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Abstract

Static analysis has evolved to be a standard method in the soft-

ware development and verification process. Its formal method,

Abstract Interpretation, is one of verification methods covered

by the Formal Methods Supplement DO-333 of the DO-178C

standard. Static program analysis can contribute to numerous

verification goals of DO-178C at various stages of the devel-

opment process. The main focus of static analysis methods are

non-functional software quality hazards, e.g., violations of cod-

ing guidelines, violations of software architecture constraints,

violations of resource bounds such as stack overflows and real-

time deadlines, runtime errors, and data races. This article gives

a brief overview of abstract interpretation and its applications

to detect different classes of safety hazards. We will review

the requirements of DO-178C/DO-333, from High-Level Re-

quirements to requirements for verification of Executable Ob-

ject Code, and pinpoint aspects that can be covered by static

analysis methods. The article concludes with illustrating the

relevant requirements for DO-330-compliant tool qualification

of static analysis tools.

Keywords: DO-178C, DO-330, DO-333, certification, static analysis,

abstract interpretation, tool qualification

1 Introduction

Some years ago, static analysis meant manual review of pro-

grams. Nowadays, automatic static analysis tools have been

established in modern software development processes as they

offer a tremendous increase in productivity by automatically

checking the code under a wide range of criteria. Here, the term

static analysis is used to describe a variety of program analy-

sis techniques with the common property that the results are

only based on the software structure. No execution of the pro-

gram under analysis is needed. Static analysis can be applied

to any kind of program representation, from the model level or

the source code level to the executable object code level.

An important distinction of static analysis methods is the

complexity of the program properties they aim at determining

and the level of rigor at which they operate. In the simplest

form, static analysis is focused on the program syntax: purely

syntactical methods can be applied to check syntactical cod-

ing rules as contained in coding guidelines, such as MISRA C

[39], SEI CERT C [44], or the Common Weakness Enumera-

tion (CWE) [46]. They aim at a programming style that im-

proves clarity and reduces the risk of introducing bugs. Com-

pliance checking by static analysis tools has become common

practice.

Syntactic rules play an important part in coding standards as

they are easy to take into acccount while implementing code,

and easy to check. However, ultimately, the objective is to pre-

vent code defects which means that semantical properties have

to be considered. To that end semantics-based static analyzers

are needed which focus on the program semantics and com-

pute invariants about variable values, pointer targets, etc. This

is also relevant for coding standard compliance checking, since

all commonly used coding guidelines also include semantical

rules.

Depending on the level of rigor, semantics-based methods

can be grouped into unsound and sound approaches, the es-

sential difference being that when a sound method reports the

property under analysis – such as freedom of runtime errors – as

satisfied, this is guaranteed to be true. Abstract interpretation

is a formal method for sound semantics-based static program

analysis [9]. It supports formal correctness proofs: it can be

proved that an analysis will terminate and that it is sound in

the sense that it computes an over-approximation of the con-

crete program semantics. Abstract interpretation always pro-

vides full data and control coverage.

As of today, abstract interpretation-based static analyzers are

most widely used to determine non-functional software quality

properties [20, 17]. On the one hand that includes source code

properties, such as compliance to coding guidelines, compli-

ance to software architectural requirements, as well as absence

of runtime errors and data races [24]. On the other hand also

low-level code properties are covered such as absence of stack

overflows and violation of timing constraints [21, 28].

Violations of non-functional software quality requirements

often either directly represent safety hazards and cybersecurity

vulnerabilities in safety- or security-relevant code, or they can

indirectly trigger them. Hence they are invariably addressed

by verification obligations in current safety and security norms,

such as DO-178C [40], IEC-61508 [13], ISO-26262 [14], and

EN-50128 [8].

In this article we will focus on the DO-178C standard [40], its

formal method supplement DO-333 [41], and the DO-330 [42]

which details the tool qualification requirements to be taken

into account. We will review the software requirements and

verification goals that are amenable to static analyses and hence

identify the certification credits that can be obtained by apply-

ing different static analysis methods at different levels of the

development process. Sec. 2 walks through the DO-178C norm

and highlights the relevant software requirements and verifica-

tion objectives. Sec. 3 illustrates the methodology of static pro-

gram analysis and presents the fundamentals of its application
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to compute various non-functional software properties. Sec. 4

then summarizes the verification goals supported by the vari-

ous applications of static analysis. A brief overview of the tool

qualification requirements relevant to static program analysis

tools is given in Sec. 5, and Sec. 6 concludes.

2 DO-178C / DO-333

The DO-178C [40], published in December 2011, is a revision

of DO-178B to take progress in software development and ver-

ification technologies into account. In general, the DO-178C

aims at providing “guidance for determining, in a consistent

manner and with an acceptable level of confidence, that the

software aspects of airborne systems and equipment comply

with airworthiness requirements.” It specifically focuses on

model-based software development, object-oriented software,

the use and qualification of software tools and the use of for-

mal methods to complement or replace dynamic testing. Each

of these key aspects is addressed by a dedicated supplement

which modifies, complements, and completes the DO-178C

core document. The supplements “should be used with and in

the same way” as the core document [40]. In this overview we

will specifically focus on the DO-178C core document and DO-

333 (Formal Methods Supplement to DO-178C and DO-278A)

[41].

The DO-178C first discusses general system aspects which

are relevant for software development and defines the software

life cycle processes, which then are addressed in turn: the soft-

ware planning, development, and verification processes, as well

as the configuration management, quality assurance, and certi-

fication processes. The norm also details the software life cy-

cle data and addresses additional considerations, such as tool

qualification requirements. In this section we will follow that

structure and pinpoint the respective requirements and verifi-

cation objectives amenable to static analysis techniques. Con-

siderations for formal methods are addressed at the end of this

section, tool qualification is addressed in Sec. 5.

2.1 System Aspects

System aspects relevant for software development include

functional and operational requirements, performance require-

ments and safety-related requirements, including design con-

straints and design methods, in particular partitioning (cf.

Sec. DO.2.1 of DO-178C [40]). The norm emphasizes that

timing and performance characteristics require special atten-

tion since they affect the system software and the software-

hardware boundaries and have to be included in the respective

information flows.

The DO-178C defines five software levels (criticality levels)

ranging from Level A (most critical) to Level E (least critical).

According to Sec. DO.2.3 only partitioned software compo-

nents can be assigned individual software levels by the system

safety assessment process. Sec. DO.2.4, Architectural Consid-

erations, states that “if partitioning and independence between

software components cannot be demonstrated, all components

are assigned the software level associated with the most severe

failure condition to which the software can contribute”. The

standard defines partitioning as a “technique for providing iso-

lation between software components to contain and/or isolate

faults and potentially reduce the effort of the software verifi-

cation process”. Among others, a partitioned software compo-

nent “should not be allowed to contaminate another partitioned

software component’s code, input/output, or data storage ar-

eas”, and it “should be allowed to consume shared processor

resources only during its scheduled period of execution”. Thus,

freedom of interference, both in the spatial and the temporal

domain, is recognized as an important architectural property.

2.2 Software Planning & Development Process

In Sec. DO.4.4.2, Language and Compiler Considerations,

the DO-178C points out that the software verification process

needs to consider particular features of the programming lan-

guage and compiler. In Sec. DO.4.5 the use of Software De-

velopment Standards is demanded which include Software De-

sign Standards and Software Code Standards. One of the goals

is to “disallow the use of constructs or methods that produce

outputs that cannot be verified or that are not compatible with

safety-related requirements”. The defined Software Develop-

ment Standards have to be taken into account during software

design and coding (cf. Sec. DO.5.2.2 and Sec. DO.5.3.2).

The Software Design Standards are defined to focus on al-

gorithmic constraints like exclusion of recursion, dynamic ob-

jects, or data aliases (cf. Sec. DO.11.7e). They should also

include complexity restrictions like maximum level of nested

calls, use of unconditional branches, or number of entry/exit

points of code components (cf. Sec. DO.11.7f).

The Software Code Standards focus on the programming

language. They identify the programming language to be

used and should define a safety-oriented language subset (cf.

Sec. DO.11.8a). To improve readability (and hence verifiabil-

ity) they should cover style rules like length restrictions, in-

dentation, and documentation rules (cf. Sec. DO.11.8c), and

impose further constraints on code complexity, e.g., regard-

ing the complexity of logical and numerical expressions (cf.

Sec. DO.11.8d).

2.3 Software Verification Process

Like the DO-178B, the DO-178C addresses the incompleteness

of testing techniques: “Verification is not simply testing. Test-

ing, in general, cannot show the absence of errors”. Since for-

mal methods are sound they can completely satisfy some verifi-

cation objectives while for others additional verification such as

complimentary testing may be necessary. Purpose and objec-

tive of the software verification process are defined in the same

way as in the DO-178B: The purpose of the software verifica-

tion process is to detect and report errors that may have been in-

troduced during the software development processes. Removal

of the errors is an activity of the software development pro-

cesses. The general objectives of the software verification pro-

cess are to verify that the requirements of the system level, the

architecture level, the source code level and the executable ob-

ject code level are satisfied, and that the means used to satisfy

these objectives are technically correct and complete.

As described in Sec. 2.1 non-functional software properties

can affect the system and the software level, and consequently,
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they are addressed at all levels of the software verification pro-

cess. Design constraints may apply to ensure verifiability of the

software.

The software verification process comprises reviews and

analyses of high-level requirements, low-level requirements,

the software architecture, the source code, and requires testing

or formal analysis of the executable object code. One common

verification objective at all levels is to demonstrate the compli-

ance with the requirements of the parent level. As the system

requirements include performance and safety-related require-

ments non-functional aspects like timing or storage usage can

impact all stages. Consequently, the compatibility with the tar-

get computer is a verification objective among the high-level

requirements, the low-level requirements, and at the software

architecture level.

According to Sec. DO.6.2 the software verification activi-

ties have to address the “accuracy, completeness, and verifia-

bility of the software requirements, software architecture, and

Source Code”. In particular objective 6.3.2.d for reviews and

analysis of low-level requirements demands to ensure that each

low-level requirement can be verified. Objective 6.4.3.e de-

mands to ensure that the Software Design Standards were fol-

lowed during the software design process and that deviations

from the standards are justified. Also during review and analy-

ses of source code (Sec. DO.6.3.4) the Software Development

Standards have to be addressed. Objective 6.3.4.c which aims

at verifiability demands to ensure that no statements and struc-

tures that cannot be verified are contained in the Source Code.

Objective 6.3.4.d demands to show conformance to the Soft-

ware Code Standards defined, e.g., that complexity limits have

been considered. Deviations from the standards have to be jus-

tified.

In Sec. DO.6.3 of [40] the system response time is given

as an example of target computer properties relevant for

high-level requirements and low-level requirements. Com-

puting the response time requires the worst-case execution

time to be known. At the source-code level the objective

accuracy and consistency explicitly includes determining the

worst-case execution time, the stack usage, and runtime er-

rors (memory usage, fixed-point arithmetic overflow and reso-

lution, floating-point arithmetic, use of uninitialized variables).

All these characteristics can be checked using formal analysis

(cf. Sec. FM.6.3.4 of [41]).

The data and control flow of the software is of crucial im-

portance for the verification of functional and non-functional

correctness properties. In the DO-178C, the verification goal

6.3.3.b (Consistency) demands that “a correct relationship ex-

ists between the components of the software architecture. This

relationship exists via data flow and control flow.” It is comple-

mented by the verification goal of Sec. DO.6.3.4.b (Compliance

with the software architecture) which demands to “ensure that

the source code matches the data flow and control flow defined

in the software architecture”. Obviously the data and control

flow of the implemented software must match the intended data

and control flow as specified in the software architecture, and

unintended data and control flow must be avoided. In particu-

lar, this implies demonstrating freedom of interference between

software components in mixed-criticality software. In addition,

the data and control flow also determines the required effort for

functional testing. In DO-178C, Objective 8 of Annex A Table

A-7 requires that “Test coverage of software structure (data and

control coupling) is achieved”, referencing Sec. DO.6.4.4.2.c

which states that structural coverage analysis should “confirm

that the requirements-based testing has exercised the data and

control coupling between code components”. An in-depth dis-

cussion of data and control coupling analysis is given in [25].

Worst-case execution time and worst-case stack usage have

to be considered at the Executable Object Code level. The rea-

son is that the impact of the compiler, linker, and of hardware

features on the worst-case execution time and stack usage has

to be assessed. Both can be checked by formal analyses at the

Executable Object Code level (cf. Sec. FM.6.7 of [41]). Run-

time errors also can be addressed at the Executable Object level,

e.g. to deal with robustness issues like out-of-range loop values

and arithmetic overflows (cf. Sec. FM.6.7.b of [41]), or to ver-

ify the software component integration. The latter implies, e.g.,

detecting incorrect initialization of variables, parameter passing

errors, and data corruption.

At the Executable Object Level complimentary testing is still

required, e.g., to address transient hardware faults, or incorrect

interrupt handling (cf. Sec. DO.6.4.3. of [40]). Formal analysis

performed at the source code level can be used for verification

objectives at the executable object code if property preservation

between source code and executable code can be demonstrated

(cf. Sec. FM.6.7.f of [41]).

2.4 Formal Methods (DO-333)

[41] defines formal methods as “mathematically based tech-

niques for the specification, development, and verification of

software aspects of digital systems”. It distinguishes three cat-

egories of formal analyses: deductive methods, such as theorem

proving, model checking, and abstract interpretation. The com-

putation of worst-case execution time bounds and the maximal

stack usage are listed as reference applications of abstract in-

terpretation. The importance of soundness is emphasized: “an

analysis method can only be regarded as formal analysis if its

determination of a property is sound. Sound analysis means

that the method never asserts a property to be true when it is

not true.”

Regarding the applicability of formal methods, the DO-333

states that “formal methods provide comprehensive assurance

of particular properties only for those aspects that are formal-

ized in the formal model, so defining the limits of the model is

essential.” Formal analyses at the source code level have to be

based on a formal source code semantics. For formal analyses

done at the object code level, the object code becomes a for-

mal model the semantics of which are treated as they are by the

target hardware. When formal analysis is used to meet a veri-

fication objective, it has to be ensured that each formal method

used is correctly defined, justified, and appropriate to meet this

verification objective (cf. Sec. FM.6.2.1 of [41]):

• all notations used for formal analysis should be formal no-

tations
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• the soundness of each formal analysis method should be

justified

• all assumptions related to each formal analysis should be

described and justified; for example assumptions associ-

ated with the target computer or about the data range lim-

its.

At the Executable Object Level, coverage analysis depends

on whether formal methods are used to complement or to re-

place dynamic testing methods. When any low-level testing is

used to verify low-level requirements for a software component

then the entire software component will be subject to test cover-

age analysis consisting of requirements-based coverage analy-

sis and structural coverage analysis. Requirements-based cov-

erage analysis establishes that verification evidence exists for

all of the requirements of the system. Structural coverage anal-

ysis is necessary since no exhaustive testing is achievable and

used to ensure that the testing performed is rigorous and suf-

ficient (cf. Sec. DO.6.4. of [40], Sec. FM.6.7.1 of [41], and

Sec. FM.12.3.5 of [41]).

When only formal methods are used to verify requirements

for a software component, a different coverage analysis for that

component has to be performed, consisting of the following

steps (cf. Sec. FM.6.7.2 of [41]):

• requirements-based coverage analysis to determine how

well the implementation of the software requirements has

been verified.

• complete coverage of each requirement to ensure that all

assumptions made during the formal analysis are verified.

If the assumptions are all verified then the formal analysis

can give complete coverage of each requirement.

• completeness of the set of requirements

• detection of unintended dataflow relationships

• detection of extraneous code, including dead code and de-

activated code

• review and analyses of the formal analysis cases, proce-

dures, and results for the executable object code.

3 Static Analysis & Abstract

Interpretation

Static analysis often is perceived as a technique for source code

analysis at the programming language level, but it can also be

applied at the binary machine code level. In that case it does

not compute an approximation of a programming language se-

mantics, but an approximation of the semantics of the machine

code of the microprocessor.

The theory of abstract interpretation [9] is a mathematically

rigorous formalism providing a semantics-based methodology

for static program analysis. The semantics of a programming

language is a formal description of the behavior of programs.

The most precise semantics is the so-called concrete semantics,

describing closely the actual execution of the program. Yet in

general, the concrete semantics is not computable. Even under

the assumption that the program terminates, it is too detailed to

allow for efficient computations. The solution is to introduce an

abstract semantics that approximates the concrete semantics of

the program and is efficiently computable. This abstract seman-

tics can be chosen as the basis for a static analysis. Compared

to an analysis of the concrete semantics, the analysis result may

be less precise but the computation may be significantly faster.

Abstract interpretation based static analyzers have been demon-

strated to scale up to industry-size software projects containing

millions of line of code [27, 30].

In the remainder of this section we will describe how static

analysis, and abstract interpretation in particular, can be ap-

plied to code guideline checking, software architecture analy-

sis, runtime error analysis, and to determine worst-case stack

usage and worst-case execution times. Code guideline check-

ing, software architecture analysis and run-time error analysis

operate at the source code level. Worst-case stack usage anal-

ysis and worst-case execution time analysis are performed at

the binary level, because they have to take the instruction set

and hardware architecture into account. As explained above, a

sound analysis computes a safe over-approximation of the con-

crete semantics and reports any potential defect of the defect

classes under analysis:

• For worst-case execution time analysis soundness means

that the reported WCET is never below the actual exe-

cution time in some execution environment. Overestima-

tions may occur.

• In the same way, the computed stack height must never be

below the stack usage in any concrete execution. Overes-

timations may occur.

• For run-time error analysis soundness means that the anal-

ysis never omits to signal an error that can appear in some

execution environment. False alarms may occur.

3.1 Code Guideline Checking

Coding guidelines aim at improving code quality and can be

considered a prerequisite for developing safety- or security-

relevant software. In particular, obeying coding guidelines is

strongly recommended by all current safety standards. The

norms do not enforce compliance to a particular coding guide-

line, but define properties to be checked by the coding stan-

dards applied. As an example, the ISO 26262 gives a list of

topics to be covered, including enforcement of low complex-

ity, enforcing usage of a language subset, enforcing strong typ-

ing, and use of well-trusted design principles (cf. [15], Table

1). The language subset to be enforced should exclude, e.g.,

ambiguously defined language constructs, language constructs

that could result in unhandled runtime errors, and language

constructs known to be error-prone. As discussed in Sec. 2 the

DO-178C is less prescriptive, but mandates coding guidelines

nontheless.

There is a variety of code guidelines, in particular for C and

C++, which are widely used in industry. The most prominent

guidelines for C are MISRA C:2012 [39], ISO/IEC TS 17961
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[16], the SEI CERT C Coding Standard [44], and the MITRE

Common Weakness Enumeration CWE [46]. Prominent cod-

ing standards for C++ include MISRA C++:2008 [38], the SEI

CERT C++ Coding Standard [43], the C++ Core Guidelines

[7], the Adaptive AUTOSAR C++ Coding Guidelines [4], and

the Joint Strike Fighter Air Vehicle C++ Coding Standards [34].

However, as of 2021, the discussion which C++ language fea-

tures should be admitted to which extent for safety-critical soft-

ware projects, is in full swing, and there is no clear consensus

yet [19].

Most coding guidelines try to make coding rules easy to fol-

low for programmers, and easy to check by automatic tools,

hence, many coding rules are formulated at the syntactic level.

They can be addressed by static analyzers operating purely on

the program syntax.

However, obeying syntactic coding guidelines can reduce the

risk of programming errors but not prevent them. Hence, all

coding standards also explicitly contain semantic rules. These

rules require a deeper understanding of the code as they fo-

cus on semantical properties which requires knowledge about

variable values, pointer targets etc. To address such rules, and,

in consequence, identify semantical code defects, semantics-

based static analyses can be applied. Many semantical rules

are associated with runtime errors due to undefined or unspeci-

fied behaviors of the programming language used (cf. Sec. 3.5).

All safety norms, including DO-178C, consider demonstrating

the absence of such runtime errors explicitly as a verification

goal. They typically address general runtime errors (e.g., di-

vision by zero, invalid pointer accesses, arithmetic overflows),

and additionally consider corruption of content, synchroniza-

tion mechanisms, and freedom of interference in concurrent

execution. This is reflected, e.g., in MISRA C:2012, e.g., by

Rule 1.3. (goal: preventing undefined or critical unspecified

behavior) and Directive 4.1 (goal: minimization of run-time

failures)). Rule 1.3 and Directive 4.1 are examples for seman-

tical guidance.

In contrast to other coding standards, MISRA C provides a

clear classification which rules are based on semantic proper-

ties: typically such rules are labeled as system/undecidable.

This is important since – due to their inherent undecidability

– for semantical rules there cannot always be a correct and pre-

cise ”yes” or ”no” answer. As discussed above, there can al-

ways be false alarms (false positives), and, in case of unsound

analyzers, also missed defects (false negatives). Therefore, de-

velopers have to be aware of the class and the operational con-

text of the static analysis tool in use.

3.2 Software Architecture Analysis

All current safety norms require determining the data and con-

trol flow in the source code and making sure that it is compliant

to the intended control and data flow as defined in the software

architecture. In traditional static code analysis, data accesses

via pointer variables and control flow by function pointer calls

might be missed.

Using sound static analysis based on abstract interpretation, it

is possible to guarantee the absence of runtime errors that could

cause memory corruption and control flow corruption. Further-

more, it is possible to guarantee that in the analysis, all data

and function pointer targets are considered and that the possi-

ble data and control coupling is fully captured. This way, a safe

approximation of the data and control coupling between soft-

ware components can be determined. That makes it possible to

detect critical data and control flow errors and allows to com-

plement traditional code coverage criteria by the degree of data

and control coupling covered by the testing process, helping

to identify relevant previously untested scenarios. In addition,

freedom of spacial interference between software components

can be demonstrated at the source code level [25].

3.3 Stack Usage Analysis

In safety-critical systems, stack overflows can cause catas-

trophic damage. The run-time stack (often just called “the

stack”) typically is the only dynamically allocated memory

area. It is used during program execution to keep track of the

currently active procedures and facilitate the evaluation of ex-

pressions. The maximal stack usage has to be statically known:

at configuration time of the system sufficient stack space has to

be reserved for each task.

However, the stack height cannot be easily determined from

the source code, since it depends on the dynamic call depth

of functions, on compiler optimizations, and on link-time op-

timizations. Overestimating the maximum stack usage means

wasting memory resources. Underestimation can lead to stack

overflows where memory cells from the stacks of different tasks

or other memory areas are overwritten. This can cause crashes

due to memory protection violations and can trigger arbitrary

erroneous program behavior, if return addresses or other parts

of the execution state are modified. In consequence stack over-

flows are typically hard to diagnose and hard to reproduce, but

they are a potential cause of catastrophic failure. One exam-

ple is the series of accidents caused by unintended acceleration

of the 2005 Toyota Camry: the expert witness’ report commis-

sioned by the Oklahoma court in 2013 identifies a stack over-

flow as most probable failure cause [6, 47].

For safe stack size analysis, it is important to work on fully

linked binary code, since the effects of code generation – in-

serting padding bytes, register allocation, etc. – or link- time

optimizations have to be taken into account. Hence the static

stack usage analysis cannot be based on the source code but

must work on the executable machine code. It approximates the

semantics of the machine code of the microprocessor by using

an abstract model of the processor architecture. The abstract

model does not need to cover the entire state of the micropro-

cessor, only the parts affecting the stack space are needed. The

hardware state relevant for worst-case stack analysis includes

the processor registers and the memory cells. For a naive anal-

ysis, only the stack pointer register is needed, but for precise

results it is important to perform an elaborate value analysis on

the contents of processor register and memory cells.

In the following we will give an overview of the structure

and analysis phases of StackAnalyzer [2], which is an example

tool from this category. First, the control-flow graph is recon-

structed from the input file, the binary executable. Then a static

value analysis computes value ranges for registers and address
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ranges for instructions accessing memory. StackAnalyzer re-

ports computed branch and call instructions in case their tar-

gets cannot be automatically resolved by its value analysis, as

well as unbounded recursions. Missing information such as re-

cursion bounds and call targets can be manually specified in a

formal annotation language, AIS [21]. Function pointer targets

can also be automatically imported from an Astrée analysis.

By concentrating on the value of the stack pointer during value

analysis, StackAnalyzer computes how the stack increases and

decreases along the various control-flow paths. This informa-

tion can be used to derive the maximum stack usage of the en-

tire task. StackAnalyzer takes the entire application into ac-

count and interprocedurally analyzes each call site with its pre-

cise stack height. The results of StackAnalyzer are presented

as annotations in a combined call graph and control-flow graph.

It shows the critical path, i.e., the path on which the maximum

stack usage is reached which gives important feedback for op-

timizing the stack usage of the application under analysis. Ex-

perimental results show that the analysis is fast and precise so

that only few explicit annotations are needeed [21].

3.4 Worst-Case Execution Time Analysis

In real-time systems the overall correctness depends on the cor-

rect timing behavior: each real-time task has to finish before its

deadline, hence, reliable bounds of the worst-case execution

time (WCET) of real-time tasks have to be determined.

With end-to-end timing measurements timing information is

only determined for one concrete input. Due to caches and

pipelines the timing behavior of an instruction depends on the

program path executed before. Therefore, usually no full test

coverage can be achieved and there is no safe test end crite-

rion. Techniques based on code instrumentation modify the

code which can significantly change the cache and pipeline be-

havior (probe effect): the times measured for the instrumented

software do not necessarily correspond to the timing behavior

of the original software.

One safe method for timing analysis is static analysis by Ab-

stract Interpretation which provides guaranteed upper bounds

for WCET of tasks. Static WCET analyzers are available for

complex processors with caches and complex pipelines, and, in

general, support both single- and multi-core processors. A pre-

requisite is that good models of the processor/System on-Chip

(SoC) architecture can be determined. However, there are mod-

ern high performance SoCs which contain unpredictable and/or

undocumented components that influence the timing behavior.

Analytical results for such processors are unrealistically pes-

simistic.

A hybrid WCET analysis combines static value, loop and

path analysis with measurements to capture the timing behav-

ior of tasks. Compared to end-to-end measurements the advan-

tage of hybrid approaches is that measurements of short code

snippets can be taken which cover the complete program under

analysis. Based on these measurements a worst-case path can

be computed.

In the following we will focus on applications of static anal-

ysis to WCET computation and illustrate the basic principles to

establish their contribution to verification goals of DO-178C.

For an overview of methods and tools for WCET analysis we

refer to [48] , and recommend [33] for a general survey on

methods for timing analysis on multi-core processors.

3.4.1 Timing Predictability

In general, a system is predictable if it is possible to predict

its future behavior from the information about its current state

[5]. The primary sources of uncertainty in execution time of an

instruction sequence are the program input and the hardware

state in which its execution begins. Hardware-related timing

predictability can be expressed as the maximal variance in exe-

cution time due to different hardware states for an arbitrary but

fixed input. Analogously, software-related timing predictability

corresponds to the maximal variance in execution time due to

different inputs for an arbitrary but fixed initial hardware state.

Even in single-core processors timing predictability is com-

promised by performance-enhancing hardware mechanisms

like caches, pipelines, out-of-order execution, branch predic-

tion and other mechanisms for speculative execution, which can

cause significant variations in timing depending on the hard-

ware state. On multi-core architectures, in addition the inter-

core parallelism becomes relevant. To interconnect the several

cores, buses, meshes, crossbars, and also dynamically routed

communication structures are used. In that case, the interfer-

ence delays due to conflicting, simultaneous accesses to shared

resources (e.g. main memory) are the main cause of impreci-

sion.

3.4.2 Fully Static WCET Analysis

Static analysis by Abstract Interpretation can provide guaran-

teed upper bounds for WCET of tasks. Over the past decades,

a standard architecture has emerged [10, 12] which neither re-

quires code instrumentation nor debug information and is com-

posed of the following major building blocks:

Decoding: The instruction decoder identifies the machine in-

structions and reconstructs the call and control-flow graph.

To ensure safety of later analysis results, this graph itself

must be safe, i.e., all possible paths that can occur during

execution of the program must be represented.

Value analysis: Value analysis aims at statically determining

the contents of the registers and memory cells at each pro-

gram point and for each execution context. The results of

the value analysis are used to predict the addresses of data

accesses, the targets of computed calls and branches, and

to find infeasible paths caused by conditions that always

evaluate to true, or always evaluate to false in a specific

context.

Micro architectural analysis: The execution of a program is

statically simulated by feeding instruction sequences from

the control-flow graph to a micro-architectural timing

model which is centered around the cache and pipeline ar-

chitecture. It computes the system state changes induced

by the instruction sequence at cycle granularity and keeps

track of the elapsing clock cycles.
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Path analysis: Based on the results of the combined

cache/pipeline analysis the worst-case path of the ana-

lyzed code is computed with respect to the execution tim-

ing. The execution time of the computed worst-case path

is the worst-case execution time for the task.

A tool which implements this architecture is the static WCET

analyzer aiT [45]. It is available for a variety of microproces-

sors including multi-core processors which can be configured

in a timing-predictable way to avoid or bound inter-core inter-

ferences like Infineon AURIX TC27x [1].

3.4.3 Hybrid WCET Analysis

Hybrid WCET analysis tools combine static context-sensitive

path analysis with real-time instruction-level tracing to provide

worst-case execution time estimates. By its nature, an analysis

using measurements to derive timing information is aware of

timing interference due to concurrent execution and multi-core

resource conflicts, because the effects of asynchronous events

(e.g. activity of other running cores or DRAM refreshes) are

directly visible in the measurements.

An example tool is the hybrid WCET Analyzer TimeWeaver

[29, 3], which builds on non-intrusive instruction-level tracing:

the probe effect is avoided since no code instrumentation is

needed. The computed estimates are safe upper bounds with

respect to the given input traces, i.e., TimeWeaver derives an

overall upper timing bound from the execution time observed

in the given traces. Thus, the coverage of the input traces on the

analyzed code is an important metric that influences the quality

of the computed WCET estimates.

The trace information needed for running TimeWeaver is

provided by embedded trace units of modern processors, like

NEXUS IEEE-ISTO 5001, Infineon TriCore MCDS, or ARM

CoreSight. They allow the fine-grained observation of a pro-

gram execution on single- and multi-core systems.

The main inputs for TimeWeaver are the fully linked exe-

cutable(s), timed traces and the location of the analyzed code

in the memory (entry point, which usually is the name of a task

or function). The analysis proceeds in several stages: decod-

ing, loop/value analysis, trace analysis, and path analysis, most

of which are shared with aiT [45]. The main difference is that

micro-architectural analysis is replaced by the trace analysis

stage:

Trace analysis: The given traces are analyzed such that each

trace event is mapped to a program point in the control-

flow graph and the trace points and segments are defined.

In case a preemptive system has been traced, interrupts

are detected and reported. The extracted timing informa-

tion, i.e., the clock cycles which have been elapsed be-

tween two consecutive trace points are annotated to the

CFG in a context-sensitive manner [29].

3.5 Run-Time Errors and Data Races

In this section we focus on source-level runtime errors due to

undefined or unspecified behaviors of the programming lan-

guage used. Examples are faulty pointer manipulations, numer-

ical errors such as arithmetic overflows and division by zero,

data races, and synchronization errors in concurrent software.

Such errors can cause software crashes, invalidate separation

mechanisms in mixed-criticality software, and are a frequent

cause of errors in concurrent and multi-core applications. At

the same time, these defects also constitute security vulnera-

bilities, and have been at the root of a multitude of cybersecu-

rity attacks, in particular buffer overflows, dangling pointers, or

race conditions [23].

Runtime errors are one important cause of software-induced

memory corruption in safety-critical systems. The other two

main causes are stack overflows, and miscompilation, where

the compiler silently generating erroneous code from a correct

input program. As described above, with abstract interpreta-

tion, the absence of runtime errors and stack overflows can be

proven; when using a formally proven compiler like CompCert

[22, 18] no miscompilation is possible, hence all main sources

of software-induced memory corruption can be covered.

In the following we will give a brief overview of the Astrée

analyzer as an example of sound static runtime error analysis

tools [31][37]. To achieve high precision Astrée provides a va-

riety of abstract domains covering, e.g. , intervals, octagons,

digital filters, finite state machines, and interpolations. The

memory domain empowers Astrée to exactly analyze pointer

arithmetic and union manipulations and to perform a type-safe

analysis of absolute memory addresses. Floating-point compu-

tations are precisely modeled while keeping track of possible

rounding errors. Astrée also implements a low-level concur-

rent semantics [35] which provides a scalable sound abstraction

covering all possible thread interleavings. The interleaving se-

mantics enables Astrée, in addition to the classes of runtime

errors found in sequential programs, to report data races, and

lock/unlock problems, i.e., inconsistent synchronization. The

set of shared variables does not need to be specified by the user:

Astrée assumes that every global variable can be shared, and

discovers which ones are effectively shared, and on which ones

there is a data race. Since Astrée is aware of all locks held for

every program point in each concurrent thread, Astrée can also

report all potential deadlocks. The abstract domains are param-

eterized, which enables users to fine-tune the precision of the

analyzer to the software under analysis to minimize the number

of false alarms.

In its data and control flow analysis module, Astrée tracks

accesses to global, static, and local variables in case those ac-

cesses are made outside of the frame in which the local vari-

ables are defined (e.g., because their address is passed into a

called function). The soundness of the analysis ensures that all

potential targets of data and function pointers are taken into ac-

count. Function pointer targets are automatically resolved and

can be exported in AIS format to support binary-level static an-

alyzers. Astrée’s data and control flow reports show the number

of read and write accesses for every global, static, and out-of-

frame local variable, lists the location of each access and shows

the function from which the access is made. All variables are

classified as being thread-local, effectively shared between dif-

ferent threads, or subject to a data race. Astrée also suports data

and control coupling analysis [26], and can check compliance

to commonly used coding guidelines such as MISRA C/C++,

7



CWE, SEI CERT C/C++, Adaptive Autosar C++, etc. Further-

more, Astrée includes a program slicer, and a user-configurable

taint analysis [24].

Practical experience on avionics and automotive industry ap-

plications are given in [31][36][32]. They show that industry-

sized programs of millions of lines of code can be analyzed in

acceptable time with high precision for runtime errors and data

races.

4 Coverage of Verification Objectives

In this section we give an overview of the verification objec-

tives of DO-178C to which static analysis methods can be ap-

plied. The relevant verification objectives are summarized in

Annex-A of [41]. We will explicitly list the sections of the

DO-178C and the DO-333 that address verification objectives

to which sound static analysis for WCET (worst-case execution

time), WCSU (worst-case stack usage), and RTE (runtime er-

rors), as well as simple unsound code guideline checking (CG)

can contribute. The section names of the DO-333 match the

corresponding sections in the DO-178C, e.g. Sec. FM.6.3.1.c

of DO-333 corresponds to Sec. 6.3.1.c of DO-178C, so in the

following we will just use the numbering from [41] for simplic-

ity.

In general, worst-case execution time analysis, worst-case

stack usage analysis and runtime error analysis contribute to

all objectives related to the target environment. Stack usage,

response times and execution times are determined by the tar-

get computer. They can cause violations of high-level require-

ments, violations of low-level requirements, incompatibility of

the software architecture with the target computer, and they can

affect the accuracy and consistency of the source code. Sound

static source code analysis enables sound data and control flow

analysis which is required to demonstrate consistency between

software architecture level and source code level. Detecting

runtime errors is required to deal with robustness issues like

out-of-range loop values and arithmetic overflows, or to verify

the software integration. The latter implies, e.g., detecting in-

correct initialization of variables, parameter passing errors, and

data corruption.

The sections Sec. FM.6.3.1.c, FM.6.3.2.c, and FM.6.3.3.c ad-

dress the compatibility with the target computer, hence, sound

static analyses for WCET, WCSU, and RTE are relevant for all

of them. The timing aspect is emphasized as response times

and is explicitly listed as an example in Sec. FM.6.3.1.c and

Sec. FM.6.3.2.c. Sound analyzers for WCET, WCSU and RTE

can report unreached code and dead code, thus also contribut-

ing to Sec. FM.6.3.3.a, Sec. FM.6.3.4.a, and Sec. FM.6.3.4.e.

Compliance to low-level requirements (Sec. FM.6.3.4.a) also

necessitates the absence of programming defects as reported

by sound RTE analysis. The data and control flow analysis

provided by sound RTE analysis relates to Sec. FM.6.3.3.b and

FM.6.3.4.b. Subsequently, Sec. FM.6.3.4.f explicitly lists de-

termining worst-case execution time, stack usage, and absence

of runtime errors as verification objectives.

Sec. FM.6.7 addresses the formal analysis of the executable

object code. Sound analysis of WCET and WCSU both con-

tribute to Sec. FM.6.7.e by computing safe bounds to the worst-

Obj. Ref. WCET WCSU CG RTE

Table FM.A-3

3 FM.6.3.d

FM.6.3.1.c

X X X

Table FM.A-4

3 FM.6.3.d

FM.6.3.2.c

X X X

5 FM.6.3.f

FM.6.3.2.e

X X

8 FM.6.3.3.a X
*

X X

9 FM.6.3.c

FM.6.3.3.b

X* X* X

10 FM.6.3.d

FM.6.3.3.c

X X X

11 FM.6.3.e

FM.6.3.3.d

X* X* X X

12 FM.6.3.f

FM.6.3.3.e

X* X* X X

13 FM.6.3.3.f X X X

Table FM.A-5

1 FM.6.3.a

FM.6.3.4.a

X X X

2 FM.6.3.a

FM.6.3.4.b

X

3 FM.6.3.e

FM.6.3.4.c

X X

4 FM.6.3.f

FM.6.3.4.d

X X

5 FM.6.3

FM.6.3.4.e

X X

6 FM.6.3.b

FM.6.3.c

FM.6.3.4.f

X X X X

7 6.3.5.a X X X

Table FM.A-6

1 FM.6.7.a

FM.6.7.c

X X X**

2 FM.6.7.b

FM.6.7.c

X X X**

3 FM.6.7.d

FM.6.7.c

X X X**

4 FM.6.7.b

FM.6.7.c

X X X**

5 6.4.e

FM.6.7.e

X X X**

* Leveraging the built-in value analysis

** Using CompCert to ensure semantic preservation

Table 1: Coverage of DO-178C verification objectives by sound static

WCET analysis (WCET), sound static stack usage analysis (WCSU),

static code guideline checking (CG) and sound static runtime error

analysis (RTE).
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case execution time or stack consumption of the software under

certification. The possibility to deeply investigate the behavior

of the analyzed software on the assembly level allows to derive

information about timing contribution of specific parts of the

software but also to trace back contents of memory cells and/or

register values to the corresponding source code. Hence sound

static binary code analysis as needed for WCET and WCSU

also contributes to the paragraphs a till d in Sec. FM.6.7.

As specified in Sec. FM.6.7.f, relevant properties can also be

verified on source code level if property preservation between

source and object code level is ensured. For the language C,

this can be achieved by using the formally verified compiler

CompCert [22]. The code it produces is proven to behave ex-

actly as specified by the semantics of the source C program.

Leveraging this, sound static RTE analysis is relevant for all

points in Sec. FM.6.7 and also contributes to Sec. FM.6.6.a:

program slicing and taint analysis, e.g. , as available in Astrée,

support identifying program parts contributing to run-time er-

rors, and program parts affected by data corruption, respec-

tively, hence possibly pinpointing flaws in the Data Item File.

Furthermore a type-safe analysis of absolute addresses at the

source code level as available in Astrée can detect incorrect

hardware addresses, and also reports memory overlaps. The

value analysis component of sound binary-level analyzers for

WCET and WCSU supports proving that memory accesses are

made to the expected memory regions at the Executable Ob-

ject Level. These analyses contribute to Sec. FM.6.3.5.a which

deal with review and analyses of the output of the integration

process.

Code guideline checkers, either as standalone tools, or

included in sound RTE analyzers such as Astrée typically

also compute code metrics, and provide checks to demon-

strate conformance to thresholds defined. These capabili-

ties support requirements of the Software Design Standards

(e.g., recursion, dynamic objects, call nesting levels) and

of the Software Code Standards (e.g., style rules, expres-

sion complexity). They also support traceability requirements

by appropriate coding rule checks. In summary, they con-

tribute to various verification objectives, in particular the ob-

jectives Sec. FM.6.3.3.d, Sec. FM.6.3.3.e, Sec. FM.6.3.4.c,

Sec. FM.6.3.4.d, and Sec. FM.6.3.4.e, in general supporting to

check the verifiability of software design and implementation.

5 Tool Qualification

Whenever the output of a tool is either part of a safety-critical

system to be certified or the tool output is used to eliminate or

reduce any development or verification effort for such a system,

that tool needs to qualified. DO-178C regulates when a tool

qualification is to be applied and DO-330 [42] gives guidance

on the tool qualification requirements.

5.1 Relevant Tool Qualification Levels (TQL)

First, the necessary qualification activities and results have to

be identified. For this, DO-330 defines the so-called tool qual-

ification level (TQL). There are five different levels, from the

most critical level TQL-1 down to TQL-5.

The TQL is determined by the potential tool impact and the

software level. There are three tool impact categories where

Criteria 1 denotes the highest impact and Criteria 3 the low-

est. Criteria 1 does not apply to static verification tools since

it is associated with tools whose output is part of the airborne

software. Analysis and verification tools are subject to Criteria

2/3. The difference between the latter two categories is whether

the output of the tool is used to justify the elimination or reduc-

tion of other verification or development activities or not. The

following table illustrates how the TQLs are assigned based on

Criteria and Software Level.

Software Level
Criteria

1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

To summarize, the tool qualification levels relevant for static

analyzers are TQL-4 and TQL-5. TQL-4 applies when the soft-

ware under analysis is Level A/B and the tool categorized as

criteria 2. In all other cases, TQL-5 applies. In the follow-

ing, we summarize the qualification material that is required

for a TQL-4 qualification, and outline a well-proven example

on how this can be supported.

5.2 Tool Qualification Requirements

The tables T-0 to T-10 in DO-330 define requirements (called

objectives) to the tool qualification. Each table addresses a dif-

ferent process associated with the life cycle of the tool under

qualification in order to cover the relevant aspects of the af-

fected processes.

Summarizing the objectives in these tables, the qualification

data to be provided for a TQL-4 verification tool boils down

to the following. First, tool (operational) requirements have to

be specified, i.e. , the intended tool behavior must be defined

in an explicit and detailed manner. Second, test cases have to

be created which cover all those functional requirements. This

includes providing descriptions of test case objectives, execu-

tion procedures, expected results, and records of their execu-

tion. Unique identifiers for requirements and test cases allow

to establish trace data between those data elements which in

the end allows to claim coverage of all requirements by suc-

cessfully passed test case executions. For the static analyzers

described in Sec. 3 these requirements are fully covered by so-

called Qualification Support Kits (QSKs).

In addition to the tool behavior, the qualification material

needs to address certain aspects of the tool development pro-

cesses. The Tool Qualification Plan (TQP) gives an overview

to the tool qualification as a whole. The Tool Development Plan

(TDP) includes the objectives, standards, and tool life cycle(s)

to be used in the tool development processes. The Tool Veri-

fication Plan (TVP) is a description of the activities to satisfy

the tool verification process objectives. The Tool Configuration

Management Plan (TCMP) establishes the methods to be used

to satisfy the objectives of the TCM process throughout the tool

life cycle. The Tool Quality Assurance Plan (TQP) establishes

the methods to be used to satisfy the objectives of the tool qual-

ity assurance process. The execution of all activities defined in
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these plans needs to produce evidence records that are archived

and part of the qualification data. AbsInt provides these evi-

dences about the applied tool life cycle activities as part of the

QSKs.

Typically, static analyzers are categorized as so-called Com-

mercial Off-The-Shelf (COTS) tools, basically meaning that

the tool developer is different from the tool user. To qualify

COTS tools, the tool developer provides the basis for the re-

quired qualification material from a “tool developers” perspec-

tive. The tool user then needs to either adapt the material or to

describe how its tool use maps to the data provided by the de-

veloper. For example: the tool user might needs to define how

the tool is used and which functionality (from the provided op-

erational requirements) is used.

To provide high confidence in the correct functioning of a

tool it is necessary to demonstrate that the tool works correctly

in the operational context of its users. This is a common re-

quirement of most current safety standards. The correct func-

tioning of a tool might be affected by the OS version, system

libraries installed, software patch levels, etc. For the tools listed

in Sec. 3 there is dedicated support for tool users to automat-

ically execute the QSK test cases and automatically create all

data required for the certification package.

6 Conclusion

Static analysis has evolved to be a standard method in the soft-

ware development and verification process. It can be applied to

various verification activities required for DO-178C certifica-

tion, in particular by performing code guideline checking, data

and control coupling analysis, interference analysis, worst-case

stack and execution time analysis, and runtime error analysis.

In this article we precisely identified the verification require-

ments and objectives that can be covered by static analysis and

its formal method, abstract interpretation. For each application

of static analysis mentioned above we summarized the underly-

ing analysis concepts and illustrated them with practical exam-

ples. We also summarized the required tool qualification activi-

ties, and illustrated them with a well-proven example approach

to tool qualification.
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[24] D. Kästner, L. Mauborgne, S. Wilhelm, and C. Ferdinand. High-

Precision Sound Analysis to Find Safety and Cybersecurity De-

fects. In 10th European Congress on Embedded Real Time Soft-

ware and Systems (ERTS 2020), Toulouse, France, Jan. 2020.
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