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Abstract
The training of deep neural network models on large data re-
mains a difficult problem, despite progress towards scalable
techniques. In particular, there is a mismatch between the
random but predetermined order in which AI flows select
training samples and the streaming I/O patterns for which
traditional HPC data storage (e.g., parallel file systems) are
designed. In addition, as more data are obtained, it is feasible
neither simply to train learning models incrementally, due
to catastrophic forgetting (i.e., bias towards new samples),
nor to train frequently from scratch, due to prohibitive time
and/or resource constraints. In this paper, we study data man-
agement techniques that combine caching and streaming
with rehearsal support in order to enable efficient access to
training samples in both offline training and continual learn-
ing. We revisit state-of-art streaming approaches based on
data pipelines that transparently handle prefetching, caching,
shuffling, and data augmentation, and discuss the challenges
and opportunities that arise when combining these methods
with data-parallel training techniques. We also report on
preliminary experiments that evaluate the I/O overheads
involved in accessing the training samples from a parallel
file system (PFS) under several concurrency scenarios, high-
lighting the impact of the PFS on the design of the data
pipelines.

Keywords: deep learning, distributed caching, data pipelines,
reuse or training data

1 Introduction
Deep learning (DL) applications are rapidly gaining trac-
tion both in industry and scientific computing, driven by the
accumulation of massive data. In science, for example, instru-
ments that collect data at GB/s and 100+ TB/day present a
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wide range of learning opportunities. We thus see significant
interest in deploying DL on high-performance computing
(HPC) systems in order to enable rapid learning in various
scientific areas, such as fusion energy science, computational
fluid dynamics, lattice quantum chromodynamics, virtual
drug response prediction, and cancer research.
Various approaches for training DL models on massive

data have been proposed: coarse-grain parallelization on
multiple nodes using data-parallel [6], model-parallel [4],
pipeline-parallel [13], and hybrid techniques; fine-grain par-
allelization on many-core architectures by constructing and
scheduling execution graphs at the tensor level; and low-level
optimizations of operators [8] and communication primi-
tives [3]. Most such work is targeted at alleviating the com-
putational overhead needed to perform the forward and
backward passes in DL training, as well as the communi-
cation costs associated with synchronizing subtasks across
devices and nodes.
However, as computation and communication become

highly optimized, another bottleneck begins to emerge that
has seen comparatively less attention: the I/O operations
needed to read training data and feed them to the compu-
tational pipeline. This bottleneck is particularly prominent
at scale in large data centers and supercomputers that typ-
ically feature a large number of compute nodes connected
to a storage repository of relatively limited I/O bandwidth
(e.g., a parallel file system). Indeed, the limited I/O band-
width of parallel file systems is known to cause bottlenecks
in general [19], especially under concurrent access.
This I/O bottleneck is further exacerbated in the case of

DL applications by a mismatch between the preferred access
pattern of parallel file systems (large non-overlapping reads
from a few files) and the access pattern of DL training (small,
pseudo-random reads from many files). In fact, popular refer-
ence datasets such as ImageNet [25], used to evaluate image
classification DL models, feature millions of small images,
each of size 100 KB or less. Retrieving these files is expensive
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because each file access incurs a double latency cost, both at
the level of metadata (to obtain the location of a dataset) and
data (I/O at offset within dataset). Unfortunately, parallel file
systems are primarily optimized to deliver high throughput
at the cost of high latency, which explains the mismatch
regarding the preferred access pattern.
Once extracted from a remote repository, the raw input

data is only the beginning of a complex data ingestion pipeline
that involves decoding of training samples as tensors, aug-
mentations (e.g., stretching or shifting the color spectrum of
images), pseudo-random shuffling, grouping of samples into
batches, etc. The data ingestion pipeline is typically imple-
mented in asynchronous fashion though producer-consumer
buffers that involve caching at each stage. Using this ap-
proach, each DL training iteration overlaps with the data
ingestion, thereby hiding the overhead of I/O operations and
successive transformations in the pipeline, which reduces
the overall runtime.

In addition to data ingestion pipelines, there is an increas-
ing for other data abstractions. For example, continual learn-
ing [16] involves updating a DL model in near-real time, by
linking the data ingestion pipeline directly to a data stream
rather than a storage repository. However, it is not possible
to simply incrementally train the DL model with the new
data, because this would lead to catastrophic forgetting: a
bias of the DL models towards the most recent training sam-
ples at the expense of older ones, which effectively causes
them to reinforce new patterns and forget old ones. A simi-
lar issue is also exhibited by reinforcement learning (RL) [9]
approaches, because the samples are generated by sequential
exploration of the states of an environment, which may lead
to an excessive reinforcement of recent states at the expense
of older ones. A common approach to address the problem of
catastrophic forgetting is rehearsal, i.e., mixing new training
samples with previously encountered, representative train-
ing samples in order to enable incremental training without
bias. Thus, there is a need to transparently store, retrieve and
mix representative training samples with regular training
samples in the data ingestion pipeline.
In this context, there is a need for flexible data runtimes

that are capable of addressing a variety of data ingestion
patterns (irregular fine-grain I/O from storage repositories,
direct streaming from data sources, rehearsal, augmentations
and other post-processing). In addition, since the data inges-
tion pipeline is asynchronous, flexibility is also needed with
respect to resource allocation, such as to dynamically re-
spond to changes in the requirements of computational and
I/O resources. This applies both to the interference between
the data ingestion pipeline and the training, as well as to the
interference between the different stages of the data inges-
tion pipeline itself. In this paper, we study the challenges,
trade-offs and opportunities in the design of flexible data
runtimes for both offline and continual DL model training
We summarize our contributions as follows:

• We revisit state-of-art streaming techniques for feed-
ing training samples to DL model training pipelines.
We focus in particular on the data pipeline abstraction
used by TensorFlow to enable transparent handling
of prefetching, caching, shuffling, and data augmenta-
tion. These methods overlap data transformations with
DL training, which generates contention for resources
(computational units, memory, network bandwidth)
and this non-trivial trade-offs (Section 3).

• We discuss several considerations that arise when data
pipelines are used at scale in conjunction with data-
parallel and/or ensemble training techniques. In this
context, the data pipelines constructed on each com-
pute node are not independent of each other, but rather
share input data, intermediate data, and/or resources
(e.g., the data repository). This observation leads us to
identify several challenges and opportunities to lever-
age synergies between the independent data pipelines
for both offline training and continual learning; in the
latter case, we advocate for extensions to facilitate
transparent rehearsal (Sections 4).

• We evaluate the I/O overhead of serving training sam-
ples to DL models in several configurations (directly
from a parallel file system or cached on local storage)
using TensorFlow data pipelines for a representative
DL application. Based on these preliminary results, we
discuss the observed bottlenecks and their impact on
the identified opportunities (Section 5).

2 Related work
The challenging nature of the pseudo-random I/O access
patterns generated by DL training on small training samples
is acknowledged by several studies [2, 11]. One approach to
addressing this problem is to reorganize the training data.
For example, the lightweight Lightning Memory-Mapped
Database (LMDB) maps content directly into memory (thus
taking advantage of OS-level I/O optimizations) and uses B+-
trees to index it (thus reducing metadata overheads). How-
ever, Pumma et al. [17] have shown that this solution does
not mitigate the problem sufficiently, as I/O overheads still
dominate training (up to 90%) even for only a small degree
of parallelism. Other approaches such as FanStore [26] pro-
vide a global cache layer on node-local burst buffers in a
compressed format, allowing POSIX-compliant file access
to the compressed data in user space. Further optimizations
explore prefetching with perfect knowledge of future I/O
based on fixing the seeds of pseudo-random number genera-
tors [5]. Such approaches are limited in their applicability to
accelerating low-level I/O operations only.

Overlapping computationswith I/O operations by prefetch-
ing and caching training samples in the background is an-
other popular direction [14, 15]. However, generic I/O opti-
mizations are not enough for this purpose, because specific
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operations such as shuffling the training samples with var-
ious ordering guarantees and/or complex transformations
to augment the data are also needed before the data can be
passed to training pipelines. To this end, abstractions such
as data loader [24], data pipelines [11] and DALI [1] are
becoming increasingly popular for both PyTorch and Ten-
sorFlow ecosystems. However, current implementations of
such approaches provide only limited support for multi-node
parallelism.

Several approaches deal with catastrophic forgetting [16].
Inspired by cognitive and neural science theories, rehearsal
methods date back three decades [20]. The most straightfor-
ward approach is to augment each minibatch with previously
streamed training samples, called exemplars, that were se-
lected randomly to be persisted to the storage repository
for the purpose of rehearsal. To improve I/O performance,
classification models such as iCARL [18] employ a limited
memory buffer that stores a fixed number of exemplars for
each class. However, this approach may lead to a decrease
of accuracy when the number of classes increases, because
exemplars from each class need to be dropped in order to
make them all fit into the memory buffer. Approaches such
as Naive Incremental Learning (NIL) [12] simply use a ran-
dom replacement policy without considering classes. An
alternative to storing exemplars is to train a generative ad-
versarial network (GAN) from the stream in order to produce
fake exemplars on demand that capture the patterns needed
for rehearsal [10]. However, such approaches suffer from
high overheads to train and keep the GAN up to date. Other
approaches are based on regularization (i.e., estimating the
relevance of the DNN parameters and penalizing those that
show significant change from one task to another) or archi-
tectural changes that grow subnetworks dynamically [21].
However, rehearsal remains one of the most widely used
techniques for mitigating catastrophic forgetting, and thus
the problem of caching and storage of exemplars remains
important.
In summary, state-of-art approaches are not sufficiently

optimized to stream efficiently from a parallel file system or
directly from an external data source into the DL training
pipelines at scale onmultiple nodes, nor do they offer support
for rehearsal. To the best of our knowledge, we are the first
to consider this combined problem in a distributed setting.

3 Data Pipelines
Modern DL runtimes such as TensorFlow are beginning to
acknowledge the importance of optimizing the entire input
data lifecycle, from reading the training samples all the way
to feeding them to the training pipeline. To this end, abstrac-
tions such as data pipelines [11] are becoming increasingly
popular. In this section, we revisit data pipelines, which will
form the basis of our study.

In a nutshell, data pipelines abstract input data as a poten-
tially infinite sequence of elements that can be either tensors
or composite types (tuples, nested datasets, etc.). The ele-
ments can be accessed by means of an iterator, which offers
sequential access through a simple API call: get_next().
The state of an iterator can be checkpointed to a file by using
save() and restore().

Since most DL training algorithms rely onmini-batch SGD
(stochastic gradient descent), training samples are not ac-
cessed individually, but rather in groups called mini-batches
that are returned by get_next(). The path from reading
the input data all the way to generating the mini-batches
creates a complex producer-consumer pipeline, as illustrated
in Figure 1.
The entry point in the producer-consumer pipeline is a

flexible record enumeration abstraction that is responsible for
exposing new elements in a metadata queue. For example,
in the case of a POSIX filesystem, the metadata queue will
hold file names. These metadata are consumed by the readers,
who are responsible for fetching the content of the elements.
A framework like TensorFlow provides multiple types of
readers, to support various data sources. The readers can
optionally pass the content to a pre-processing task responsi-
ble for data augmentation, which can be defined by the user
by using a map() transformation. From there, the elements
are enqueued in a shuffle queue, from which the prefetcher
extracts a pseudo-random subset of the elements that it then
assembles into mini-batches. Finally, the mini-batches ar-
rive in the batch queue, from where they are consumed by
get_next().
Data pipelines are highly customizable via composabil-

ity. A basic pipeline creates a one-to-one correspondence
between the elements of the dataset and the iterator. This
version can be extended by adding more intermediate stages,
and parameterized through primitives that return a new
data pipeline, which in turn can be further optimized. For
example, to combine two different data sources (or to paral-
lelize I/O), two data pipelines ds and other_ds can be inter-
leaved with the statement: ds = ds.interleave(other_ds,
num_parallel_calls=2). Similar primitives allow for the
definition and parameterization (number of threads, buffer
size, batch size, etc.) ofmap transformations, shuffling, prefetch-
ing, and batching.
This decoupled design allows data pipelines to achieve

efficient overlapping of tasks, not only of a data pipeline with
the training pipeline itself, but also of multiple intermediate
stages within the data pipeline. However, such overlapping
also leads to contention for resources (computational units,
memory, network bandwidth), which introduces non-trivial
trade-offs. For example, memory can be split between the
data pipeline and training pipeline in different ways: meta-
data queue, shuffle queue, and prefetch queue. Computa-
tional units must similarly be shared between DL training
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Figure 1. The data pipeline abstraction as implemented in TensorFlow. It exposes an iterator that returns the next mini-batch
to be used by the training process with each invocation. The pipeline is implemented as an asynchronous producer-consumer
workflow with intermediate buffers where the training samples are read from the repository, encoded as tensors, optionally
transformed using custom augmentation functions, shuffled and finally assembled as mini-batches.

and threads allocated to the data pipeline. Thus, fine-tuning
a data pipeline is challenging.
To address this issue, data pipelines combine a series of

optimizations that are applied both statically and dynam-
ically. Static optimizations can benefit from the fact that
composability allows the expression tree of a data pipeline
to be inspected and updated at runtime to use more efficient
methods where such exist. For example, if the iterator pro-
duces mini-batches, then it would be inefficient to apply a
map() transformation individually to each training sample;
instead, it can be applied in bulk after assembling an entire
mini-batch. This is an example of a fusion operation.
Opportunities for dynamic arise because there are many

variables that are known only at runtime: properties of the
training samples (e.g., image size) and available resources
(e.g., computational units, memory, network bandwidth).
Thus, data pipelines implement an auto-tuning mechanism
that redistributes resources among the intermediate stages
so as to minimize the expected latency of producing an ele-
ment that is obtained by get_next(). Specifically, the per-
formance of each intermediate stage (obtained from the ex-
pression tree) is constantly monitored at runtime in order
to build and update an analytical model for it. Analytical
models are composed and optimized using gradient descent,
in a manner similar to the actual DL training. Using this
approach, the entire end-to-end pipeline can be optimized.
This aspect is essential, because global resource contention
inevitably leads to cases in which locally optimal decisions
are suboptimal. For example, they may employ excessive
parallelism and buffering, which in turn lead to inefficient
thread scheduling, memory utilization, and caching locality.

4 Challenges and Opportunities
4.1 Collaborative producer-consumer queues
Data pipelines are designed to be used individually on each
compute node. As a consequence, they are unaware of each
other and may perform sub-optimally at large scale. For ex-
ample, in a data-parallel training scenario in which many
identical model replicas average their gradients, input data
are typically shuffled and partitioned among multiple model
replicas, each of which then visits a different set of train-
ing samples. To this end, each model replica could create a
data pipeline for its assigned partition. However, after one
epoch, a reshuffling and repartitioning is necessary in order
to preserve the global randomness of sampling. Unaware
that most input data are already cached, pre-processed, shuf-
fled, and batched on other nodes, the data pipelines will start
from scratch, thereby incurring redundant overheads (I/O
contention to the parallel file system, resource contention
due to overlapping with the training pipeline) that may slow
DL training.

This effect is evenmore pronounced for ensemble learning,
neural network architecture search and hyper-parameter op-
timization, where a large number of model variations need
to be explored concurrently. In this case, the different data
pipelines incur redundant overheads even during the same
epoch, because the training data needed by one model varia-
tion may be cached by another model variation. An opportu-
nity in this context is to allow the data pipelines to be aware
of each other’s producer-consumer queues and to share their
content in order to optimize their performance and scala-
bility as a group. Unlike state-of-art collaborative caching
approaches, this approach would expose not only input data
but also intermediate data (e.g., training samples after they
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were transformed by map()), which may further reduce re-
dundant overheads. However, this approach also requires
that data pipelines be able to discover new intermediate data
dynamically as they become available, which introduces the
need for advanced metadata management techniques.

4.2 Adaptive streaming with rehearsal support
When, as in continual learning, input data are streamed di-
rectly from a data source without being accumulated on a
storage repository, it is not sufficient simply to minimize
the time required to access data pipeline iterators. It is also
important to adapt to the rate at which training samples
arrive. Specifically, if the stream generates input data more
slowly than are consumed by the iterator, then the overall
training pipeline will be slowed down. On the other hand,
if the stream generates data more rapidly than the can be
consumed by the iterator, we encounter the difficult ques-
tion of what to do with the excessive input data. Should we
simply drop them at random, or alternatively buffer them
under the assumption that the production/consumption rate
will change in the future? If buffering is feasible, where can
it be done? There are multiple choices, each with its own
trade-offs: (1) a sufficiently large storage repository can be
used as a buffer, with the caveat that subsequent reads will
incur I/O overheads; (2) spare capacity in the queues of other
data pipelines can be used for buffering, although this may
interfere with their own optimizations.

A related problem is how to store the exemplars needed for
rehearsal, as discussed in Section 1. If exemplars are persisted
in the storage repository, then more can be accumulated for
better diversity (especially when considering that the same
exemplar can be augmented by the data pipeline in different
ways). However, exemplars are then more costly to access
and process. Another approach is to introduce an additional
queue (e.g., rehearsal queue) to mitigate this problem, at the
expense of complicating the data pipeline and introducing
more resource contention.

4.3 Decoupled design
Efforts to build data pipelines are not limited to the Tensor-
flow ecosystem. For example, NVIDIA’s DALI (The NVIDIA
Data Loading Library) [1] aims to provide highly optimized
building blocks for loading and processing image, video and
audio data for DL applications. The key focus is on porta-
bility: it can be used as a drop-in replacement for built in
data loaders and data iterators of popular DL frameworks,
including Tensorflow data pipelines. DALI supports a wide
range of data formats and augmentations, while taking ad-
vantage of vendor-specific optimizations, such as leveraging
a direct data path between storage and GPU memory (us-
ing GPUDirect). As a consequence, the native data pipelines
provided by the DL frameworks, while offering better inte-
gration with the data-flow graphs, may not always be the

preferred choice of users. Thus, optimizations such as col-
laborative producer-consumer queues and streaming with
rehearsal support should ideally be abstracted as a separate
layer that can integrate with more than a single data pipeline
effort.
Fortunately, efforts such as DALI rely on a similar archi-

tecture as the Tensorflow data pipelines, sharing the same
principle of chaining producer-consumer queues. Thus, an
opportunity in this context is to provide a unified API to
manage generic objects that are cached collaboratively in the
queues of multiple compute nodes. For example, given the
pseudo-random nature of I/O accesses and other operations
in general, the interactions with the queues and caches are
deterministic. Therefore, given a fixed caching algorithm and
a fixed seed used by the pseudo-random number generator of
each compute node, the availability of data and even memory
offset on a remote compute node can be determined without
additional metadata that needs to be exchanged between the
compute nodes. Such capabilities can be encapsulated and
exposed as a separate layer for use with Tensorflow pipelines,
DALI and potentially other frameworks.

5 Preliminary evaluation
5.1 Experimental Setup
Our experiments were performed on Argonne’s ThetaGPU
cluster, a testbed specifically optimized for training DNN
models at scale. It comprises 24 NVIDIA DGX A100 nodes,
each with eight NVIDIA A100 Tensor Core GPUs and two
AMD Rome CPUs. Memory-wise, each node is equipped
with 1 TB of DDR4 memory and 320 GB GPU memory, for a
total of 24 TB DDR4 and 7.6 TB GPU memory. The nodes are
interconnected using 20 Mellanox QM9700 HDR200 40-port
switches wired in a fat-tree topology. External storage is
provided by a Lustre parallel file system deployment with ag-
gregate 250 GB/ bandwidth, mounted using POSIX (referred
to as the PFS).

In terms of software, we use TensorFlow 2.5.0 and Horovod
0.20.3. Communication between nodes is facilitated by Open-
MPI 4.1.1, which is used by Horovod.

5.2 Methodology
In order to quantify the limitations of the TensorFlow data
pipelines, we study both the I/O overheads and the impact of
those overheads on overall training duration under various
data-parallel training scenarios. To enable data-parallelism,
we rely on the Horovod [22] runtime library. Specifically,
Horovod hides the details of parallelization by wrapping
around the optimizer normally instantiated by a Keras DL
application. Using this approach, Horovod augments the
data-flow graph transparently to average the local gradients
of all workers using an all-reduce collective communication
pattern (e.g., as provided by MPI implementations) before
proceeding with the weight updates.
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To measure the I/O overheads, we use Darshan [23], an
I/O profiling tool that transparently intercepts all POSIX
system calls in order to generate statistics (number of calls,
durations, sizes, etc.). The impact on the training duration is
non-trivial to measure, because the data pipelines overlap the
sample pre-pocessing with the mini-batch training. Thus, we
rely on an indirect method that compares two data storage
strategies: (1) the dataset is shared by all model replicas of
the data-parallel training via the PFS; (2) the dataset is cached
in-memory on each compute node by using the /dev/shm
mount point, which features a tmpfs filesystem. In the case
of (2), the I/O overheads are negligible. Thus, by measuring
the difference between the end-to-end runtimes of (1) and
(2), we can infer by how much time the data pipelines stall
the training process due to the I/O overheads of the PFS.
As we shall see, we find that the I/O overheads of the PFS
and the duration of the stalls are high, thereby justifying the
opportunities mentioned in Section 4.

Application: ResNet-50. We use ResNet-50 [7] as a repre-
sentative DL model that is frequently used as a DL bench-
mark. Specifically, it is a family of DNN where the layers
learn residual functions with reference to the input layers, in-
stead of learning unreferenced functions. This allows ResNet
to train extremely deep neural networks with 150+ layers.
For the purpose of this work, we focus on the variant with
50 layers, which has a reference implementation for use with
Keras and Horovod. Although ResNet-50 is deep, its overall
size is relatively small (i.e., in the order of MiB). Therefore,
the model and its intermediate computational states can
be cached in the GPU memory and does cause any I/O re-
lated interference that may influence the study of the data
pipelines.

Datasets: ImageNet and Tiny-ImageNet. As input to
ResNet-50, we have chosen two standardized datasets. Ima-
geNet is a widely used dataset in the evaluation of DLmodels
for image classification. It comprises 1.28 million training
images and 50,000 validation images, most with a size of
between 10 KB and 100 KB, and each assigned to one of 1000
classes. Tiny-ImageNet is similar to ImageNet, but smaller,
with just 200 image classes, a training dataset of 100,000 im-
ages, a validation dataset of 10,000 images, and a test dataset
of 10,000 images. All images are of size 64×64.

5.3 Results
We first examine the I/O overheads captured by Darshan for
the case when the dataset is shared via the PFS. We study
strong scaling in two scenarios: (1) increasing number of
GPUs per node (Figure 3a); and (2) increasing number of
nodes with eight GPUs/node (Figure 3b).
Figure 2 confirms that DNN training is a read-intensive

scenario in which each process predominantly performs in-
dependent read operations; the independent write operations
incur only minimal overhead (cached Python JIT compiled

code and temporary files). The figure also shows there are
no shared read or write operations, which confirms the data
pipelines do not produce intermediate temporary files that
shared and potentially subject to concurrency control. Note
that the read amount per process decreases with increasing
number of GPUs, due to partitioning.

Table 1. End-to-end runtime and cumulative duration of
read and metadata I/O operations, in seconds, per process
when training Resnet-50 on Tiny-Imagenet.

GPUs
1 4 8 16 32 64

PFS reads 322 52.7 24.5 12.4 4.93 3.3
PFS metadata 121 31.6 15.6 10.5 6.8 5.0
PFS runtime 1473 421 275 221 171 160
Cached runtime 985 362 269 217 168 157

Table 2. End-to-end runtime and cumulative duration of
read and metadata I/O operations, in seconds, per process
when training Resnet-50 on Tiny-Imagenet.

GPUs
1 4 8 16 32 64

PFS reads 19473 3441 1502 859 449 217
PFS metadata 1233 326.7 211.1 145.2 108.9 73.1
PFS runtime 36247 8345 4298 2709 1744 1209
Cached runtime 15263 3852 1975 1038 576 364

There are several interesting observations with respect to
the read overheads, depicted in Figure 3. For a single node,
despite no concurrent access to the PFS, the read overheads
are high. For a single GPU, they reach up to 25% of the to-
tal runtime for Tiny-ImageNet and 50% for ImageNet. The
metadata overheads are also non-trivial, reaching up to 5%
of total runtime. With an increasing number of GPUs per
node (4 and 8), both the read and metadata overheads begin
to decrease due to OS-level caching. However, this is only
possible because our nodes are equipped with 1 TB of main
memory and ResNet-50 is a relatively small model. With
increasing model complexity, there will be less free memory
available for OS-level caching and therefore diminished ben-
efits. For an increasing number of nodes (more than eight
GPUs), the read and metadata overheads keep decreasing for
Tiny-ImageNet, which is expected because different nodes
can read from different I/O servers in parallel, therefore
achieving a higher aggregated I/O bandwidth. However, the
decrease of the I/O overheads is much slower for ImageNet,
which means the PFS is experiencing I/O bottlenecks under
concurrency, even for a small number of nodes.
To explain these findings better, we depict in Figure 4

the number of read operations broken down by size ranges.
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Figure 2. Amount of I/O (independent reads, independent writes, shared reads, shared writes) per process during ResNet-50
training. The Y axis aggregates all I/O amounts performed by all I/O operations.
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Figure 3. Duration of PFS I/O operations (reads, writes, metadata queries) per process as a percentage of the total runtime for
an increasing number of GPUs (up to eight per node).
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Figure 4. Bytes per read operation when training Resnet-50. Each label on the X axis represents a different size range, while
the Y axis counts the number of read operations in each range.
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We see that the total number of read operations in the 0–
100 bytes range equals the number of files for each dataset.
This is due to the fact that the data pipeline needs to read
the header of each image to determine its size and allocate
the corresponding tensors before following up with a subse-
quent read of the content. Since there are many files in each
dataset, the resulting aggregate metadata overhead is high.
Furthermore, since each file is small, most read operations
involve less than 10 KB in the case of Tiny-ImageNet and
are in the order of 100 KB in the case of ImageNet. The PFS
was not optimized for this pattern, which leads to an overall
throughput in the order of a few MB/s per node—two orders
of magnitude less than the peak I/O throughput.
For completeness, we show in Tables 1 and 2 the actual

measurements of the end-to-end runtime and cumulative
duration of read and metadata I/O operations. The cached
runtime corresponds to the case when the full dataset is
cached in memory on each compute node (on the /dev/shm).
Figure 5 depicts the percent increase in runtime due to

reading from the PFS vs. the cached runtime. For Tiny-
ImageNet, the increase in runtime is high when using a
single GPU (up to 50%), but it drops sharply for an increas-
ing number of GPUs. Thus, we can conclude that despite
large read overheads, the data pipelines successfully mask
them without causing stalls. However, the situation is re-
versed for ImageNet: the increase in runtime is much higher
(up to 200%) and it only drops slightly from one GPU to
four and eight GPUs, but then goes up again much faster.
This confirm our hypothesis that a PFS is likely to become a
significant bottleneck both at small scale and large scale.

Furthermore, another important observation can be made:
the relative increase in runtime of PFS vs. cached is much
higher than the PFS I/O overhead (reads and metadata oper-
ations) to PFS runtime ratio. Thus, we can conclude that the
stalls caused by the slow PFS read operations are augmented
further down the data pipelines, which means it will not
suffice solely to make the read operations faster.

6 Conclusions
We have reviewed the challenges and opportunities of de-
signing efficient data pipelines for data-parallel training of
DNN models, which is essential in the design of flexible AI
runtimes deployed on HPC systems. Based on a preliminary
evaluation of Tensorflow data pipelines on several nodes
and GPUs, we highlighted a significant I/O overhead due to
both data ingestion and metadata operations that involve
a parallel file system, which can cause up to 200% increase
in execution time. Based on this preliminary evaluation, we
plan to pursue future work that enables data pipelines to
collaborate and cache training samples as a group, both with
respect to raw input data and intermediate transformations.

Such an approach aims to minimize expensive I/O interac-
tions with parallel file systems and other external reposito-
ries, thereby reducing observed I/O overheads. Furthermore,
streaming training data for continual learning and/or rein-
forcement learning often involves rehearsal of representative
historic training samples and/or learning patterns, which
can be implemented in a distributed fashion by leveraging
collaborative caching. Finally, the rising popularity of a va-
riety of data loading and preprocessing frameworks makes
it important to focus on a decoupled design that expose a
unified API that can be leveraged in such frameworks.
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Figure 5. PFS impact measured as percent increase of end-to-end runtime over in-memory caching. The X-axis labels refer to
the number of GPUs used for training with the tiny (T) or full (I) ImageNet dataset. Lower is better.
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