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Abstract
This paper is dedicated to a cautious learning
methodology for predicting preferences between
alternatives characterized by binary attributes (for-
mally, each alternative is seen as a subset of at-
tributes). By “cautious”, we mean that the model
learned to represent the multi-attribute preferences
is general enough to be compatible with any strict
weak order on the alternatives, and that we allow
ourselves not to predict some preferences if the data
collected are not compatible with a reliable predic-
tion. A predicted preference will be considered re-
liable if all the simplest models (following Occam’s
razor principle) explaining the training data agree
on it. Predictions are based on an ordinal domi-
nance relation between alternatives [Fishburn and
LaValle, 1996]. The dominance relation relies on
an uncertainty set encompassing the possible values
of the parameters of the multi-attribute utility func-
tion. Numerical tests are provided to evaluate the
richness and the reliability of the predictions made.

1 Introduction
Preference elicitation or preference learning is an important
step in setting up a recommender system for a Decision-
Maker (DM). It usually consists in querying the DM, e.g. by
asking her to assign alternatives to ordered categories. By
calling the learning procedure “cautious”, we mean a proce-
dure that complies with two principles that we now describe.

First, the sophistication of the learned multiattribute deci-
sion model should be adapted to fit the level of complexity
of the stated preferences, hence the choice of a multiattribute
utility function f general enough to represent any order � of
preference, i.e., for any strict weak ordering � on a set A of
alternatives, there exists f such that, for any pair {A,B}⊆A,
f(A) > f(B) iff A � B. In particular, the multi-attribute
model we use is able to model positive or negative interac-
tions between attributes [Grabisch et al., 2008].

Second, the predicted pairwise preferences should not de-
pend on the partly arbitrary choice of precise numerical val-
ues for the parameters of the model but solely on the stated
preferences, hence the design of an ordinal learning proce-
dure that maintains an isomorphism between the collected

preferential data and the learned model (in the same spirit
as ordinal measurement for problem solving [Bartee, 1971])
by using a polyhedron of possible values for the parameters,
reflecting the uncertainty about them. As a consequence of
this latter principle, when predicting an unknown pairwise
preference between two alternatives A and B, apart from the
predictions “A is preferred to B” and “B is preferred to A”,
it is possible that the model does not make a prediction due
to a lack of sufficiently rich preferential data (the absence of
prediction is preferred to a bad prediction, although a com-
promise must obviously be made between the reliability of
the prediction and the predictive power of the learned model).

Problem. We consider a multiattribute preference elicita-
tion problem, where the attributes are assumed to be binary.
Most elicitation procedures make an assumption of a nu-
merical model, defined a priori, underlying the DM’s pref-
erences. The originality of our approach consists in allow-
ing the model to be revised during the elicitation process, by
modifying the parameters space. The set of model parameters
is thus defined a posteriori from the preference statements.

A sparse model. Following Fishburn and Lavalle [1996],
we consider an underlying numerical model f where the
value f(S) of a set S of attributes is an additive combination
of parameters, one per subsetA of S: f(S)=

∑
A⊆S:A∈θ uA.

While this model is general enough to model any strict weak
ordering on the subsets of attributes, it is inherently in-
tractable as there is a combinatorial set of parameters uA. To
keep a tractable set, similarly to the k-additive variant of this
model (which only considers parameters uA for |A|≤k; Fish-
burn and Lavalle took k = 2), we only consider a restricted
family θ of subsets A. We explore different strategies to de-
sign θ through the elicitation process. Our goal is to keep it
minimal (in a formally defined sense), and yet general enough
to fit the training set of pairwise preferences.

Cautious learning. For each pair of alternatives, according
to the collected preferential information, our learned model
makes a cautious prediction: it could either claim which al-
ternative is preferred, or state that the collected information
is not sufficient to conclude. In a nutshell, we only make
predictions that are consistent with all the simplest models
(following Occam’s razor principle) able to explain the stated
preferences. The aim is to maximize the ratio of the num-
ber of correct preference predictions over the total number of



predictions, while maintaining enough inference power.

Organization of the paper. After giving a brief review of
the related work in Section 2, we present the θ-additive utility
model in Section 3, as well as the ordinal dominance relation
that is inferred if the parameters are only partially specified.
In Section 4, we show how to compute the simplest model
compatible the collected preferences. Finally, Section 5 is
devoted to numerical tests on synthetic preference data.

2 Related work
Preference elicitation, which is part of the broader framework
of preference learning (see e.g. Fürnkranz and Hüllermeier
[2003]), has been studied for a long time in AI, as a prelimi-
nary step in any automation of a recommendation task.

We focus here on the elicitation of the parameters of a
multiattribute utility function taking into account interactions
between attributes (more precisely, learning a partial spec-
ification of these parameters yielding a dominance relation
between alternatives). In contrast with the setting of active
learning which has been widely studied for preference elici-
tation (see e.g. Guo and Sanner [2010]), we do not assume
interactions with a DM but only the knowledge of a “static”
training set of examples of pairwise preferences. In this pas-
sive learning setting, many classification-based approaches
has been proposed, going from perceptrons [Dragone et al.,
2017] to Gaussian processes [Chu and Ghahramani, 2005] or
Support Vector Machines (SVM) [Domshlak and Joachims,
2005]. These approaches have in common that they consider,
as a training set, a set of triples (A,B, c), where A and B are
two alternatives and c=1 if A�B, and c=0 otherwise.

A well-known multiattribute utility model that takes into
account interactions between attributes, and closely related to
the decision model we study in this paper, is the Choquet in-
tegral. One of the most recent work about the elicitation of
the parameters of a Choquet-related aggregation function in-
tegral is that of Bresson et al. [2020], in which in particular
a perceptron approach is integrated into the learning process
of a 2-additive hierarchical Choquet integral [Bresson et al.,
2020]. For a broad literature review about learning the pa-
rameters of a Choquet integral, the reader may refer to the
article by Grabisch et al. [2008]. Let us mention in particular
the work by Marichal and Roubens [2000], that use a poly-
hedron to characterize the set of parameters that are compat-
ible with a training set of examples. The idea of defining a
polyhedron of uncertainty on the parameters of a utility func-
tion goes back at least to the work of Charnetski and Soland
[1978]. Their model state that A�B if the proportion of pa-
rameters that give a better value forA than forB among those
that are compatible with the stated preferences is greater than
the proportion of parameters that give a better value for B
than for A. This principle was also adapted to the case of a
Choquet integral by Angilella et al. [2015]. In the sequel, we
will use a similar polyhedron.

The two works probably closest to our proposal are those of
Domshlak and Joachims [2005] and Bigot et al. [2012]. For
binary attributes, Domshlak and Joachims consider a multi-
attribute utility function that is a sum of 4n subutilities over
subsets of attribute values and develop an efficient SVM ap-

proach to reveal this utility function, by relying on a kernel
method. Bigot et al. study the use of generalised additively
independent decompositions of utility functions [Fishburn,
1970; Gonzales and Perny, 2005]. They give a polynomial
PAC-learner when a constant bound is known on the func-
tion’s degree, where the degree is the size of the greatest sub-
set of attributes in the decomposition. Yet, both works do not
fit the “cautious learning” framework we consider here.

3 Our Cautious Learning Setting
3.1 Multiattribute Decision Problem
In this paper, we tackle a multiattribute decision problem
where alternatives are expressed in the form of a vector of
binary attributes. Let F = {a1, a2, . . . , an} be n binary at-
tributes and A⊆{0, 1}n be the set of alternatives defined on
F . By abuse of notation, for ai∈F and A∈A, we will write
ai ∈A if the ith component of the vector characterizing A is
1. Moreover, for a subset S ⊆F of attributes, we will write
S⊆A if a∈A for all a∈S. For instance, if A corresponds to
(1, 1, 1, 0), then {a1, a3}⊆A.

We assume that the DM has preferences in the form of a
strict weak order over A. For A,B ∈ A, we write A � B
when A is strictly preferred to B, and A ∼ B when neither
A�B nor B�A (incomparability).

The aim of preference elicitation is to predict strict pair-
wise preferences from a training set of examples.

3.2 The θ-additive Model
Cardinal models and additive functions. As the DM’s
preferences over A are modeled as a strict weak order, there
exists a real-valued function f such that ∀A,B ∈A, f(A)>
f(B)⇔ A � B. Many models assume that f can be repre-
sented in a compact way using some sort of additive property.

One of the simplest and most used cardinal models for
preference modelling in multiattribute utility theory is the 1-
additive model [Keeney et al., 1993]. This model makes the
strong assumption that we can find a utility u(a)∈R for each
attribute a∈F such that for all A∈A, f(A) =

∑
a∈A u(a).

This assumption is strong because it implies that there is no
interaction between the attributes. A weaker assumption is
that of k-additivity where we suppose the existence of a pa-
rameter u(S)∈R for each S ∈ [F ]k, where [F ]k = {S⊆ F :
1≤ |S| ≤ k}. Hence, in the k-additive model, for all A∈A,
f(A) =

∑
S∈[F ]k IA(S)uS , where IA(S) = 1 if S⊆A and 0

otherwise, and uS is an abbreviation for u(S). For example,
the 2-additive model makes it possible to account for binary
interactions (positive or negative). The n-additive model is
general enough to represent any strict weak order on A be-
cause it can represent any real-valued set function f :2F→R
[Grabisch et al., 2000], provided that f(∅) = 0. However, it
requires to specify 2n−1 parameters. We therefore restrict
our attention to additive models requiring fewer parameters.

The θ-additive model. In this paper, we consider a more
flexible model which we call the θ-additive model. Given a
set θ⊆ 2F , and a set function u : θ→R, this model assumes
that f is of the form f(A)=

∑
S∈θ IA(S)uS , where uS stands

again for u(S). In this case, we may also use the notation



fθ,u(A) instead of f(A). Hence, the 1-additive model is the
special case in which θ is [F ]1, and the k-additive model is
the special case in which θ is [F ]k.
Example 1. Let F={a1, a2, a3, a4} be a set of 4 attributes,
A={0, 1}4 and the preferences of the DM be the strict weak
order � defined by:

(0, 1, 1, 1) � (1, 0, 1, 1) � (1, 1, 0, 1) � (0, 0, 1, 1)

� (0, 1, 0, 1) � (0, 1, 1, 0) � (1, 0, 0, 1) � (1, 0, 1, 0)

� (1, 1, 0, 0) � (0, 0, 0, 1) � (0, 0, 1, 0) � (0, 1, 0, 0)

� (1, 0, 0, 0) � (1,1,1,1) ∼ (0, 0, 0, 0) � (1,1,1,0).

These preferences can be explained by a clear negative in-
teraction when attributes a1, a2, and a3 are chosen to-
gether (vectors in bold). Interestingly, instead of using
a 3-additive model, which would require the definition of
14 parameters, one can use the θ-additive model with
θ = {{a1}, {a2}, {a3}, {a4}, {a1, a2, a3}} and u{a1} = 1,
u{a2} = 2, u{a3} = 3, u{a4} = 4, u{a1,a2,a3} = −10.

3.3 The Ordinal Dominance Relation
We assume that we only have access to a partial setR of strict
pairwise preferences provided by the DM. This set may con-
tain only a few comparisons. Our aim is to use these com-
parisons (observed preferences) in order to infer other strict
pairwise preferences on the set of alternatives. We formalize
R as a set of pairs (A,B)∈A2 such that A�B.

Moreover, given θ, UθR denotes the set of utility functions
on θ that are compatible with the preferences observed in R:

UθR = {u : θ → R|∀(A,B) ∈ R, fθ,u(A) > fθ,u(B)}.
Note that, for a given θ, this setUθR can be empty or composed
of an infinity of possible utility functions on θ. Notably, if
this set is empty then the preferences of the DM cannot be
represented by a θ-additive function.

Viewing a θ-additive function as a vector whose dimen-
sions are the subsets S in θ, the set UθR corresponds to the
polyhedron defined by the following linear constraints in the
|θ|-dimensional parameter space (where each parameter uS
corresponds to a dimension)1:

∀(A,B) ∈ R,
∑
S∈θ

IA(S)uS −
∑
S∈θ

IB(S)uS ≥ 1. (P1)

For a given θ, checking whether or not the preferences of
the DM can be represented by a θ-additive function can be
evaluated in polynomial time by testing the consistency of the
constraints in P1 (e.g., using a linear programming solver).

We denote by ΘR the set {θ|UθR 6= ∅}, i.e., the θ’s such that
the preferences inR are consistent with a θ-additive function.

Example 2. Coming back to Example 1, setting θ =
{{a1}, {a2}, {a3}, {a4}} yields UθR = ∅. In contrast, setting
θ1 = {{a1}, {a2}, {a3}, {a4}, {a1, a2, a3}} yields Uθ1R 6= ∅.
In this example, it can be shown2 that ΘR = {θ : θ1 ⊆ θ}.

1The right hand side of the constraint is here set to 1, but it could
be set to any strictly positive constant as utilities uS are always com-
patible with R to within a multiplicative factor.

2It has been computer tested by brute force enumeration.

As shown in the previous example, there may be several θ
in ΘR. Moreover, for θ ∈ ΘR, if UθR is compounded of sev-
eral compatible utility functions, then these utility functions
may lead to quite different inferred preferences.
Example 3. Let F = {a1, a2, a3, a4}. Let us assume that,
contrary to Example 1, we now only observe preferences on
the singletons {a1}, {a2}, {a3}, {a4}:

R ={((0, 0, 0, 1), (0, 0, 1, 0)), ((0, 0, 1, 0),

(0, 1, 0, 0)), ((0, 1, 0, 0), (1, 0, 0, 0))}
The two additive functions u and u′ defined by u({a1}) = 1,
u({a2}) = 2, u({a3}) = 3, u({a4}) = 5 and u′({a1}) = 1,
u′({a2}) = 3, u′({a3}) = 4, u′({a4}) = 5 are both in UθR,
but we infer (1, 0, 0, 1) � (0, 1, 1, 0) from u while we infer
(0, 1, 1, 0) � (1, 0, 0, 1) from u′.

This example shows that, given R, choosing a specific
function u ∈ UθR can lead to infer preferences on the rest ofR
that are only related to this arbitrary choice and not from the
observed preferences [Bartee, 1971]. As we will present in
next sections, our aim is to infer preferences for pairs which
do not belong to R in a reliable way. In this purpose, we turn
to an ordinal model based on the observed preferences which
are in R.

Fishburn and Lavalle [1996] showed how one can obtain
an ordinal dominance relation from an underlying partially
specified 2-additive numerical model. We now explain how
the idea can be extended to an underlying θ-additive model.

For a given θ ∈ΘR, the ordinal dominance relation is de-
noted by�Rθ , and is independent from the choice of a specific
u∈UθR. This binary relation is defined, for each pair A,B in
A, by:

A �Rθ B ⇔ ∀u ∈ UθR, fθ,u(A) > fθ,u(B).

Naturally, (A,B) ∈ R⇒ A �Rθ B. Nevertheless, note that
binary relation �Rθ is obviously partial, and we define the in-
comparability relation ∼Rθ as:

A ∼Rθ B ⇔ ∃u, u′ ∈ UθR,
(fθ,u(A) ≥ fθ,u(B) and fθ,u′(B) ≥ fθ,u′(A)).

For any pair A,B of subsets, one can test if A�Rθ B in poly-
nomial time, by considering the linear program where the ob-
jective function

∑
S∈θ uSIB(S)−

∑
S∈θ uSIA(S) is maxi-

mized under constraints P1 (that characterize the set URθ of
compatible utility functions). The dominance A�Rθ B holds
iff the optimal value is strictly negative.

If A�Rθ B then one can predict, based on R and for a θ-
additive model, that A is strictly preferred to B. If A∼Rθ B
then no prediction is made.

3.4 Sensitivity of the Ordinal Dominance Relation
to Changes in R or Θ

We now explore how the relation �Rθ is modified when some
new pairwise comparisons are added to R, or removed. In-
terestingly, adding new pairwise comparisons to R can only
enrich binary relation �Rθ , provided the preferences remain
representable by a θ-additive function. Conversely, prefer-
enceA �Rθ B cannot be reversed by removing pairwise com-
parisons from R. More formally:



Proposition 1. Given a set R of strict pairwise comparisons,
and θ ∈ ΘR, if R′ ⊆ R, then we have: (i) θ ∈ ΘR′ ; (ii)
A�R′θ B⇒A�Rθ B; (iii) A�Rθ B⇒¬(B �R′θ A).

We now study how the relation �Rθ is modified when θ is
restricted or extended. If θ is restricted, then the relation �Rθ
can only be enriched. Conversely, if θ is extended, then a
preference A �Rθ B cannot be reversed after the extension.

Proposition 2. For θ, θ′ ∈ ΘR, if θ′ ⊆ θ, then we have: (i)
A�Rθ B⇒A�Rθ′B; (ii) A∼Rθ′B⇒A∼Rθ B; (iii) A�Rθ′B⇒
¬(B�Rθ A).

Note that many different θ-additive models may be com-
patible with the collected preferences in R. In particular, if a
θ′-additive model is compatible with R, then any θ-additive
model such that θ extends θ′ is also compatible with R. A
natural way to decide which θ-additive models to consider is
to follow the inclusion relationship on ΘR, by considering
the sets θ that are minimal w.r.t. inclusion. For computational
efficiency, we will use a refinement of the inclusion relation-
ship, that we detail in the next section.

4 The Minimal Compatible Models and The
Unifying Model

Note that there always exists a θ able to representR; at worst,
we can put all the subsets of F in θ. Our choice of a specific
θ among the various ones that yield a θ-additive model able
to explain the collected preferences in R is guided by two
criteria, namely:

• First, following the philosophical principle of parsimony
that the simpler of two explanations is to be preferred
(Occam’s razor [Blumer et al., 1987]), we consider sub-
sets θ that minimize the complexity of interactions be-
tween the attributes; to measure this complexity, we use
the degree of fθ,u, namely max{|S| : S ∈ θ} (i.e., the
greatest cardinality of a subset of interacting attributes).

• Second, if two different θ have the same degree, we pre-
fer the one having sparsest representation [Zhang et al.,
2015], i.e., the one which minimizes |θ| (which corre-
sponds to the number of non-zero parameters uS).

This two criteria define a lexicographic binary relation on
ΘR, refining ⊆ and denoted by vlex. We call θ∈ΘR which
are minimal according tovlex, simplest θ ofR and we denote
by Θmin

R their set: Θmin
R ={θ ∈ ΘR|@θ′, θ′ vlex θ}.

Note that sometimes the simplest model may contain more
elements than another model which has a bigger degree:

Example 4. LetR = {(1, 1, 0, 0) � (0, 0, 1, 1), (1, 1, 0, 0) �
(1, 0, 1, 0)}. It is easy to see that we can find a θ with one el-
ement containing a subset of cardinality 2 (θ= {{a1, a2}}),
however we will prefer having a θ consistent with a 1-
additive model even if there are more elements in it : θ′ =
{{a1}, {a2}} or θ′′ = {{a1}, {a3}} or θ′′′ = {{a2}, {a3}}.

4.1 Computation of Θmin
R

To compute the set Θmin
R fromR, we perform an enumeration

of all possible minimal θ sets by using Algorithm 1 called
with Θmin

R = θ = ∅, and θ = 2F . The parameters used by

Algorithm 1 are the list Θmin
R under construction, a represen-

tative θ of Θmin
R used to test whether θ is minimal w.r.t. vlex,

the current θ under examination (i.e., whose membership to
Θmin
R is being guessed) and the setR of collected preferences.

To perform this enumeration, we rely on :
• a depth first search strategy, where each node corre-

sponds to a possible θ, the root is initialized with θ= ∅,
and a node is expanded by investigating the possible sets
S that may break (i.e., invalidate) the certificate I that R
is not compatible with a θ-additive model (lines 8 to 11
in Algorithm 1); we explain below how a certificate I is
defined and determined.

• a pruning strategy consisting in exploring only nodes
who correspond to sets θ that are not dominated by the
ones in Θmin

R w.r.t. vlex (lines 2-3, 10 in Algorithm 1).

Algorithm 1 BuildThetaMin(Θmin
R , θ, θ, R)

1: if R can be represented by a θ-additive model then
2: if θ vlex θ then
3: Θmin

R ← {θ};
4: θ ← θ;
5: else
6: Θmin

R ← Θmin
R ∪ {θ};

7: else
8: Find certificate I and preference set C by solving Dθ;
9: for S∈{T ⊂ A\B : (A,B) ∈ C or (B,A) ∈ C} do

10: if S breaks certificate I and not θ vlex θ∪{S} then
11: BuildThetaMin(Θmin

R , θ, θ ∪ {S}, R);

Determining if R can be represented by a θ-additive
model (line 1 of Algorithm 1). Given a parameter set θ,
the following linear program Pθ, where there is one positive
variable eA,B for each pair (A,B) inR, and one free variable
uS for each set S in θ, determines if the set R of observed
strict preferences can be represented by a θ-additive model:

(Pθ) min
eA,B ,uS

∑
(A,B)∈R

eA,B

∑
S∈θ

(IA(S)− IB(S))uS ≥ 1− eA,B , ∀(A,B) ∈ R

eA,B ≥ 0, ∀(A,B) ∈ R
The preferences in R can be represented by a θ-additive
model if the optimal value of Pθ is 0. Indeed, in this case
we can find values for variables uS that respect all the prefer-
ences in R without the help of the additional slack variables
eA,B .

Program Pθ is probably the most intuitive program to test
if R can be represented by the θ-additive model. However,
we will work instead on its dual Dθ:

(Dθ) max
λA,B

∑
(A,B)∈R

λA,B

∑
(A,B)∈R

(IA(S)− IB(S))λA,B = 0, ∀S ∈ θ

0 ≤ λA,B ≤ 1, ∀(A,B) ∈ R



If the optimal value of Dθ is strictly positive, we must add
at least another set to θ to represent the preferences in R.
Finding a certificate (line 9 of Algorithm 1). Let I =
(λ∗A,B : (A,B) ∈ R) be an optimal solution to program
(Dθ) such that

∑
(A,B)∈R λ

∗
A,B > 0. Note that the values

in I make it possible to identify a set of preferences C =
{(A,B) : λ∗A,B > 0} that cannot be represented by the cur-
rent θ-additive model, and that I is in some sense a certificate
for the incapacity to represent C and thusR (because C⊆R).
In this case, one should add a set T to θ. This amounts to
adding the constraint

∑
(A,B)∈R(IA(T ) − IB(T ))λA,B = 0

to Dθ. Importantly, note that this may only decrease the opti-
mal value of (Dθ) if

∑
(A,B)∈R(IA(T ) − IB(T ))λ∗A,B 6= 0.

Hence, the different candidates to add to θ will be precisely
the sets T that satisfy this condition. When adding such a set
to θ we will informally say that we break I3.
Finding a set S breaking I (lines 10-14 of Algorithm 1).
Note that a set S breaking I can always be found (even effi-
ciently) asR can be represented by any θ-additive model with
{A,B : (A,B) ∈ R} ⊆ θ. Hence, a set S breaking I can
always be found in {A,B : (A,B) ∈ R}. However, to keep
θ “simple” we explore more systematically the sets that can
break I in order to find simple ones. In a nutshell, we enumer-
ate all the sets in {S ⊂ A \B : (A,B) ∈ C or (B,A) ∈ C}.
Indeed, each of these subsets may change the scores of sets
appearing in C and hence break the certificate I .

4.2 The Unifying Model
Instead of predicting A�B if A�Rθ B for all θ ∈Θmin

R , we
consider a single set θ “synthesizing” Θmin

R and infer prefer-
ences from it, because they are more easily explainable. An
intuitive idea consists of taking the union of all the simplest
θ. We call this model unifying model and denote it by θ∗R :

θ∗R = ∪θ∈Θmin
R
θ.

Using the unifying model, we guarantee not to contradict the
preferences that are compatible with all the θ in Θmin

R .
Proposition 3. Let R be the set of observed preferences
on the elements of A, let Θmin

R be the set of simplest θ-
models compatible with R and θ∗R = ∪θ∈Θmin

R
θ, then ∀θ ∈

Θmin
R ,∀A,B ∈ A

A �Rθ∗R B ⇒ A �Rθ B.
Unfortunately the inverse is not true, i.e, it is possible that

A �Rθ B for θ ∈ Θmin
R but not A �Rθ∗R B. Example 7 in ap-

pendix illustrates this point.

5 Numerical Tests
Numerical tests were carried out on Google Colab (2 virtual
CPU at 2.2GHz, 13GB RAM). The objective of these tests
is twofold: 1) evaluating the accuracy rate of the predictions,
namely the number of correct pairwise preference predictions
over the total number of predicted preferences, if the set θ is
known beforehand; 2) evaluating the same metric if the set θ
is unknown beforehand and learned with Algorithm 1.

3This can be thought of as solving a separation problem, by pro-
viding an hyperplane separating I from the polytope of D2F .

5.1 The Tier List Framework
We place ourselves in an elicitation context where each query
consists in asking the DM to position an alternative in a tier
list of ordered classes (i.e., the worst alternatives in category
1, the second worst alternatives in category 2, etc.). Formally,
we assume that the user gives us access to a function γ : A →
N that associates each alternative to a class in the tier list such
that γ(A) > γ(B) ⇒ A � B. Note that γ(A) = γ(B) does
not mean here that A and B are indifferent, but that the user
do not know how to compare them.

Positioning one alternative in the tier list allows us to inter-
actively collect numerous strict pairwise preference relations
while keeping a low cognitive burden compared to asking for
pairwise comparisons or for scores (one score per alternative).

5.2 Synthethic Generation of a Tier List
This section details our simulation of the creation of a tier list
from a θ-additive function modeling the DM’s preferences.

Sampling a θ-additive Function fθ,u
For sampling a function fθ,u, we first sample a set θ and
then sample parameters uS for S ∈ θ. More precisely, the
generation of θ is achieved as follows. First, θ is initialised
as the set of singletons {a1}, {a2}, . . . , {an}, then we add
bα× (2|F|−|F|)c subsets of attributes, where the coefficient
α∈ [0, 1] makes it possible to control the model’s complexity:
for α=0, only the singletons are in θ, which yields the simple
additive utility model, and for α= 1, all subsets of attributes
are present, with yields the most general utility model. Each
subset S is sampled according to a parameter p∈(0, 1]:

1. Initialize S as a singleton by uniformly sampling in F .
2. Uniformly sample another attribute in F and add it to S.
3. Exit this process if S=F .
4. Exit this process with a probability p otherwise go to 2.

The expected size of each S we add can be approximated by:

E[|S|] = 2 + (1− p− (1− p)n−1)/p.

Table 1 gives some hint of the expected size of each S ac-
cording to p. Once θ is set, we sample the parameters uS for
each S∈θ with a normal distribution N (0, σ). The sampling
of fθ,u thus depends on three parameters p, α and σ. In the
tests, p varies in [0.1, 0.9], α in [0.1, 0.5], and we set σ=100.

p 0.2 0.4 0.6 0.8 1
E[|S|] 3.95 3.18 2.62 2.25 2.00

Table 1: Expected size of subsets S w.r.t. p.

Example 5. If n=4, p=0.3, α=0.1, then b0.1(25−5)c=2
subsets S are sampled in addition to the singletons. This may
yield the parameter values given in Table 2.

Subset Value Subset Value
{0} 148.85 {4} 191.00
{1} 186.75 {1,3,4} -26.80
{2} 90.60 {0,2} 80.24
{3} -86.12

Table 2: Example of parameter values.



From fθ,u to a Tier List
The function γ : A → N that simulates the user assign-
ment of alternatives into a tier list, called tier function here-
after, relies on a parameter t representing the number of cat-
egories. The range of scores fθ,u(A) =

∑
S∈θ uSIA(S) of

alternatives A is partitioned into t equally-sized intervals be-
tween the min score f0 =minA∈A fθ,u(A) and the max score
ft=maxA∈A fθ,u(A). The function γ is then defined by:

γ(A) = min{1 ≤ k ≤ t : fθ,u(A) ≤ uk}.

Put another way, we associate to each subset the interval
where its utility lies. In general, the more categories we add,
the less incomparabilities we will have (alternatives assigned
to the same category), but the user will have to make more
efforts to assign the alternatives to categories.
Example 6. Coming back to Example 5, let A = {0, 1}n.
Then maxA∈A fθ,u(A) = 616.41 and minA∈A fθ,u(A) =
−86.12. Assume that one partitions into t = 3 categories.
The intervals are then [−86.12, 148.05], (148.05, 382.23]
and (382.23, 616.41]. Subset {1, 2, 3} is then assigned to cat-
egory 2 because its utility 191.23 belongs to (148.05, 382.23].

5.3 Baseline Models
In the following, the ordinal model studied in the paper is
denoted by ORD. In this part, we will briefly introduce the
baseline models to which ORD is compared.
Linear Programming Model (LPM). As a first baseline
model, we compare our approach with the model consisting
in setting parameters uS at their optimal values for the linear
program Pθ of page 4, and predicting thatA�B if fθ,u(A)>
fθ,u(B). In the experiments, if θ is known beforehand, only
the constraints set of Pθ grows, while if θ is unknown, both
the variables and the constraints may change when R grows.
Support Vector Machine (SVM). This baseline model is
inspired by an approach proposed by Domshlak and Joachims
[2005]. An SVM approach is a supervised learning method
for binary classification: each example in the dataset is la-
beled by 0 or 1; an SVM is learned from the dataset, from
which labels are inferred for new examples. In our set-
ting, each preference A � B in R yields two examples: a
(2m+1)-dimensional vector (vθA, v

θ
B , 1) and another vector

(vθB , v
θ
A, 0). That is, the third component of (vθA, v

θ
B , c) is

c = 1 if A is preferred to B, and c = 0 if it is not. Note
that, when inferring labels (and thus predicting preferences),
it may happen that (vθA, v

θ
B) and (vθB , v

θ
A) get the same label

(0 or 1). In this case, no strict preference is predicted.

5.4 Experiment with a Known θ
In the first experiment, we compared the two above baseline
models with our ordinal model when the θ used to generate
the tier function γ is known beforehand.
Used metrics. To evaluate the accuracy of each model, we
rely on the following measures:

• Correct answers (C): an inferred preference A � B is
said to be correct if γ(A)>γ(B).

• Wrong answers (W): an inferred preference A � B is
said to be wrong if γ(A)<γ(B).

Given a model (ORD, LPM or SVM), a preference betweenA
and B is inferred if the preference is not already present in R
and the model states that A�B or B�A (but not both). We
denote by T the total number of inferred preferences. Note
that C+W ≤ T because it may happen that γ(A) = γ(B).
The Absolute Correct Rate (ACR) is defined from T and C:

ACR = C/T

Experimental setting. The experiment was conducted with
|F|= 5, t= 12 σ = 100, and two sets of parameters (α, p),
namely (α, p) = (0.1, 0.9) and (α, p) = (0.3, 0.7). Roughly
speaking, the former set of parameters generates tier func-
tions with low interactions, while the latter generates tier
functions with high interactions. For each couple (α, p), we
sample three random tier functions and, for each one, we train
each model with a budget of 25 assignments to categories.
The test examples are generated as follows: we randomly
sample 10 alternatives A1, . . . , A10 in A and we consider
all pairs {Ai, Aj} for i 6= j. We count the number T of in-
ferred preferences for these pairs, and we evaluate the ACR.
To smooth the results, they are averaged over 10 different tier
functions, and 5 samples of ten alternatives for each of them.

Results and discussion. The results are presented in Fig-
ures 1 and 2, where the x-axis gives the size of the training
set and the curves show the mean and 95% confidence inter-
val. The curves show how the average number of inferred
preferences and the average ACR evolve with the size of the
training set (from 1 to 25 assignments of alternatives to cat-
egories). In both figures, we see that the number of inferred
preferences grows more slowly with ORD than with LPM and
SVM, in accordance with the principle of cautious learning.
However, the accuracy is better, as reflected by the curve of
ACR for ORD that is consistently above the curves obtained
for LPM and SVM. As one could expect, when the interac-
tions are high (Figure 2), and thus the number of parameters
uS is significant, a larger learning set is required to make it
possible to infer numerous pairwise preferences with ORD.
Note that, when the number of assignments available in the
training set is low, the confidence interval for the curve of
ACR for ORD is wide. This is related to the fact that few pref-
erences are inferred and therefore a wrong prediction drasti-
cally change the ACR. However, after 15 assignments, the
number of inferred preferences becomes higher, and the ACR
for ORD outperforms the ACR for LPM and SVM. Compar-
ing Figure 1 and Figure 2, we can even see that, after 25 as-
signments, the difference in ACR is greater with high inter-
actions than with low interactions. We ascribe this to the fact
that the three models behave similarly with low numbers of
parameters uS (|θ| not far from n) because the polyhedron of
compatible utilities is small. We also notice in the two figures
that the number of inferred preferences is always greater with
LPM and SVM than with ORD. Put another way, ORD repre-
sents a different trade-off between the number of preferences
that can be predicted and their accuracy.

5.5 Experiment with an Unknown θ
In this section, we investigate the behavior of the models
when θ is learned at the same time as parameters uS (∀S∈θ).



Figure 1: T (top) and ACR (bottom) with ORD (green), LPM (blue)
and SVM (orange) for a known θ and (α, p, t)=(0.1, 0.9, 12).

Figure 2: T (top) and ACR (bottom) with ORD (green), LPM (blue)
and SVM (orange) for a known θ and (α, p, t)=(0.3, 0.7, 12).

Experimental setting. The experimental setting is similar
to the previous one, except that the number of categories in
the tier lists is set to t= 9. For all models (ORD, LPM and
SVM), the set θ is updated after each assignment of an alter-
native to a category, by using Algorithm 1.

Results and discussion. The results are presented in Fig-
ures 3 and 4, with the same conventions as above. Similarly
to the case of a known θ, we see that model ORD outper-
forms models LPM and SVM in terms of accuracy. We notice
small irregularities in the inferred preferences curve of ORD,
due to the fact that ORD infers less preferences each time θ
is updated because the polyhedron of compatible parameters
expands when dimensions are added (corresponding to new
subsets in θ). Figure 5 shows the result of another experiment
where the models are trained twice: once using the actual θ
used to generate the synthetic preferences in R, and a second
time using the θ obtained by computing a unifying model (see
Section 4.2). Interestingly, both learning curves are close to
each other, which tends to show that the learned θ is relevant.

6 Conclusion
We have presented here a “cautious” method for learning
pairwise multiattribute preferences. The model we use is not
restrictive, in the sense that any preference relation on the
space of alternatives can be represented. The learning method

Figure 3: T (top) and ACR (bottom) with ORD (green), LPM (blue)
and SVM (orange) for an unknown θ and (α, p, t)=(0.1, 0.9, 9).

Figure 4: T (top) and ACR (bottom) with ORD (green), LPM (blue)
and SVM (orange) for an unknown θ and (α, p, t)=(0.3, 0.7, 9).

Figure 5: Number of inferred preferences and ACR with the real θ
(in orange) and with θ∗R (in blue), for (α, p, t)=(0.3, 0.7, 9).

achieves a trade-off between the number of predicted prefer-
ences and the accuracy of the predictions, by relying on an
ordinal dominance relation between alternatives.

Several research directions are worth investigating, among
which the adaptation of the approach to an active learning set-
ting where one interactively determines a sequence of queries
to minimize the cognitive burden for a DM, or the examina-
tion of other definitions of the set Θmin

R of simplest models
compatible with R.
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Appendix
Proposition 1. Given a set R of strict pairwise comparisons,
and θ ∈ ΘR, if R′ ⊆ R, then we have: (i) θ ∈ ΘR′ ; (ii)
A�R′θ B⇒A�Rθ B; (iii) A�Rθ B⇒¬(B �R′θ A).

Proof. (i) If all the preferences in R can be represented by a
θ-additive function, then so can the preferences in R′ as R′ is
compounded of a subset of the preferences in R.

(ii) If the preferences in R′ imply that A should be nec-
essarily strictly preferred to B, then R will imply the same
condition as R also contains the same preference constraints
as in R′.

(iii) The contrapositive is proved as follows: B�R′θ A⇒
B �Rθ A by (ii), and B �Rθ A⇒¬(A �Rθ B) because strict
preferences are asymmetrical.

Proposition 2. For θ, θ′ ∈ ΘR, if θ′ ⊆ θ, then we have: (i)
A�Rθ B⇒A�Rθ′B; (ii) A∼Rθ′B⇒A∼Rθ B; (iii) A�Rθ′B⇒
¬(B�Rθ A).

Proof. (i) is true because if fθ,u(A) > fθ,u(B) for all u ∈
UθR, then we should also have fθ′,u(A) > fθ′,u(B) for all
u ∈ Uθ′R . Indeed, each element of Uθ

′

R can be seen as a utility
function in UθR in which the parameters uS are set to 0 for
S ∈ θ \ θ′.

(ii) follows by a similar argument as for (i).
(iii) The contrapositive is proved as follows: B �Rθ A⇒

B �Rθ′ A by (i), and B �Rθ′ A⇒¬(A �Rθ′ B) because strict
preferences are asymmetrical.

Example 7. Let’s take A = {0, 1}4 (F = {a1, a2, a3, a4})
and observed preferences R as in the following:

(1, 1, 1, 0) � (0, 0, 0, 1) � ∅ � (0, 1, 1, 0).

We have Θmin
R = {θ1, θ2} with θ1 = {a1, a3, a4}, θ2 =

{a1, a2, a4}, and thus θ∗ = {a1, a2, a3, a4}.
The polyhedron resulting from θ1 is:

u1 + u3 > u4

u1 + u3 > 0

u1 > 0

u4 > 0

u4 > u3

0 > u3

From u3 < 0 and u1 + u3 > 0 it results that u1 > 0 and
since u2 =0 because a2 6∈θ1 we have

(1, 0, 0, 0)�Rθ1 (0, 1, 0, 0).

The polyhedron resulting from θ2 is:

u1 + u2 > u4

u1 + u2 > 0

u1 > 0

u4 > 0

u4 > u2

0 > u2

From u2<0 and u1>0 we have

(1, 0, 0, 0) �Rθ2 (0, 1, 0, 0).

Hence, (1, 0, 0, 0) is strictly preferred to (0, 1, 0, 0) for
both �Rθ1 and �Rθ2 .

Yet, the polyhedron resulting from θ∗ is

u1 + u2 + u3 > u4

u1 + u2 + u3 > 0

u1 > 0

u4 > 0

u4 > u2 + u3

0 > u2 + u3

And we can verify that

u = {u1 = 3;u2 = 5;u3 = −6;u4 = 1} ∈ Uθ
∗

R

and since fθ∗,u(0, 1, 0, 0) > fθ∗,u(1, 0, 0, 0) the preference
(1, 0, 0, 0) �Rθ∗ (0, 1, 0, 0) does not hold while (1, 0, 0, 0) is
strictly preferred to (0, 1, 0, 0) for both �Rθ1 and �Rθ2 .
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