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Bundle Allocation with Conflicting Preferences
Represented as Weighted Directed Acyclic Graphs
Application to Orbit Slot Ownership

Sara Magrot, Stéphanie Roussel, Gauthier Picard, and Cédric Pralet

ONERA/DTIS, Université de Toulouse
firstname.lastname@onera. fr

Abstract. We introduce resource allocation techniques for a problem where (i) the
agents express requests for obtaining item bundles as compact edge-weighted directed
acyclic graphs (each path in such graphs is a bundle whose valuation is the sum of
the weights of the traversed edges), and (ii) the agents do not bid on the exact same
items but may bid on conflicting items, that cannot be both assigned. This setting
is motivated by real applications such as Earth observation slot allocation, virtual
network functions, or multi-agent path finding. We study several allocation techniques
and analyze their performances on an orbit slot ownership allocation problem.

1 Introduction

Imagine the following scenario. The operator of an Earth Observation Satellite Constellation
X has to attribute ownership of some orbit portions to clients. Each client has some points
of interest (POI) she wishes to acquire at some frequency, e.g. capture L’Aquila city every
2 hours for 6 months. Since several satellites may capture the very same point on Earth
around the defined time plots, several bundles are specified by each client, which valuate
differently depending on the quality of the sequence of orbit slot, e.g. proximity to the
time plots or acquisition angles. Moreover, several clients may be interested in very close
POIs, resulting in overlapping orbit slots that cannot be simultaneously allocated to the
corresponding clients. This situation can be captured by the model we propose in this paper.
We consider a problem of allocation of bundles of indivisible items constrained by item
chaining (to allocate to each agent a chain of successive items) and conflicting items. The first
constraint is captured by an edge-weighted directed acyclic graph (DAG), with a source node
and a sink node, representing all the valid bundles (i.e. paths) of items for an agent, where the
quality of a bundle is represented by additive edge weights. The second constraint has to be
handled so that each agent obtains one conflict-free path in her graph. Such a setting occurs
in application domains such as network function virtualization (NFV) where users request to
allocate directed graphs of services into a shared networked infrastructure [17], or in Earth
observation using a constellation of satellites, where users demand the ownership of some
repetitive orbit slots (without overlapping with other users’ slots) to implement periodic obser-
vation requests [9, 15], as illustrated before. In such settings, beside the additive edge weights,
other criteria can be considered to guide the allocation process, especially when constellation
users are stakeholders expecting allocations to be fair or proportional to their investment.
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Fig. 1: An orbit slot allocation problem involving 2 agents (a in red, b in blue) requesting slots around
2 time plots (t1 and t2), tolerance windows around each plot (in gray), and with 2 opportunities for
each plot (a1, ..., a4, b1, ..., ba).

Related Work. Literature contains some work related to allocation of goods structured as
graphs. In fair division of graph, the objective is to divide a graph of items between several
agents, with additive utilities attached to nodes [1, 6]. These works provide interesting
properties to find envy-free or Pareto-optimal allocations, in an efficient manner in some
specific graph structures, e.g. paths, trees, stars. However, in our problem, (i) agents do not
compete for the very same set of items, (ii) the graph is directed to compose paths from a
start time to an end time, (iii) even by mapping our problem to a graph division one and by
regrouping conflicting items into composite items, it is highly improbable that the resulting
graph is acyclic. Here, graphs are used to express preferences, and not the goods to allocate.
In short, our work does not fall into the existing graph fair division frameworks, or cannot
benefit from theoretical results on path-shaped or star-shaped graphs.

Another related work is path auctions [7, 4, 18], where agents bid for paths in a graph
where each edge is owned by an agent. The goal is to assign paths to agents by the means of
auctions, and optionally to keep some privacy for the edge owners. In the case of a utilitarian
objective function for the winner determination problem, without price privacy, this falls into
the Vickrey-Clarke-Groves framework, and thus guarantees some efficient and strategyproof
mechanisms. But, here again, agents bid on the very same set of nodes and edges.

In the transportation domain, investigations on very similar structures, that is flow
networks, provide techniques for fair maximum flow in multi-source and multi-sink net-
works [10]. While the techniques used are very similar to ours (linear programming), the
maximum flow objective is very different from path utility maximization. Besides, [5]
worked on multiple shortest path problems based on deconflicting techniques. While the
problem displays similar characteristics, once again the agents evolve on the very same
graphs, and the objective is focused on minimizing path length and minimizing conflicting
paths, without fairness desiderata.

In congestion games, agents are allocated paths so that delay incurred by crossing paths
are minimized. The more agents are allocated the same nodes, the more delay is attached to
their paths [12, 14]. In our work, we don’t consider delay but incompatibilities. Even if they
could be modeled as non linear {0,00} functions, in our problem some path allocations are
unfeasible, contrarily to congestion games. Besides, using congestion game solution methods
as in [14] may result in unfair Nash equilibria, because of numerous unfeasible paths.

More generally, another classical approach to fair allocation of indivisible goods is
round-robin, which is almost envy-free [2]. This is notably one favored technique to allocate
virtual network functions in network function virtualization infrastructures [16], or to
schedule tasks. We will use it as a competitor for our techniques.

Contributions. This paper introduces and expounds a model for such scenarios, under
the prism of optimality and fairness, which captures any application where agents express
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preferences as edge-weighted DAGs and where there exist conflicts between some nodes
of these DAGs. We show that this allocation problem is NP-hard. We expound and assess
several algorithms on data coming from simulated satellite constellations and requests, with
respect to utilitarian optimality, computation time, and fairness.

2 Problem Model

We study allocation problems where agents’ valuations of item bundles are represented as
edge-weighted DAGs and some conflicts exists between nodes of these graphs. An allocation
consists in choosing one full path in each graph, so that selected paths do not conflict with
each other.

2.1 Definitions and Notations

Definition 1. A problem of path allocation in multiple conflicting edge-weighted directed
acyclic graphs (PADAG) is a tuple (A,G,u1,C), where

- A={1,...,n} is a set of agents;

= G={g1,-...gm } is a set of edge-weighted DAGs, where each g € G is a triple (Vy,Eq,uq)
that represents some preferences over some items in Vy, with connections between items
in Eg CVyxV,, weighted using utility function ug:Vy x Vy, —R; we also assume that
Vy contains two specific nodes, the source s, and the sink t4, and that E,, contains an
edge from sg to t4 labeled by utility 0 (useful to deal with cases where no bundle of
items can be selected in g);

— w:G— A maps each graph g in G to its owner a in A;

- CC{(w")|(v") EVyx V9.9’ €G%ulg) # u(g')} is a set of conflicts between pairs
of items from two distinct graphs in G from two distinct agents.

For each graph g and each set of edges X C E, the utility of X for g is defined by
ug(X)=>_.c xug(e), which means that edge valuations are considered as additive in this
paper. As a result, each path from s, to ¢4 in a graph g is evaluated by summing the utilities
of the traversed edges, and each DAG represents in a compact manner a set of valuations
for bundles of items, as in combinatorial auctions. Also, we denote by G, = /fl (a) the set
of graphs owned by agent a, and the utility of a set of edges X for agent a is defined by

ua(X):deH,l(a)ug(XﬁEg).

Definition 2. An allocation is a function 7 that associates, with each graph g € G, one path
7(g) from sg to ty in g. Formally, w(g) can be represented as a set of nodes in V. Indeed, as
DAGs are manipulated, it is easy to reconstruct the edges successively traversed by the path
from this set. By extension, the allocation for agent a is given by T(a)=Uge,~1(a)T(9)-

By convention, we denote by u(m(g)) = w4 (7(g)) (resp. u(m(a)) =uq(7(a))), the
utility of graph g (resp. agent a) for allocation 7. Last, the global utility obtained with
allocation m is given by u(m)=>_ s u(m(g)) (or equivalently u(m)=3_ . 4u(r(a))).

Definition 3. An allocation  is valid if for each pair of distinct graphs g and g’ there is
no conflict between nodes in the resulting paths, i.e. (m(g) xm(g"))NC=0.
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Fig.2: Sample users’ bundle valuations (or preferences) represented as DAGs. Conflicts are
represented as gray hypernodes.

Example 1. Figure 2 illustrates a PADAG. While the best paths for agent a and b are
{Sas a1, a3,t,} and {sp, by, bs, ¢y} respectively, both valued at 1, they cannot both
have these paths due to node conflicts, e.g. between a; and b;. A valid allocation
could be 7ex = {a > {s4,0a2,a4,t,},0 > {sp,b1,b3,tp}} with global utility u(7mex) =
w(Tex(@)) +u(mex (b)) =0.354+1.0=1.35.

The problems we consider in this paper are (i) how to compute an optimal (utilitarian)
allocation 7 that maximizes u(7), and (ii) how to compute an optimal fair allocation T,
by the way of a leximin optimization, i.e. maximizing the ordered utility vector (A;,...,4;,)
containing one component per agent. Formally, Vi € A, there exists a unique j such that
U(’]T(Z)) :Aj and Vi Sj, Az S Aj.

2.2 Complexity Analysis

The two following propositions provide complexity results on the two problems studied,
relatively to utilitarian optimization and leximin optimization respectively.

Proposition 1 Determining whether there exists a valid allocation T such that utilitarian
evaluation u(m) is greater than or equal to a given value is NP-complete.

Proof. First, the problem is NP since u(7) is computable in polynomial time. Then, there
exists a polynomial reduction of 3-SAT (which is NP-complete) to our problem. Basically,
in a 3-SAT formula, each clause over propositional variables x,y,z can be represented as a
weighted DAG g where (1) the set of nodes is V, ={z,~z,y,~y,2,72,54,t4}, (2) the set of
paths from s, to ¢4 in g corresponds to the set of truth-values for x,y,~ that satisfy the clause
(decision diagram representation), (3) the weight of every edge is set to 0 except for edges
sq—n where n#t, that have weight 1/m, with m the number of clauses in the 3-SAT
formula. Last, for every propositional variable x, we can add one conflict (n,n’) for each
pair of nodes labeled by literals = and —x in two distinct graphs. Then, as one path is selected
in each graph and as there are m graphs, determining whether there exists a valid allocation
7 such that u(7) > 1 is equivalent to finding a solution that satisfies all the clauses, hence the
NP-completeness result given that all operations used in the transformation are polynomial.
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Proposition 2 It is NP-complete to decide whether there exists a valid allocation whose
leximin evaluation is greater than or equal to a given utility vector. The proposition holds
even if there is a unique graph per agent.

Proof. In the general case, it suffices to consider a problem involving a unique agent owning
all the graphs, and to use the result of the previous proposition. If there is a unique graph
per agent, it suffices to use the exact same 3-SAT encoding as before but to replace weights
1/m by weights 1. Then, it is possible to show that there exists a valid allocation whose
leximin evaluation is greater than or equal to (1,1,...,1) iff there exists a solution for the
3-SAT problem. Moreover, the leximin evaluation of an allocation 7 can be computed in
polynomial time, hence the NP-completeness result.

3 Path Allocation Schemes

We propose here several allocation schemes for PADAGs. Some of them are based on
integer linear programming (ILP) and mixed integer linear programming (MILP), so we
first introduce decision variables and constraints for these models.

For any DAG g = (V,,E,,ug), we define binary variables x. € {0,1}, for any e € E,
stating whether edge e is selected in the path defining the solution bundle. We also use
auxiliary binary variables /3, stating whether node v is selected in solution path 7(g), i.e.
By =1if ven(g), 0 otherwise. For any node v in Vj, we denote by In(v) (resp. Out(v))
its set of incoming (resp. outcoming) edges. In all ILP models introduced thereafter, we
impose Constraints (1)—(3) to define all the possible paths, Constraints (4)—(5) to account
for item selection conflicts, and Constraint (6) to ensure that sources and sinks are selected.

Yooxe= Y. e, VgeGNVveVy\{sgtys} 1
e€ln(v) e€O0ut(v)

> x.=1, Vgeg @)
e€Out(sy)

> x.=1, Vgeg 3)
e€lin(ty)

Yo ze=Ly, VgeGNveVy\{syty} C))
e€ln(v)

S B,<1, Veel 3)
veEc

Bs,=Pr, =1, Vgeg (6)

3.1 [Utilitarian Allocation (util)

The classical approach to allocation is the utilitarian one. It consists in finding the allocation
that maximizes the sum of utilities of all selected paths. This corresponds to solving the
integer linear program P;i((A,G,1,C)) given below:

max Y, Y. > ugle)-ze @)

a€AgeG,e€E,

st (1),(2),(3),(4),(5),(6)
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ze€{0,1}, VYacAVgeG, VeckE, (8)

The resulting allocation 7 is decoded from the (3, variables. Formally, for all g € G,
(g)={veV, | B,=1}.

Example 2. Tn Figure 2, the utilitarian allocation is m = {a — {s4,0a2,a3,t.},b+—
{Sb,bl ,b4,tb}}, with global utility u(ﬂut“) :u(ﬂut“ (a)) +U(7rutil (b)) =0.80+0.60=1.40.

3.2 Leximin Allocation (lex)

Beyond utilitarianism, one way to implement fair allocation and Pareto-optimality is to
consider the leximin rule that selects, among all possible allocations, an allocation leading
to the best utility profiles wrt the leximin order [11]. More precisely, let z=|z1,...,2,] be
the utility vector where each component z, € [0,7,] represents the utility for agent a € A.
Z, denotes here the best utility value for user a considered alone, i.e. for the mono-agent
problem where the best path can be chosen for each graph g € G,. In leximin optimization,
the objective is to lexicographically maximize vector A=[Ay,...,/A,,] obtained after ordering
[21,-..,2n] following an increasing order.

Such a leximin rule can be implemented through a sequence of ILP [8]. We adapt here
such a procedure to the specific case of PADAGs. Suppose we have already optimized over
the first K’ —1 components [A;,...,Ax_1] of A, for K €[1..n]. Then, one can use the MILP
presented thereafter to optimize the K™ component A of the leximin profile of z. In this
model, \ represents the utility obtained at level K in A, with A € [Ax_1,max,c 4 Z,] and
by convention Ao =0. y, is a binary variable equal to 1 if agent a € A plays the role of the
agent associated with level k € [1..K' —1] in [A1,...,Ax_1], O otherwise. The optimization
of Ak can be performed using program Pex((A,G,u,C),K,[A1,...,AKx —1]) given below:

max A\ ©
st (1),(2),(3),(4),(5),(6)
Za= Y, > ugle)-ze, YacA (10
g€Gae€E,
S yep=1, Vke[l.K—1] (11
a€A
> Yar<1l, YacA (12)
ke[l K—1]
A<ze+M > Yar, VaeA (13)
ke[l K—1]
ZaZ Z Ak'yakn VGEA (14)
ke[l K—1]

In Constraint 13, M =max,c 4 Z, is used to ignore agents associated with levels strictly
lower than K when optimizing A (big-M formulation). Constraint 14 ensures that the utility
obtained for the agent associated with level k € [1..K — 1] must not be less than A. To
implement the leximin rule, it then suffices to solve a sequence of P, problems for K € A
to optimize the value of each component of the utility profile.

Example 3. For the example in Figure 2, the leximin-optimal allocation is mex = {a —
{Sa,a1,a4,ta},b>{sp,b2,b3,tp } }, with utility vector (u(mex(a)),u(mex(b))) =(0.62,0.70)
and global utility u(me) =0.62+0.70=1.32.
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Algorithm 1: Leximin algorithm

Data: A PADAG problem (A,G,u,C)

Result: A leximin-optimal path allocation

for K=110 |A| do
(A*,s0l) «—solve Pex({(A,G,1,C),K,[A1,...,Ax—1])
A+ A

4 for ge G do w(g)<«{veVy|sol(B,)=1}
5 return

[

Algorithm 2: Approximated leximin algorithm

Data: A PADAG problem (A,G,u,C)
Result: An iterated maximin-optimal allocation 7
A[-1,...,—1]
for K=11 |A| do
(6% ,s0l) < solve Pyiex({(A,G,11,C),A)

S+ argmin Y. > ug(e)sol(z.)
a€A | Ag=—1geGaecEy

a<—choose an agent a in .S

As 6"
for geGdo w(g)«{veVy | sol(B,)=1}
8 return w

BW N =

a wn

=

3.3 Approximated Leximin Allocation (a-lex)

This previous model implements an exact leximin rule, and thus enforces fairness in the
resulting allocation, but may not scale well when increasing the number of agents and edges.
This is why we provide an approximate version of the computation of the leximin, based
on an iterated maximin scheme. Basically, this approach considers at each step a minimum
utility A, > 0 for some agents and maximizes the worst utility among the remaining
agents, for which we arbitrarily assume A, = —1. The problem to solve, referred to as
Pyiex((A,G,11,C),A), is the following one:

max § (15)
st (1),(2),(3),(4),(5),(6)
0< Y > ug(e)xe, YacA|A,=-1 (16)
gE€Gae€E,
Yo > ugle)xe>A,, YacA|A#—1 17
g€Gae€E,

The solution method then consists in optimizing in an iterated manner, as for leximin. As
sketched in Algorithm 2, at each iteration (one per agent), P, e is solved, one worst agent
a is determined, and its minimum utility A; is fixed.

The main difference with Pl is that at each iteration, in P, i, the position of an agent
in the order is implicitly determined once for all, while in P, the order can be revised at
each iteration. Moreover, if any equality occurs at line 5 to determine the worst agent (case



8 Magrot et al.

|S|> 1), one may rely on some heuristic or arbitrary choice. Thus, Pj.jex is an approximation
of P that contains fewer variables and constraints.

Example 4. The approximated leximin allocation for the example in Figure 2 is 7, ex =
{a {sq,a1,a4,t},b— {sp,b2,b3,tp} }, with utility vector (u(maiex(a)),u(maiex(b))) =
(0.62,0.70) and global utility u(7ma.jex) =0.6240.70=1.32. This is the same as e, since
there are only two agents and no equality between the worst utilities.

3.4 Greedy Allocation (greedy)

For very fast decisions, iterated maximin might still be too slow. In such cases, a greedy
approach can provide valid allocations quickly. The main idea of greedy path allocation is to
iterate over the set of graphs. At each step, one graph g* that has the best utility path is selected,
this path is chosen as (g*), and all nodes in the other graphs that are in conflict with nodes in
7(g*) are deactivated. Graph ¢* is then removed, and the process continues until there is no
more graph to consider. This process ensures that constraints (1), (2), (3), (4), (5), (6) are met.

Determining the best path in a DAG g is linear time O(|E|+ |V,|) [3]. Obviously,
greedy is equivalent to utilitarian when there is no conflict between graphs. Indeed, greedy
will return the best path for each graph, which is the best utilitarian solution in such settings.
Moreover, this greedy approach results in a Nash equilibrium where no agent might be able
to improve its utility without a negative impact on other agents. This is equivalent to the
Nashify procedure from [14] in the context of congestion games, with only one turn. We
will see in the experiments that this equilibrium is far from being fair.

Example 5. The greedy allocation for the example in Figure 2 is mgreedy = { @+ { Sa,a1,a3,tq },b—
{sp,b2,ba,tp} }, with global utility w(mgreedy) = U(greedy (@)) + U(Tgreedy (b)) =1.04+-0.3 =
1.3 and utility vector (1.0,0.3).

3.5 Round-Robin Allocations (p-rr and n-rr)

One fast approach to fair allocation of indivisible goods is round-robin. It consists in
making each agent choose in turn (in a predefined fixed order) one item (depending on
her preferences) until there is no more item to allocate. As greedy, it is polynomial in the
number of agents and items. In our case, one may consider two kinds of items to allocate:
paths (noted p-rr) or nodes (noted n-rr). In the case of paths, at her turn, each agent selects
her best feasible path, given the already allocated nodes (to prevent conflicts). This process
operates similarly to greedy, but alternates between users to balance the utilities. In the case
of nodes, each agent incrementally builds the path associated with each of her graphs, by
choosing in turn her next best feasible node until either it reaches the sink or there is no
more feasible node to choose (a dead-end path). In the latter case, the agent is allocated
the O-utility source-to-sink path and looses the previously chosen nodes. In both approaches,
constraints (1), (2), (3), (4), (5), (6) are met since considered paths are all feasible. Let’s
note that p-rr results in a Nash equilibrium where each agent has been allocated the best
path given the other allocations. This is not the case for n-rr, since some nodes left by some
agent falling in a dead-end may have prevented some other agents to find a better solution.
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Example 6. The path-round-robin allocation .. for the example in Figure 2 is equivalent
tO Tgreedy, Since a chooses {sq,a1,as,t,} and then b chooses {s,b2,b4,t5}}. The node-
round-robin allocation 7, is also equivalent to Tgreedy because a first chooses ay, then b
chooses b, (only feasible option), then a chooses ag (best option), and finally b chooses
b4 (only feasible option).

4 Experimental Evaluation

In this section, we evaluate the different allocation methods proposed when applied to an
orbit slot allocation problem! encoded as PADAGs. We expound the experimental setup
and analyze some results obtained on synthetic instances.

Experimental Setup. We consider a Low-Earth Orbit constellation (500km altitude)
composed of n,, regularly-spaced orbital planes having a 60-degree inclination, with
n, €{2,4,8,16} and 2 regularly spaced satellites over each orbital plane. To generate PADAG
instances, we randomly generate requests for 4 agents wishing to obtain orbit slot ownerships
to implement some repetitive ground acquisitions of Points Of Interest (POIs) belonging to
the same area. POIs are randomly selected within a extracted subset from [13]. All the agents
have the same template for a request r: getting an observation every day at 8:00 + 6., 12:00
+ &, and 16:00 + §,., with a tolerance of 1 hour around each time plot, and uniform random
time shift ¢,. € [—2,2] for all the time plots of the same request. For each POI and each time
plot, the orbit slots over which orbit ownership can be claimed for performing observations
are determined thanks to a space mechanics toolbox, based on the assumption that a satellite
is relevant for a POI as soon as its elevation above the horizon is greater than 15 degrees.
Incompatible time slots are those which overlaps while belonging to the same satellite.

We then encode these requests and orbit slots into PADAGs. Each request is mapped
to a graph, in which nodes (except source and sink) are orbit slots for capturing a POI at
some time plot, and edges links two such consecutive orbit slots to answer the request. For
instance, Figure 2 represents two requests from two users (a and b), with two time plots, each
having two possible orbit slots per time plot per user (e.g. for user a, a; and a9 for the first
time plot, a3 and a4 for the second one). For simplicity, we only consider utilities attached to
the slots, and not to the transitions between slots. We study a linear utility function, which is
linear in the distance between the middle 7 of the allocated slot and the requested time plot
(utility linearly decreasing from 1 when 7 is exactly on the time plot to 0 when 7 reaches
the bounds of the tolerance window). We normalize each utility wrt the maximum utility
that can be achieved for each graph individually. We consider 2 requests per agent, and a
horizon of 365 days resulting in DAGs having 1095 layers (1095 time plots). This setting
results in DAGs having the following properties on average:

1 2 4 8 16

DAGwidth 308 541 1005 1938
conflicts 26798.80 45636.06 82971.20 158180.20

slot duration (s)  603.28  600.10 599.87  598.75

Solvers are coded in Java 1.8 and executed on 20-core Intel(R) Xeon(R) CPU E5-2660
v3 @ 2.60GHz, 62GB RAM, Ubuntu 18.04.5 LTS. Utilitarian, leximin and approximated

1 which is a novel problem, not to be confused with orbit scheduling problems [9].
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Fig.4: Utility profiles (in leximin order)
for the first 5 instances (over 30) for each
constellation size and each algorithm (south:
Fig. 3: Average overall utility (left) and computation best utility over all agents; west: second best
time (right) obtained by each algorithm for each utility; north: third best utility; east: worst
constellation size. utility).

leximin make use of the Java API of IBM CPLEX 20.1 (with 10min timeout). We ran 30
instances of randomly generated PADAGs and plot the average with [0.05,0.95] confidence.

Utility. Figure 3a shows the average normalized global utility for each algorithm and
constellation size (expressed in number of orbital planes). Normalized global utility is the
mean graph utility, thus between 0 and 1. Obviously util provides the optimal utilitarian
allocation. In second position, a-lex provides good allocations at almost 85% of the optimal
value on average. Interestingly, lex performs equivalently to a-lex (gap less than 5% on
average). Indeed, a-lex provides slightly better allocations from the utilitarian point of view, at
the expense of fairness approximation. Round-robin approaches really differ in utility. While
p-rr provides allocations at almost 71% of the optimal, n-rr results in low-utility allocations,
at almost 10% of the optimal on smaller constellations. In fact, in such settings, there are few
feasible paths for each request. Thus, for most of the requests, the myopic incremental building
of paths results in dead-ends, and thus on O-utility allocations; while, by considering another
agent order, the allocations could have been better. Finally, greedy behaves slightly worse than
p-rr, at almost 68% of the optimal value on average. On larger instances, where many paths
exist to answer each request, greedy performs even better. More generally, larger constellation
problems are easier to solve from the utilitarian point-of-view for non-optimal algorithms,
since there are more options to avoid conflicts, even if the number of conflicts is higher.

Fairness. To analyze the fairness of the resulting allocations, Figure 4 provides the utility
profiles obtained for the first 5 instances for each algorithm. greedy, by principle, seeks to
first allocate the highest utility paths, resulting in unfair allocations where only the first 2 or 3
users are served, while most of the time the fourth user has no request fulfilled. Round-robin
approaches are fairer than greedy and often fulfill requests for more users. util results in
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profiles with the larger surface, but most of the time the fourth user is neglected. Finally,
lex and a-lex behave almost identically (their profiles are superimposed), showing that the
a-lex approximation is sufficient to output fair allocations. Let’s note that with growing
constellations, since there is more and more options to serve users, all the algorithms tend to
result in fairer allocations. Still, lex and a-lex are the best choices here, and the round-robin
competitors output unsatisfactory allocations.

Computation Time. Figure 3b shows the average computation time in milliseconds for each
algorithm and each constellation size. As expected (by design), greedy, p-rr and n-rr are
the fastest. n-rr which does not even perform shortest path operations is the fastest by far,
but results in very bad and not-so-fair allocations. greedy and p-rr are very fast, but are
based on multiple max path search in DAGs. p-rr still quickly provides quite good utilitarian
and fair allocations. util, based on a single ILP solving, is 100 times slower than the fastest
algorithms. Then, lex and a-lex are up to two orders of magnitude slower than util on the
largest constellations. This is due to the multiple calls (|.4]) to the MILP solver on large
problems. a-lex is 2 to 3 times faster than lex since it solves smaller MILPs, while resulting
in allocations that are as fair as lex’s ones.

5 Conclusion

In this paper, we proposed the PADAG model, a novel allocation problem where agents
express their preferences over bundles of items as edge-weighted DAGs. We introduced
and analyzed several solution methods (utilitarian, leximin, approximate leximin, greedy)
against the round-robin allocations, from the utilitarianism and fairness perspectives. We
evaluated these methods on large randomly generated instances of orbit slot allocation
problems, with more than 1000 layers. On larger constellations, we observe that approximate
leximin constitutes a good trade-off between utilitarian optimality, leximin optimality and
computation time, compared to all other solution methods. It is even equivalent to exact
leximin on most of the instances, while dividing the computation times by a factor 2 to 3.
We identify several tracks for future investigations. First, as approximate leximin is a
trade-off between fairness and computation times, we would like to investigate other solution
methods, even more reactive, as to solve larger PADAGSs and specific topologies. Indeed, as for
path division and congestion games, dedicated techniques could be devised for given topolo-
gies (stars, chains, etc.). Second, since PADAGsS are strongly constrained by conflicts, we aim
to explore min-conflict heuristics to improve our algorithms. Finally, we believe PADAGs have
great potential to be used in a variety of domains, and we thus aim to evaluate the proposed
techniques on problems coming from other application fields, like the NFV domain where
function chains are modeled as graphs, and incompatibilities control the access to nodes or
multi-agent path finding domain (path preferences are modeled as graphs, and incompatibili-
ties model the constraints to avoid two agents to occupy the same position at the same time).
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