by this layer is then checked by the Slot Checking layer. This layer checks
whether Constraints (2)– (6) are satisfied.

Algorithm 1 details the Mode Upgrade layer. For each request r, we maintain an
index idxr that represents the index of the mode currently assigned to r. The algorithm
starts by assigning the worst mode (i.e. mode index equal to 1) to each request (lines 2-3).
Then, the set of requests that are candidates for upgrade C is initialised with the set of
requests R (line 4). While there is at least one candidate, a request r is chosen in C using
a heuristic h given as an input (line 6). Such a heuristic is discussed in the following.
If the best mode is currently assigned to the request then it is removed from the set of

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations 11

candidates (lines 7-8). Otherwise, the mode request is upgraded (line 10). If there does
not exist a feasible solution with this upgrade (line 11), the mode request is downgraded
and the request is removed from the set of candidates (lines 12-13). The algorithm returns
the set of selected modes for each request (line 14).

Algorithm 1: The Mode Upgrade layer

1 Function modeUpgrade(S ,R,h)
2 for r ∈ R do

3 idxr ← 1 ;

4 C ← R ;
5 while C �= /0 do

6 r ← choose(C ,h,{Mr,idxr |r ∈ R}) ;
7 if idxr = |Mr| then

8 C ← C \{r} ;
9 else

10 idxr ← idxr +1 ;
11 if !check(S ,R,{Mr,idxr |r ∈ R}) then

12 idxr ← idxr −1 ;
13 C ← C \{r} ;

14 return {Mr,idxr |r ∈ R};

The Slot Checking layer is called through the check function (line 11). Such a func-
tion takes as an input the set of satellites, the set of requests and a current mode alloca-
tion. These inputs are encoded following the utilitarian CP encoding presented in Sec-
tion 3 except that variables of type xm have a fixed value that depends on the selected
modes. Formally, ∀r ∈ R,∀m ∈ Mr, we fix xm = 1 iff m is equal to Mr,idxr .

In this paper, we consider two different heuristics for choosing request r in the set
of candidates. The first heuristic, denoted hutil, selects the request whose next mode in-
creases the most the global utility of the allocation. Formally, choose(C ,hutil,{Mr,idxr |r ∈
R}) = argmaxr∈C Δutil(r) where Δutil(r) = ΩMr,idxr+1 −ΩMr,idxr

if idxr < |Mr|, 0 other-
wise. Such a heuristic tends to favour the utilitarian criterion. The second heuristic, de-
noted hfair, selects the request with the smallest utility. Formally, choose(C ,hfair,{Mr,idxr |r ∈
R}) = argminr∈C ΩMr,idxr

. Such a heuristic allows to favour the leximin optimality as it
upgrades the request having the lowest reward.

Slot optimization. The final step of the optimization architecture consists in optimizing
the slots for the modes that have been selected at the Mode Optimization step. To do
so, we consider that for each mode m, variable xm = 1 iff m is selected by the Mode
Optimization module. Then, we solve the following problem, where Criterion 14 consists
in maximizing the window utility as defined in Definition 11:

max ∑
r∈R

∑
v∈Vr

ωv ·presenceOf (itvv) (14)

s.t. (2),(3),(4),(5),(6)

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations12

5. Experimental Evaluation

We evaluate the approaches presented in the paper on realistic benchmarks. We first
present the experimental setup and then analyze results obtained on several instances.

We consider a Low-Earth Orbit constellation (500km altitude). The constellation is
composed of 8 orbital planes with a 60 degrees inclination. Each orbital plan contains
one satellite. This constellation setting is used for determining the orbit slots that can
be requested for a given point on Earth, using a spatial mechanics library. We consider
allocation requests over Europe national capitals. The generation protocol first consists
in (1) randomly selecting a subset of national capitals C (10 in the experiments pre-
sented in the paper), (2) specifying the respective numbers of time-tagged and global
allocation requests for each instance, and (3) randomly picking a national capital in C
as a ground station for each of these requests. Then, the request features are generated
as follows. For each global allocation request r, the most preferred mode global duration
is randomly chosen in interval [2 hours, 4 hours]. Then, the less preferred modes are
generated by iteratively retrieving 30 minutes to this global duration, until reaching 0 for
the less preferred mode Mr,1. The minimum slot duration is randomly chosen in inter-
val [2 minutes, 4 minutes]. For each time-tagged allocation request r, we consider two
time references patterns. The first one is composed of time references 8am, 12pm, 4pm,
8pm. The second one contains references 9am, 1pm, 5pm. For each time reference t, we
consider only reservation windows contained in interval [t − 1hour, t + 1hour]. The less
preferred mode Mr,1 has an empty set of time references. Preferred modes are generated
by iteratively adding one time reference (randomly picked) until reaching the complete
set of time references. We generated 5 different order book instances per configuration
(defined by |RG| and |RT |), and present the averaged values in the following tables. For
slot optimization, the reward is in [0,1] and is linear wrt to the distance to the time ref-
erence for time-tagged requests or wrt the number of slots used for fulfilling modes for
global requests. The number of requests we consider is larger than current realistic data
but allows to assess the capacity for the approach to scale up.

Solvers are coded in Java 1.8 and executed on 20-core Intel(R) Xeon(R) CPU E5-
2660 v3 @ 2.60GHz, 62GB RAM, Ubuntu 18.04.5 LTS. The version of CP Optimizer
included in IBM ILOG CPLEX Studio 20.1 is used by the solvers through the Java API.
CP Optimizer is called by all the approaches we consider and can use the 20 cores. We
set different timeouts, as defined in the following table:

Method Mode opt. Slot opt. Slot check

upgrade−util n/a 300s 120s
upgrade− fair n/a 300s 300s
cp−util / cp− fair 300s×|R| 300s 300s

Table 1 and Table 2 respectively present the results in terms of utility and computa-
tion time for each algorithm and order book configuration. We display results for order
books containing only time-tagged allocation requests (lines 1-5), only global allocation
requests (lines 6-10), and as many time-tagged requests and global ones (lines 11-15).

In Table 1, we show the overall mode utility u and the window utility uslot. For con-
figurations with only time-tagged allocation requests, cp−util and upgrade−util pro-
vide the best mode utilitarian allocation. Moreover, utility-optimal and fairness-optimal
allocations are respectively returned by cp−util and cp− fair for the small instances. For

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations 13

configurations cp− fair cp−util upgrade− fair upgrade−util

|RG| |RT | |M | |V | u uslot u uslot u uslot u uslot

0 5 22.0 107.0 1980.20† 4.43 1980.20∗ 4.43 1980.20 4.43 1980.20 4.43

0 10 44.6 218.2 3925.00† 8.85 3953.40∗ 8.66 3925.00 8.85 3953.40 8.66
0 15 67.2 326.2 6260.40† 13.15 6288.80∗ 12.96 6260.40 13.16 6288.80 12.96
0 20 90.0 439.6 8294.00† 17.27 8322.40 17.06 8294.00 17.25 8322.40 17.03
0 25 112.0 549.8 10313.20 21.09 10341.60 20.94 10313.20 21.16 10276.60 20.78
5 0 31.4 198.6 39874.00 4.64 39911.20 4.50 42394.00 4.31 42034.00 4.31

10 0 63.8 405.0 44646.60 9.20 42953.60 8.20 44286.60 9.32 44286.60 9.27
15 0 96.4 606.2 42109.20 13.29 42730.20 10.76 44291.60 13.51 44420.00 13.90

20 0 129.6 814.6 27927.20 9.80 40992.60 9.32 43131.20 14.14 43409.00 13.86
25 0 161.4 1018.2 28864.80 9.80 40489.20 9.30 39645.40 13.87 43117.40 13.23
5 5 53.8 311.0 39515.60 8.97 40998.60 8.43 42395.60 8.30 44388.00 7.23

10 10 109.6 627.0 43594.40 15.93 42664.40 15.52 44674.40 15.98 47071.60 13.98
15 15 165.2 944.0 34171.40 23.29 39015.00 20.00 46368.80 21.74 47244.60 19.10
20 20 219.4 1258.2 31823.00 26.31 41759.80 24.18 45223.60 25.16 47728.40 19.45
25 25 274.6 1572.8 29788.40 28.87 41641.00 26.05 46824.60 27.16 47474.80 21.24

Table 1. Utility results (∗ and † respectively indicate utility-optimality and fairness-optimality results)

configurations cp− fair cp−util upgrade− fair upgrade−util

|RG| |RT | |M | |V | mode slot mode slot mode slot mode slot
0 5 22.0 107.0 6.34 2.09 12.96 1.63 4.24 1.96 4.89 2.32
0 10 44.6 218.2 77.79 3.93 45.96 3.94 9.73 4.00 10.45 3.79
0 15 67.2 326.2 164.48 242.04 439.87 242.63 9.41 243.74 9.63 241.06

0 20 90.0 439.6 195.42 300.38 6000.21 300.09 9.50 300.13 10.19 300.36
0 25 112.0 549.8 759.76 300.16 7500.19 300.09 237.50 300.25 294.00 300.25
5 0 31.4 198.6 1500.57 300.04 1500.14 300.06 390.88 300.03 339.86 300.04

10 0 63.8 405.0 3002.12 300.08 3700.13 300.13 1249.88 300.06 1279.68 300.06
15 0 96.4 606.2 4502.34 300.06 4500.43 300.12 1849.59 300.11 1834.56 300.05
20 0 129.6 814.6 6003.48 300.07 6000.23 300.07 2496.88 300.08 2526.24 300.08
25 0 161.4 1018.2 7504.20 300.07 7500.22 300.07 3137.79 300.10 3074.31 300.09
5 5 53.8 311.0 1504.79 300.05 3000.13 300.04 420.16 300.09 433.25 300.06

10 10 109.6 627.0 3029.96 300.08 6000.21 300.09 1206.61 300.08 2026.38 300.06
15 15 165.2 944.0 8926.65 300.09 9000.24 300.14 2410.81 300.10 3530.65 300.08
20 20 219.4 1258.2 12011.00 300.15 12000.43 300.12 3438.31 300.16 4494.19 300.10
25 25 274.6 1572.8 15014.64 300.19 15000.44 300.14 5187.83 300.17 6019.73 300.11

Table 2. Computation time results (values in seconds)

order books containing more than 5 time-tagged requests, utilitarian and fair approaches
clearly converge to different optima. Configurations with global allocation requests are
more rewarding but difficult to solve by cp− fair and cp−util (larger timeouts did not
allow to get optimal results), and upgrade−util performs better in terms of utility in
most of the settings. upgrade− fair also outputs quite good utilitarian allocations. Thus,
the two proposed upgrade schemes are relevant approaches wrt utilitarianism. However,
there is no clear winner for the windows utility optimization.

Looking at Table 2, upgrade-based heuristic methods clearly outperform optimal
constraint-programming-based ones (which both require all the time budget we set, even
with much larger timeouts not presented here). Even for smaller instances, all methods
achieve the slot optimization timeout we set, which explains why there is no clear win-
ner concerning the window utility criteria. On large instances containing both types of
requests, it is clear that upgrade− fair is the fastest.

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations14

0 3 6 9 12 15 18 21 24

request

2× 102

3× 102

4× 102

6× 102

re
w
ar

d

upgrade− util

upgrade− fair

cp− leximin

cp− util

0 6 12 18 24 30 36 42 48

request

102

103

104

re
w
ar

d

upgrade− util

upgrade− fair

cp− leximin

cp− util

Figure 4. Utility profiles for two sample instances. Left: an instance with 25 time-tagged allocation requests.
Right: an instance with 25 time-tagged allocation requests and 25 global allocation requests

To analyze the fairness of the resulting allocations, we provide in supplementary
materials the utility profiles obtained for all instances. Figure 4 presents the utility pro-
files obtained for two sample instances for each algorithm. Looking at the instance with
only time-tagged allocation requests (left), we can observe that all the methods behave
quite similarly. Indeed, such problems are not too constrained, given the constellation
configuration. It is always possible to serve all the requests, and the fair approaches only
serve one more request (#0). The situation on the right, with 25 global allocation re-
quests and 25 time-tagged allocation requests is far more informative about the behavior
of each method. Let’s note that the most rewarding requests (25 to 49) are the global
allocation ones. We can remark that some requests cannot be fulfilled: 10 requests are
not served by the fairest method. upgrade− fair serves more requests; even more than
cp− fair, since the latter rapidly reaches the time budget without being able to serve
some requests. upgrade− fair is even beating cp−util on some requests (35 to 42). On
its side, upgrade−util is also better than cp−util on most of the high reward requests.
All in all, both upgrade− fair and upgrade−util behave very well on the fairness side.
Such a behaviour can be observed for most of profile utilities in supplementary materials.
Therefore, upgrade− fair represents a very good trade-off on both utility and fairness
optimization criteria.

6. Conclusions

In this paper, we modelled a novel problem (OSAP) consisting in allocating orbit slots
from an Earth observation constellation to several users, with some utilitarian and fair-
ness objectives. We considered two types of requests: time-tagged requests (asking for
observations at some time plots at a given frequency) and systematic requests (asking for
orbit slots every time it is possible). We proposed a two-level optimization framework,
sequencing mode optimization and slot optimization. Four solution methods have been
evaluated on randomly generated order books requesting orbit slots on a realistic con-
stellation. Experimental evaluation shows that global allocation requests are the hardest
ones to fulfil, and that cp−util and cp− fair do not scale on larger instances with both
global and time-tagged allocation requests, while iterative upgrading methods result in
good quality solutions (wrt. utility for upgrade−util and fairness for upgrade− fair) and
are 3 times faster on larger instances.

This study paves the way for future research. We notably aim at investigating other
types of requests and mode selection. Indeed, we only looked at requests targeting single
point on Earth, while some clients may have interest in imaging large areas. Moreover,

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations 15

we only considered simple mode generation in our paper, while the number of modes
is exponential, and may require a dedicated effort for searching in the mode space, and
thus guiding the mode upgrade procedure. Finally, we will also explore a complementary
approach consisting in degrading maximum utility mode selections until they become
feasible, instead of upgrading bad quality mode selections.

Acknowledgements

This work has been performed with the support of the French government in the context
of the Programme dInvertissements dAvenir, namely by the BPI PSPC LiChIE project
(Lion Chaine Image Elargie), coordinated by Airbus Defence and Space.

References

[1] Barbulescu L, Watson JP, Whitley LD, Howe AE. Scheduling space-ground communications for the Air
Force satellite control network. Journal of Scheduling. 2004;7:7-34.

[2] Gooley TD. Automating the Satellite Range Scheduling Process; 1993.
[3] Schalck SM. Automating Satellite Range Scheduling; 1993.
[4] Parish DA. A Genetic Algorithm Approach to Automating Satellite Range Scheduling; 1994.
[5] Johnston MD, Tran D. Automated Scheduling for NASA’s Deep Space Network. In: Proc. of the 7th

International Workshop on Planning and Scheduling for Space (IWPSS-11); 2011. p. 1-10.
[6] Bell CE. Scheduling deep-space network data transmissions: a Lagrangian relaxation approach. In:

Proc. of SPIE 1963, Applications of Artificial Intelligence. Orlando, FL, USA; 1993. p. 330-40.
[7] Chien S, Lam R, Vu Q. Resource scheduling for a network of communication antennas. In: Proc. of the

IEEE Aerospace Conference. Aspen, CO, USA; 1997. p. 361-73.
[8] Chien S, Rabideau G, Knight R, Sherwood R, Engelhardt B, Mutz D, et al. ASPEN: Automated Planning

and Scheduling for Space Mission Operations. In: Proc. of the 6th International Symposium on Space
Operations at the Start of the 3rd Millennium (SpaceOps-00). Toulouse, France; 2000. .

[9] Guillaume A, Seugnwon L, Wang YF, Zheng H, Hovden R, Chau S, et al. Deep Space Network Schedul-
ing Using Evolutionary Computational Methods. In: Proc. of IEEE Aerospace Conference; 2007. p.
1-6.

[10] Johnston MD, Clement BJ. Automating Deep Space Network Scheduling and Conflict Resolution.
In: Proc. of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-06); 2006. p. 14831489.

[11] Damiani S, Dreihahn H, Noll J, Niézette M, Calzolari GP. Automated Allocation of ESA Ground Station
Network Services. In: Proc. of the 5th International Workshop on Planning and Scheduling for Space
(IWPSS-06); 2006. p. 1-10.

[12] Hoffmann A, Dreihahn H, Niézette M, Theis G. Improving Performance and Interoperability of the
ESTRACK Planning System. In: Proc. of the 6th International Workshop on Planning and Scheduling
for Space (IWPSS-09); 2009. p. 1-9.

[13] Schmidt M, Schilling K. A Scheduling System with Redundant Scheduling Capabilities. In: Proc. of the
6th International Workshop on Planning and Scheduling for Space (IWPSS-09). Pasadena, CA, USA;
2009. p. 1-6.

[14] Schmidt M, Schilling K. Enhanced Redundant Scheduling Capability for Low Cost Ground Station
Networks. In: Proc. of the 7th International Workshop on Planning and Scheduling for Space (IWPSS-
11). Darmstadt, Germany; 2011. p. 1-6.

[15] Ganian R, Hamm T, Mescoff G. The Complexity Landscape of Resource-Constrained Scheduling.
In: Bessiere C, editor. Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20. International Joint Conferences on Artificial Intelligence Organization; 2020. p.
1741-7. Available from: https://doi.org/10.24963/ijcai.2020/241.

[16] Kurokawa D, Procaccia AD, Shah N. Leximin Allocations in the Real World. ACM Transactions on
Economics and Computation. 2018;6(34). Available from: https://doi.org/10.1145/3274641.

S. Maqrot et al. / Orbit Slot Allocation in Earth Observation Constellations16

