N
N

N

HAL

open science

Static Data and Control Coupling Analysis
Daniel Kastner, Laurent Mauborgne, Stephan Wilhelm, Christoph Mallon,
Christian Ferdinand

» To cite this version:

Daniel Késtner, Laurent Mauborgne, Stephan Wilhelm, Christoph Mallon, Christian Ferdinand.
Static Data and Control Coupling Analysis. 11th Embedded Real Time Systems European Congress

(ERTS2022), Jun 2022, Toulouse, France. hal-03694546

HAL Id: hal-03694546
https://hal.science/hal-03694546

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03694546
https://hal.archives-ouvertes.fr

Static Data and Control Coupling Analysis

Daniel Kistner, Laurent Mauborgne, Stephan Wilhelm, Christoph Mallon, Christian Ferdinand
AbsInt Angewandte Informatik GmbH. Science Park 1, D-66123 Saarbriicken, Germany

Abstract

All current safety norms require determining the data and con-
trol flow in the source code and making sure that it is compliant
to the intended control and data flow as defined in the software
architecture. In traditional static code analysis, data accesses
via pointer variables and control flow by function pointer calls
might be missed. Using sound static analysis based on abstract
interpretation, it is possible to guarantee the absence of run-
time errors that could cause memory corruption and control
flow corruption. Furthermore, it is possible to guarantee that
in the analysis, all data and function pointer targets are consid-
ered and that the possible data and control coupling is fully cap-
tured. In this article we propose a comprehensive methodology
for statically computing a safe approximation of the data and
control coupling between software components. Our approach
incorporates global static data and control flow analysis, taint
analysis and program slicing. It can detect critical data and
control flow errors and allows to complement traditional code
coverage criteria by the degree of data and control coupling
covered by the testing process, helping to identify relevant pre-
viously untested scenarios. It can also demonstrate freedom of
spacial interference between software components at the source
code level.

Keywords: data coupling, control coupling, DO-178C, static analysis,
taint analysis, program slicing, abstract interpretation, interference
analysis, software architecture

1 Introduction

A failure of a safety-critical system may cause high costs or
even endanger human beings. With the unbroken trend to-
wards growing software size in embedded systems more and
more safety-critical functionality is implemented in software.
Preventing software-induced system failures becomes an in-
creasingly important task. Contemporary safety norms from
all industry domains — including DO-178B, DO-178C, ISO-
26262, IEC- 61508, the FDA Principles of Software Valida-
tion, IEC62304, and EN-50128 — require to identify potential
hazards and to demonstrate that the software does not violate
the relevant safety goals.

Functional safety implies demonstrating the functional cor-
rectness: the functional software requirements have to be satis-
fied. Demonstrating functional correctness can be addressed by
requirements-based testing, in particular automatic and model-
based testing, and by formal methods such as model check-
ing or theorem proving. In addition, safety-relevant quality
requirements, the so-called non-functional requirements, have

to be addressed. Examples of safety-relevant non-functional
software requirements are adherence to resource bounds, es-
pecially worst-case execution time bounds and stack size, as
well as freedom of run-time errors. Runtime errors are typi-
cally caused by undefined or unspecified behaviors of the pro-
gramming language used. In the case of the programming lan-
guage C they include faulty pointer manipulations, numerical
errors such as arithmetic overflows and division by zero, as well
as data races, deadlocks, and further synchronization errors in
concurrent software.

The data and control flow of the software is of crucial im-
portance for the verification of functional and non-functional
correctness properties. In the DO-178C, the verification goal
6.3.3.b (Consistency) demands that “a correct relationship ex-
ists between the components of the software architecture. This
relationship exists via data flow and control flow.” It is com-
plemented by the verification goal of Sec. 6.3.4.b (Compliance
with the software architecture) which demands to “ensure that
the source code matches the data flow and control flow de-
fined in the software architecture”. Obviously the data and con-
trol flow of the implemented software must match the intended
data and control flow as specified in the software architecture,
and unintended data and control flow must be avoided. This
also implies demonstrating freedom of interference between
software components in mixed-criticality software. Accord-
ing to DO-178C, Sec 2.4.1, if partitioning and independence
between software components cannot be demonstrated, all of
them are subject to the highest criticality level assigned to any
of them. Similar requirements can also be found in ISO-26262
(cf. Sec. 7.4.9 and Annex D of [8]) and other safety norms.

Furthermore, the data and control flow also determines the
required effort for functional testing. In DO-178C, Objective
8 of Annex A Table A-7 requires that “Test coverage of soft-
ware structure (data and control coupling) is achieved”, refer-
encing Sec. 6.4.4.2.c which states that structural coverage anal-
ysis should “confirm that the requirements-based testing has
exercised the data and control coupling between code compo-
nents”. These terms are defined as:

Data coupling The dependence of a software component on
data not exclusively under the control of that software
component.

Control coupling The manner or degree by which one soft-
ware component influences the execution of another soft-
ware component.

The term “software component” is not precisely defined for
these requirements. As stated in the CASTI19 report [2],

there is currently no established understanding of the granu-
larity of “component”, it depends on the architecture being
implemented. As a consequence, [2] suggests that certifica-
tion projects should define what they mean by “component” in
their specific architecture for demonstrating compliance to DO-
178C.

The intent of structural coverage analysis is to provide a mea-
sure of the completeness of the testing process to ensure that
requirements-based testing adequately exercised the software
program under test [2]. Statement coverage, decision cover-
age and modified condition/decision coverage (Objectives 5-7
of Table A-7 of [20]) can be addressed at the module level by
reviewing test cases and executing requirements-based tests of
that module in isolation from other program modules. In con-
trast, Objective 8 of Table A-7 is primarily intended to be a
verification of the integration activity: The intent of the struc-
tural coverage analysis of data coupling and control coupling
is to provide a measurement and assurance that the software
modules/components affect one another in the ways in which
the software designer intended and do not affect one another
in unintended ways, thus resulting in unplanned, anomalous or
erroneous behavior. Hence, satisfying this objective is intended
to provide a measure of the completeness of integration verifi-
cation. As software increases in size and complexity, the qual-
ity of data and control coupling analysis is a growing concern
for certification authorities [2].

In general, the data and control flow of the software can
be determined by semantical static analysis. Semantics-based
methods can be further grouped into unsound and sound ap-
proaches. Abstract interpretation is a formal method for sound
semantics-based static program analysis which provides assur-
ance that there are no false negatives with respect to the classes
of defects under consideration. For data and control flow anal-
ysis the soundness of the analysis ensures that all potential tar-
gets of data and function pointers are taken into account.

This article is structured as follows: In Sec.2 we will give
a brief overview of abstract interpretation and illustrate its ap-
plication to runtime error analysis with the example of the an-
alyzer Astrée. As discussed in Sec. 3 runtime error analysis
can be seen as a prerequisite for data and control flow analysis,
since it aims at detecting code defects that can corrupt the in-
tended data and control flow. Sec. 4, Sec. 5 and Sec. 6 give a
general overview of the core methodologies used in our work:
sound global data and control flow analysis, sound taint analy-
sis, and semantically refined program slicing. Based on those
methodologies, Sec. 7 presents a novel approach for static data
and control coupling analysis and interference analysis, that
builds on a specification mechanism for software components
appropriate for automatic static code analysis. It augments
global data and control flow analysis by the software compo-
nent level and presents a scalable and automatic taint analysis
to determine data and control dependences between software
components. Sec. 9 concludes.

2 Sound Static Source Code Analysis

The term static analysis is used to describe a variety of program
analysis techniques with the common property that the results
are only based on the software structure. Purely syntactical

methods can be applied to check syntactical coding rules as
contained in all relevant coding guidelines, including MISRA
C/C++ [19, 15], or SEI CERT C/C++ [21]. A deeper under-
standing of the code such as knowledge about variable values,
pointer targets, etc. requires semantical static analysis. It can
be applied to check semantical coding rules which are also con-
tained in the coding guidelines mentioned above, or to identify
semantical code defects.

The semantics of a programming language is a formal de-
scription of the behavior of programs. The most precise seman-
tics is the so-called concrete semantics, describing closely the
actual execution of the program on all possible inputs. Yet in
general, the concrete semantics is not computable. Even under
the assumption that the program terminates, it is too detailed
to allow for efficient computations. Unsound analyzers may
choose to reduce complexity by not taking certain program ef-
fects or certain execution scenarios into account. A sound ana-
lyzer is not allowed to do this; all potential program executions
must be accounted for. Since in the concrete semantics this
is too complex, the solution is to introduce a formal abstract
semantics that approximates the concrete semantics of the pro-
gram in a well-defined way and still is efficiently computable.
This abstract semantics can be chosen as the basis for a static
analysis. Compared to an analysis of the concrete semantics,
the analysis result may be less precise but the computation may
be significantly faster.

Abstract interpretation is a formal method for sound
semantics-based static program analysis [3]. It supports for-
mal correctness proofs: it can be proved that an analysis will
terminate and that it is sound, i.e., that it computes an over-
approximation of the concrete semantics. Imprecisions can oc-
cur, but it can be shown that they will always occur on the
safe side. Abstract interpretation-based static analyzers pro-
vide full control and data coverage and allow conclusions to be
drawn that are valid for all program runs with all inputs. Nowa-
days, abstract interpretation-based static analyzers that can de-
tect stack overflows and violations of timing constraints [22]
and that can prove the absence of runtime errors and data races
[4][12], are widely used for developing and verifying safety-
critical software [9].

Runtime Error Analysis

At the source code level, the data and control flow of a program
might be accidentally affected by unintended behavior, includ-
ing unspecified and undefined behaviors of the programming
language. Hence, a safe analysis of data and control flow must
be embedded in a runtime error analysis that captures such un-
defined/unspecified behaviors.

In runtime error analysis, soundness means that the analyzer
never omits to signal an error that can appear in some execu-
tion environment. If no potential error is signaled, definitely no
runtime error can occur: there are no false negatives. When a
sound analyzer does not report a division by zero in a /b, this
is a proof that b can never be 0. If a potential error is reported,
the analyzer cannot exclude that there is a concrete program ex-
ecution triggering the error. If there is no such execution, this
is a false alarm (false positive).

Throughout this article, we will focus on the Astrée analyzer
as an example of sound static runtime error analyzer [13][18].
Astrée’s main purpose is to report program defects caused
by unspecified and undefined behaviors in C/C++ programs.
The reported code defects include integer/floating-point divi-
sion by zero, out-of-bounds array indexing, erroneous pointer
manipulation and dereferencing (e.g., buffer overflows, null
pointer dereferencing, dangling pointers), accesses to uninitial-
ized variables, and further sequential programming defects. In
addition, Astrée’s sound thread interleaving semantics enables
it to also report concurrency defects, such as data races, lock-
/unlock problems, and deadlocks. Hence, Astrée not only de-
termines the data and control flow within one thread of control,
but can also capture interferences between different threads and
their effects on the data and control flow within those threads.

Practical experience on avionics and automotive industry ap-
plications are given in [13][17][14]. They show that industry-
sized programs of millions of lines of code can be analyzed in
acceptable time with high precision for runtime errors and data
races.

3 Data and Control Flow Errors

The purpose of data and control coupling analysis is to deter-
mine the effective data and control flow between software com-
ponents which might be desired or undesired, depending on the
properties of the software architecture. In addition, cases where
there is an actual defect in the data or control flow behavior with
respect to the semantics of the programming language, must be
reported as an error.

In general, Astrée reports defects related to undefined or un-
specified behavior of the programming language. Since their
behavior is undefined or unspecified, all of them might have
an effect on data or control flow — an example is a division by
0, which can cause the program to stop with a trap, obviously
causing an unexpected change in control flow. In the follow-
ing we will give an overview of the alarm classes of Astrée that
specifically address memory safety or control flow behavior of
the program.

Data Flow Errors

* Out-of-bounds array access: The value of the index used
to access an array can be outside the feasible index range.

 Invalid pointer dereference and manipulation: This de-
fect category includes dangling pointer accesses, invalid
pointer dereferences and arithmetics, null pointer derefer-
ences, misaligned dereferences, buffer overflows, etc.

* Invalid dynamic memory allocation: Allocation size is
negative or too large.

* Memory leak: Memory may not be freed after dynamic
allocation.

* Uninitialized variable access: This category includes read
accesses of uninitialized local variables and read accesses
to global/static variables without explicit initializer or
prior assignment.

e Data race: Write-write or read-write data race, i.e. ac-
cess to the same variable from at least two threads without
proper synchronization.

* Spectre vulnerability: Occurrences of Spectre V1, V1.1,
or SplitSpectre vulnerabilities.

* Writes to constant memory: Attempts to write to a con-
stant.

* Pointer aliasing: Two pointer variables may alias
which have been declared as distinct by the directive
__ASTREE_check_separate.

Control Flow Errors

* Non-returning functions: Functions that may never return,
e.g. due to infinite loops, calling exit, etc.

* Incompatible function calls: This category includes func-
tion calls with wrong number or incompatible types of pa-
rameters, incompatible return types, etc.

e Deadlocks: A deadlock occurs when two threads wait for
each other indefinitely, e.g. due to blocked resources.

* Recursions: Recursive function calls are reported.

e Infinite loops: This category includes alarms about loops
which definitely never terminate, and alarms about loops
that might never terminate (e.g. only terminate upon read-
ing a particular value from a truly volatile variable).

* Lock/unlock problems: This category includes attempts to
unlock a mutex variable that has not been locked, locks
without unlocks, locks acquired by a wrong task, etc.

e C++ Exception: The alarm reports C++ statements that
can raise a C++ exception.

* Pure virtual function call: A pure virtual function is called
in a specific context (C++).

It is apparent that these defects may invalidate any assumptions
about the data and control flow behavior of the program, and
hence, must also be considered for data and control coupling
analysis. The same may also hold for other cases of unde-
fined/unspecific behavior which are reported by Astrée. Hence
sound static runtime error analysis can be seen as prerequisite
for data and control coupling analysis. As emphasized in Sec. 2
the defect classes are not limited to sequential program execu-
tion but also include program defects induced by concurrent
thread execution.

4 Data and Control Flow Analysis

Classical global data and control flow analysis determines the
variable accesses and function invocations throughout program
execution. It is centered on concepts included in the program-
ming language, as compared to data and control coupling anal-
ysis that focuses on software components which are not ex-
pressed by programming language constructs. It constitutes the
required basis for data and control coupling analysis.

AOups A findings [¥ Locat Aseach A Project monit e00e

Figure 1: Astrée’s Data Flow View.

In its basic data and control flow analysis module, Astrée
tracks accesses to global variables, static variables, and lo-
cal variables whose accesses are made outside of the frame in
which the local variables are defined (e.g., because their address
is passed into a called function). All data and function point-
ers are automatically resolved. The soundness of the analysis
ensures that all potential targets of data and function pointers
are taken into account. Astrée’s data and control flow reports
show the number of read/write accesses for every global, static,
and out-of-frame local variable, lists the location of each ac-
cess and shows the function from which the access is made. All
variables are classified as being thread-local, effectively shared
between different threads, or subject to a data race (cf. Fig. 1).
Variable accesses can be interactively explored, e.g. , by select-
ing a variable and filtering for accesses from a particular thread
or function, or for a given access type.

Conotton 57 @

~ || Functions (Callers)

- mskn
TASK T2

Figure 2: Astrée’s Control Flow View.

The control flow is described by listing all callers and callees
for every C function along with the threads in which they are
called. In AUTOSAR projects, additionally the application and
the core to which the executing thread belongs is listed. An ex-
ample is shown in Fig. 2. The control flow can be interactively
explored, e.g. , when selecting a function and filtering for its
callers or callees or for threads in which it is called, all relevant
call sites are displayed. There is also a call graph visualization
which can be interactively explored as well (cf. Fig. 3).

In case of C++ programs, a class graph visualization shows a
selected class with all its fields and methods as well as its sub-
and superclasses with the relevant template instantiations in a

&

Figure 3: Astrée’s Call Graph Visualization.

graph depicting the inheritance hierarchy (cf. Fig. 4).

Figure 4: Astrée’s Class Graph Visualization.

More sophisticated information about selected flows of val-
ues can be provided by two dedicated analysis methods: taint
analysis and program slicing. Taint analysis is a forward anal-
ysis and can answer questions about program parts affected by
reading corrupted input values. Program slicing is a backward
analysis which can answer questions about the program parts
which might influence the value of a particular variable at a
particular program point.

All data and control properties described in this section are
agnostic of the definition of software components; they are lim-
ited to native concepts of the programming language. Lifting
this information to the level of software components is the topic
of Sec. 7 which leverages the techniques of taint analysis and
program slicing described in Sec. 5 and Sec. 6.

5 Taint Analysis

Taint analysis was first introduced as a dynamic analysis tech-
nique (e.g., in PERL), to try to find out which part of a code
could be affected by some inputs. The original technique con-
sisted in flipping normally unused bits, that would be copied
around by operations and assignments. The same idea can be
extended to static analysis by enhancing the concrete seman-
tics of programs with tainting, the formal equivalent of the un-
used flipped bit in the dynamic approach. In the context of
abstract interpretation, it is easy to abstract this extra infor-
mation in an efficient and sound way, using dedicated abstract
domains. Conceptually, taint analysis consists in discovering
data dependencies using the notion of taint propagation. Taint
propagation can be formalized using a non-standard semantics
of programs, where an imaginary taint is associated to some
input values. Considering a standard semantics using a suc-
cessor relation between program states, and considering that a
program state is a map from memory locations (variables, pro-
gram counter, etc.) to values in ¥, the tainted semantics relates

tainted states, which are maps from the same memory locations
to ¥ x {taint, notaint}, and such that if we project on ¥ we get
the same relation as with the standard semantics.

To define what happens to the faint part of the tainted value,
one must define a faint policy. The taint policy specifies:

* Taint sources which are a subset of input values or vari-
ables such that in any state, the values associated with that
input values or variables are always tainted.

* Taint propagation describes how the tainting gets prop-
agated. Typical propagation is through assignment, but
more complex propagation can take more control flow into
account, and may not propagate the taint through all arith-
metic or pointer operations.

* Taint cleaning is an alternative to taint propagation, de-
scribing all the operations that do not propagate the taint.
In this case, all assignments not containing the taint clean-
ing will propagate the taint.

* Taint sinks is an optional set of memory locations. This
has no semantical effect, except to specify conditions
when an alarm should be emitted when verifying a pro-
gram (an alarm must be emitted if a taint sink may become
tainted for a given execution of the program).

A sound taint analyzer will compute an over-approximation
of the memory locations that may be mapped to a tainted value
during program execution. The soundness requirement ensures
that no taint sink warning will be missed by the analyzer.

Astrée provides a generic abstract domain for taint analysis
that can be freely instantiated by the users. It augments Astrée’s
process-interleaving interprocedural code analysis by carrying
and computing taint information at the byte level. Any num-
ber of taint hues can be tracked by Astrée, and their combi-
nations will be soundly abstracted. Tainted input is specified
through directives (__ASTREE_taint ((var; hues))) at-
tached to program locations. Such directives can precisely de-
scribe which variables, and which part of those variables is to
be tainted, with the given taint hues, each time this program lo-
cation is reached. Any assignment is interpreted as propagating
the join of all taint hues from its right-hand side to the targets of
its left-hand side. In addition, specific directives may be intro-
duced to explicitly modify the taint hues of some variable parts.
This is particularly useful to model cleansing function effects
or to emulate changes of security levels in the code.

The result of the analysis with tainting can be explored in the
Astrée GUI, or explicitly dumped using dedicated directives.
Finally, the taint sink directives may be used to declare that
some parts of some variables must be considered as taint sinks
for a given set of taint hues. When a tainted value is assigned
to a taint sink, then Astrée will emit a dedicated alarm, and
remove the sinked hues, so that only the first occurrence has to
be examined to fix potential issues with the security data flow.

The main intended use of taint analysis in Astrée is to ex-
pose potential vulnerabilities with respect to security policies
or resilience mechanisms. Thanks to the intrinsic soundness
of the approach, no tainting can be forgotten, and that without

any bound on the number of iterations of loops, size of data
or length of the call stack. Based on its taint analysis, Astrée
provides an automatic detection of Spectre-PHT vulnerabilities
[10].

6 Program Slicing

The following definitions introduce the basic principles of static
program slicing.

Definition 1 (Slicing Criterion) Let P be a program. A slicing
criterion in P is a tuple (s,V) which consists of a statement s
and a set of variables V from P

Definition 2 (Slice) A slice S is a subprogram of P that exhibits
the same behavior with respect to the slicing criterion (s,V).

Computing a statement-minimal slice is an undecidable prob-
lem. However there are well-established algorithms for com-
puting non-minimal, but still useful slices. A common ap-
proach is to compute a System Dependence Graph (SDGQG),
which contains all data and control dependences of the pro-
gram. Then a slice can be expressed as a reachability problem
in this graph [7]. The precision of the slice directly depends on
the precision of the SDG. However, computing precise system
dependency graphs is a non-trivial task since it requires deriv-
ing intricate program properties. These may include points-to
information for variable and function pointers, code reachabil-
ity, context information or possible variable values at certain
program points. As an example, over-approximating the set of
possible destinations of a pointer variable blows up the size of
the system dependence graph as it may add false dependences
to statements which contain variables that would otherwise not
be included in the slice. This may cause a drastic transitive
increase in the number of dependences and vertices.

Astrée provides a novel concept of program slicing, that can
be termed sound semantically refined slicing: its slicer can be
run in the sequel of a finished Astrée analysis run, which makes
it possible to leverage the invariants computed by its main fix-
point analysis. The system dependence graph computed by our
approach is a sound abstraction of the data- and control depen-
dences of a computer program. This follows from the sound-
ness of the Astrée core analysis. As a consequence, the re-
sulting slices are also sound. Minimizing false alarms is an
important design goal of Astrée, which mandates a highly pre-
cise point-to analysis. Furthermore, Astrée detects code which
is guaranteed to be unreachable for any possible program exe-
cution, and which, consequently, can be ignored when comput-
ing the slices. Hence, compared to slicing without leveraging
Astrée invariants, a significant precision and efficiency gain is
achieved by reducing the amount of vertices and the amount of
data- and control dependences in the system dependence graph.
This efficiency improvement makes it possible to compute pre-
cise slices for very large programs in feasible time.

Semantically refined slicing can be run in context-insensitive
mode (considering all possible call contexts) and context-
sensitive mode (considering exactly one call context). To com-
pute context-sensitive slices we enhance the slicing algorithm
of [7] with a description of call contexts (stacks). In each step
of the reachability analysis we additionally check that the de-

Analyzer for C - Astrée - Example: Scenarios (1) - o

Tools Help

O RPHR OOGE

© Fittered messages (category Integer div

Order_~ Type Classifi

Acut (Vrma) A tetrocied A0l

Figure 5: Alarm Slicing in Astrée

pendences under examination match the relevant stacks. De-
pendences which do not match are discarded. When following
a dependency edge which represents a function call, the top-
most function is removed from the stack. For one given pro-
gram point a context-insensitive slice is identical with the union
over all context-sensitive slices.

In contrast to context-insensitive slices, context-sensitive
slices do not capture all possible behaviors of the original pro-
gram which influence the slicing criterion. Instead, the be-
havior described by the slice is restricted to execution paths
which are in accordance with the set of considered call con-
texts. Context-sensitive slices tend to be significantly smaller
than context-insensitive ones.

The different slicing modes presented in this section are
relevant for demonstrating safety and security properties.
Sound slices can be computed by context-insensitive analysis-
enhanced slicing. With these slices it is possible to show that
certain parts of the code or certain input variables might influ-
ence or cannot influence a program section of interest. They
yield a global overview of these properties for the entire pro-
gram.

In contrast to that, context-sensitive analysis-enhanced slic-
ing, which only considers a subset of possible contexts, is more
suitable for investigating the influence of a certain code sec-
tion, e.g. a function, or a module, on the program location of
the slicing criterion. Hence it is perfectly suited as a basis for
automatic alarm slicing, which is available in Astrée. To give
an example, the critical situation for a division by zero alarm,
which is reported for a given context, is precisely the context
where the denominator becomes 0. Therefore the alarm slice is
a partial slice for the variables used in the denominator, which
only considers program paths leading to this particular context.

This concept of alarm slicing has been implemented in Astrée
and is available from the GUI: from the context menu of an
alarm in the Astrée graphical user interface the computation of
a slice for the alarm can be automatically triggered, as shown
in Fig. 5.

A detailed experimental survey of Astrée’s semantically
refined program slicer with programs from automotive and

avionic industry is given in [11]. It demonstrates that semanti-
cally refined slicing (termed analysis-enhanced slicing in [11])
can be applied to industry-size code with high precision and
with feasible memory and computation time requirements.

7 Data and Control Coupling

The CAST19 report [2] reviews the data and control coupling
requirements of the DO-178C and provides clarifications about
the intended use. It emphasizes that the purpose of data cou-
pling analysis includes (among others) identifying data depen-
dences, verifying the data interfaces between modules/compo-
nents through testing and analyses, identifying inappropriate
data dependencies, evaluating the need for and accurate use of
global data, and evaluating input/output data buffers.

The purpose of control coupling is stated to include identi-
fying control dependencies, identifying inappropriate control
dependencies, verifying correct execution call sequence, defin-
ing and evaluating the extend of interface depth, and assisting
in WCET analysis.

In addition, as outlined above, data coupling and control cou-
pling together aim at providing a completion check of the inte-
gration testing effort. The CAST19 report further clarifies that
the “Data Coupling and Control Coupling Analyses” objective
of the DO-178C (Objective 8 of Annex A, Table A-7 [20]) may
be satisfied as a static activity, a dynamic activity, or a combi-
nation.

In the following we propose a concept for sound static data
and control coupling analysis that builds on Astrée’s data and
control flow analysis as described in Sec. 4, and which satisfies
all requirements mentioned above. First, in Sec. 7.1, we present
a flexible and extensible concept for specifying software com-
ponents and critical data and control flow interactions between
them. Sec. 7.2 outlines static data and control flow analysis
augmented by the concept of components. Sec. 7.3 presents an
automatic taint analysis that efficiently tracks the flow of values
between components, and automatically reports undesired data
flow and undesired control dependencies. In case of taint sink
alarms indicating undesired data or control flow, alarm slicing
can be used to track down the cause of the undesired behavior.

7.1 Specifying Software Components

Since there is no established understanding of the granularity
of “component”, a specification mechanism is needed that al-
lows users to specify their concept of software components
and the “interesting” data or control flow between them. For
the purposes of data and control coupling, the full power of
special-purpose architecture description languages (ADL) is
not needed (cf. AADL [6], ArchiMate [1], SysML [23], or
UML-based architecture specifications), since the aim is to as-
certain the desired properties by automatic static analysis from
the source code.

A simple starting point is to define a software component as
a collection of all variables and functions defined in a set of
source files. This can be provided by (conceptual) annotations
of source files or functions:
"xfilel.c" insert
__ASTREE_attributes ((component ("trusted")));

"yfilel.c" insert

__ASTREE_attributes ((component ("non-trusted")));

This schema can be easily extended to more complex com-
ponent definitions, e.g., based on individual functions, all files
in a sub-directory, etc.

In addition to defining the elements of a software component,
the specification also allows to declare component interactions
that should be “observed” during the analysis, i.e., specifically
tracked and reported. To this end, the analyzer can be instructed
to report control and data flow from the component “trusted” to
the component “non-trusted”, and vice versa:
<observe>

<item key="trusted">"non-trusted"</item>

<item key="non-trusted">"trusted"</item>
</observe>

A dedicated view in the graphical user interface of Astrée
allows to conveniently create the software component specifi-
cation, and then export them to an XML file. Alternatively, the
XML file may also be generated automatically from an existing
ADL specification.

The specification of component interactions to be observed
mostly aims at explicitly reporting unexpected or forbidden in-
teractions. By placing components with expected interactions
under observation, Astrée can also address intended interac-
tions, however, in that case, the result of Astrée only contributes
potential interactions due to its sound over-approximation: a
reported component interaction can also be a “false alarm”. A
dedicated tag to support simultaneous tracking of unexpected
and intended interactions is currently not available but could be
easily added.

7.2 Augmented Data and Control Flow Analysis

The first step towards detecting and reporting data and control
flow relations between software components is to enhance the
standard data and control flow analysis by taking the compo-
nent definitions into account, which we term augmented data
and control flow analysis.

The augmented data and control flow analysis of Astrée will
thus report any interaction between two software components
of the following classes:

* Calling a function of a given component, including indi-
rect calls through pointer dereferences.

» Writing to a variable defined in a given component, which
can be a global variable that belongs to the component or a
local variable defined in a function of the component. That
includes indirect writes through pointer dereferences.

* Reading from a variable defined in a given component.
That includes indirect reads through pointer dereferences.

These interactions already capture most interferences between
components, including indirect ones, such as scenarios when
the address of a variable of component A is stored in compo-
nent C, and then read from C by component B which writes to
it through dereference.

They will not capture more subtle value dependencies, such
as component C copying the value of a global variable of com-
ponent A, store it in one of its variables and then give the value

to component B that may take different control flow based on
that value. To track such interferences, we need to follow the
flow of values, and we can do that using taint analysis tech-
niques — cf. Sec. 7.3.

The data and control flow views in the Astrée GUI presented
in Fig. 1 and Fig. 2 of Sec. 4, and the corresponding data and
control flow reports will be augmented by additional columns
which make the component assignment explicit. Each access
to a variable X then is reported with the following information
in the data flow view:

— variable name

— component to which the variable belongs

— location of access (may be pointer dereference)

— access type (read/write)

— function containing the access

— component to which the accessing function belongs

— task in which the accessing function is executed

— application of task

— core to which application has been assigned

— access locality (thread-local, effectively shared, data race)

— notification for components under observation

Each function call is reported with the following information
in the control flow view:

— caller

— component of caller

— callee

— component of callee

— call site (may be function pointer call)

— task in which the call is executed

— application of task

— core assigned to application

— notification for components under observation
The data and control flow reports can be generated in various
open formats that support post-processing, so it is easy to query
for any component interaction of interest. If a flow from a
component X to a component Y has been introduced with an
observe tag in the component specification, a dedicated no-
tification is generated about any observed flow from X to Y.

Also the visualizations of Fig. 3 and Fig. 4 will be augmented
by component information so that it will be possible, e.g., to
highlight the nodes for selected components, or show different
components in different colors.

This mechanism gives a sound overapproximation of all vari-
able accesses and function calls, and establishes their link to the
software component definition. It makes it easy to spot flows
under observation, hence call attention to flows that should be
investigated.

7.3 Data and Control Coupling Analysis

As outlined in Sec. 5, taint analysis allows to track the flow of
values in a project. One solution to compute data dependencies
between components is to assign a distinct taint hue to each
component, and use all global and local variables of a compo-
nent as taint source with the component hue. To be automat-
ically notified about all components where these values flow,
all reads in each component are declared as taint sinks for all

other components hues. The required __ ASTREE_taint and
__ASTREE_taint_sink directives can be generated auto-
matically. To focus on particular component interactions, the
automatic generation of taint source and taint sink directives
can be restricted to only those component flows placed un-
der observation, which reduces the number of taint sink alarms
about component dependences. Of course, it is also possible to
manually select specific component flows to observe, or per-
form the taint analysis on a per-variable base for individual
variables deemed critical.

This approach not only detects additional interferences com-
pared to the augmented data and control flow analysis, it also
allows to account for authorized interactions in a fine-grained
way. One example is that data flow from component Y to X
is forbidden, unless the access is made by specific gateway
functions. Such interactions can be modeled by taint-cleaning
operations which remove the taint in those gateway functions
(sanitization points), reducing the number of legitimate inter-
ferences that need to be examined. To further facilitate this
examination, automatic alarm slicing on taint sink alarms can
be used to help identify the program regions responsible for
undesired component interactions.

In addition to the data flows reported by the automatic taint-
ing as described above, taint analysis also allows to focus on
control coupling. The generation of taint sink directives can
be adapted, so that only values used in guards (for conditional
statements, while loops or switch statement) and in function
pointer dereferences are considered as taint sinks.

Hence, the taint analysis of software components can be per-
formed in data coupling and control coupling mode, satisfying
the requirements of the CAST19 report as described above.

It should be noted that taint analysis is a complement to the
augmented data and control flow analysis (cf. Sec. 7.2), but
cannot replace it, since it focuses on the data flow aspect and
does not report invocations of functions from other compo-
nents. Its data flow results are more powerful: taint analysis
can keep track of call-by-value parameters of functions and of
function return values and hence report dependences with re-
spect to constants or local variables. It not only shows that at a
certain location a given variable is accessed, but also provides
the corresponding call context — as an example, if a function is
called with a pointer argument, and only in one call site an ad-
dress of a variable from another component is passed, then the
alarm context will show precisely this call site. Furthermore,
it makes it possible to narrow the focus on selected component
interactions and tracks the relevant data flows also through code
that does not belong to one of the components under observa-
tion. Both of them together, i.e. , the combination of augmented
data and control analysis and the taint analysis for software
components provide a sound interference analysis. They re-
port all interactions between software components executed in
one or multiple concurrent threads, pinpoint interactions under
observation, hence enable users to find undesired interactions,
and browse the code locations where they happen. They also
provide a basis for checking intended interactions and allow
computing metrics about the data and control flow between the
software components.

As an example, consider the following code sequence:
/* file main.c =*/
void main (void) {
int x;
F_a(0);
g_b = x;
F_c(g_b);

X =

/+ file A.c =/
__ASTREE_attributes ((component ("A")));
int g_a;
int F_a(int x) {
int y=x;
return x + 2;

/* file B.c x/
__ASTREE_attributes ((component ("B")));
int g_b;

/+ file C.c =/
__ASTREE_attributes ((component ("C")));

int g_c;
int F_c(int x) {
g_c=g_a;
if (g_c < 0) g_c = F_a(3);

}

The augmented data and control flow analysis provides the
information that component C depends on A through variable
read and function call, since F__c reads variable g_a and calls
function F__a. Component tainting raises four taint sink alarms:
first it reports that component C depends on A at the assignment
g_c=g_a in F_C, which is information also available in the
augmented data flow view. It also reports a dependence from A
toCatg_c = F_a(3); in F_C because the return value of
F_Ais assigned to g_c. This is more precise information than
provided by the augmented control flow view which just reports
a call to a function from C at this location. Third, the taint
analysis reports a dependence from C to A at the assignment
y=x in F_a, since C passes a constant value to F_a, which
then is assigned to a local variable of A. Finally, the compo-
nent tainting reveals that component B depends on component
A through variable x: a taint sink alarm is raised at the assign-
ment g_b = x inmain.c, which is outside of components
A, B, and C. Note that in the example, all variables are directly
accessed, however, the analysis results would not change if all
variable accesses and function calls were made via pointers.

8 Experimental Results

The augmented data and control flow analysis is part of the
sound runtime error analysis, hence, it is not associated with
additional runtime or memory overhead.

To assess the performance of the taint-based components
analysis we investigated four industry projects of various sizes,
two from the avionics domain and two from the automotive
domain. We partitioned the code in software components and
determined the increase in analysis time and memory consump-
tion caused by component tainting. Tab. 1 shows the character-

istics of the projects, the results obtained with component taint-
ing are summarized in Tab. 2. Column S of Tab. 1 gives the size
of the projects in million physical lines of code' after prepro-
cessing, column N¢ indicates the number of software compo-
nents. The large number of software components in project
AE2 results from declaring every application source file as an
own component; in the other projects the components consist
of larger code parts. Column 7 and M show the analysis time
and memory consumption in their original configuration.

Project | S [MLOC] Nc¢ T M [GB]
AE1 0.14 11 33m 243
AE2 1.08 4309 | 8h27m 15.53
AUl 5.46 11 7h 1m 39.81
AU2 5.03 35 | 10h44m | 31.52

Table 1: Project Characteristics

Column 7; and M, of Tab. 2 show the analysis time resp.
memory consumption with component tainting. The increase in
analysis time and memory consumption associated with com-
ponent tainting is given in column Ar resp. Ay. The results
show that the overhead of component tainting is low. The in-
crease in memory consumption is below 1% for all test cases
except AE2. For AE2 an extremely high number of compo-
nents has been defined, which also entails a large number of
component interactions: there are 78283 alarms about variable
accesses creating component dependencies (cf. Tab. 3). How-
ever, even in that scenario the memory overhead is only 4.76%.

The increase in analysis time is between 4.93% and 8.07%
for the larger projects. The largest increase of 8.07% occurs in
project AU2, where the analysis time increases by 45 min from
a total analysis time of 10 hours 44 minutes. On the small-
est project, AEI, there is no measurable difference in memory
consumption.

Project T; M, [GB] AT AM
AEl 33m 243 0% 0%
AE2 8h 52m 16.27 | 493% | 4.76%
AUl 7h 24m 40 55% | 0.48%
AU2 11Th36m | 31.78 8.07% | 0.82%

Table 2: Results with Component Tainting

Taint sink alarms for component dependences can be limited
to flows under observation. However, in the experiments, we
configured Astrée to generate taint sink alarms for every cross-
component flow, since the goal was to assess performance on
large projects with many component interactions. The num-
ber of cross-component variable accesses derived from the aug-
mented data flow view is listed in column Ny of Tab. 3, column
Nc gives the number of cross-component function invocations,
and the number of taint sink alarms denoting cross-component
data flows is listed in column N74. All numbers indicate the
number of code locations which exhibit a cross-component in-
teraction, e.g., all accesses to a variable g4 of component A
from component B are separately counted.

'Le., comment lines and empty lines are not counted.

The difference between columns Ny and N4, on the one
hand, is due to additional dependences discovered by taint-
ing, e.g., due to values passed through library functions not
assigned to a specific components, call-by-value function pa-
rameters and function return values. On the other hand, as dis-
cussed in Sec. 7.3, component tainting focuses on data depen-
dences and tracks the effect of all function calls, but does not
separately report the calls themselves. The effect of infrastruc-
ture code without component assignment is particularly visible
in project AE2. The components do not explicitly invoke one
another, the invocations are made in an infrastructure layer we
did not assign to an own component. Dependencies carried
through that infrastructure layer, e.g., by copying component
variables via infrastructure variables, are visible with compo-
nent tainting, but not in the augmented data flow view.

Project Ny Nc¢ Nra
AE1 147 289 415
AE2 40929 0 | 78283
AUl 9569 | 1695 | 10285
AU2 8485 | 4242 | 16852

Table 3: Code locations with cross-component interactions

9 Conclusion

At the source code level, the data and control flow of a program
might be affected by behavior unintended by the programmer,
including unspecified and undefined behaviors of the program-
ming language. Hence, a safe analysis of data and control
flow must be embedded in a runtime error analysis that cap-
tures such undefined/unspecified behaviors. Determining the
data and control flow in the source code and making sure that it
is compliant to the intended control and data flow as defined in
the software architecture is a common requirement in all con-
temporary safety norms. The aim of data coupling and control
coupling analysis objective of DO-178C is to provide a measure
of the completeness of integration verification by ensuring that
the software components affect one another only in intended
ways. Furthermore all safety norms require demonstrating the
freedom of interference between software components of dif-
ferent criticality levels.

In this article we have presented a novel approach for data
and control coupling analysis and interference analysis, that
builds on a specification mechanism for software components
appropriate for automatic static code analysis. It is based on the
sound static analyzer Astrée that allows to prove the absence of
critical runtime errors that could cause memory corruption and
control flow corruption. Our approach augments sound global
data and control flow analysis by the software component level,
proposes a scalable and automatic taint analysis to determine
data and control dependences between software components,
and incorporates semantically refined program slicing to help
identify the program regions responsible for undesired com-
ponent interactions. It enables a sound approximation of data
and control coupling and a sound interference analysis that help
demonstrating the correctness of the data and control flow of
the program and contribute to satisfying the data and control

coupling and freedom of interference verification goals of con-
temporary safety norms. The experimental results show that
our approach is highly efficient and can be applied to industry-
size software projects.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

The ArchiMate Enterprise Architecture Modeling Language.
https://www.opengroup.org/archimate-forum/
archimate-overview(retrieved: Jan. 2021].

Certification Authorities Software Team (CAST). Position Paper
CAST-19. Clarification of Structural Coverage Analyses of Data
Coupling and Control Coupling, 2004.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proc. of POPL’77, pages 238-252. ACM
Press, 1977.

D. Delmas and J. Souyris. ASTREE: from Research to In-
dustry. In Proc. 14th International Static Analysis Symposium
(SAS2007), number 4634 in LNCS, pages 437451, 2007.

C. Faure and V. Delebarre. Automatic proof of freedom from
interference with iffree. In Proccedings of the 10th European
Conference on Software Architecture Workshops, Copenhagen,
Denmark, November 28 - December 2, 2016, page 36, 2016.

P. Feiler, D. Gluch, and J. Hudak. Technical Note CMU/SEI-
2006-TN-011. The Architecture Analysis & Design Language
(AADL): An Introduction. Technical report, Software Engineer-
ing Institute, Carnegie Mellon University, 02 2006.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. Program. Lang. Syst.,
12(1):26-60, Jan. 1990.

ISO 26262. Road vehicles — Functional safety, 2018.

D. Kistner. Applying Abstract Interpretation to Demonstrate
Functional Safety. In J.-L. Boulanger, editor, Formal Methods
Applied to Industrial Complex Systems. ISTE/Wiley, London,
UK, 2014.

D. Kistner, L. Mauborgne, C. Ferdinand, and H. Theiling. De-
tecting Spectre Vulnerabilities by Sound Static Analysis. In
R. F. Anne Coull, Steve Chan, editor, The Fourth International
Conference on Cyber-Technologies and Cyber-Systems (CYBER
2019), volume 4 of IARIA Conferences, pages 29-37. IARIA
XPS Press, 2019. Archived in the free access ThinkMind?™ Dig-
ital Library, http://www.thinkmind.org/download.
php?articleid=cyber_2019_3_10_80050.

D. Kistner, L. Mauborgne, N. Grafe, and C. Ferdinand. Ad-
vanced Sound Static Analysis to Detect Safety- and Security-
Relevant Programming Defects. In J.-C. B. Rainer Falk,
Steve Chan, editor, 8th International Journal on Advances in Se-
curity, volume 1 & 2, pages 149-159. IARIA, 2018.

D. Kistner, A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot,
A. Schmidt, H. Hille, S. Wilhelm, and C. Ferdinand. Finding All
Potential Runtime Errors and Data Races in Automotive Soft-
ware. In SAE World Congress 2017. SAE International, 2017.

D. Kistner et al. Finding All Potential Runtime Errors and Data
Races in Automotive Software. In SAE World Congress 2017.
SAE International, 2017.

D. Kistner et al. Analyze This! Sound Static Analysis for In-
tegration Verification of Large-Scale Automotive Software. In

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

Proceedings of the SAE World Congress 2019 (SAE Technical
Paper). SAE International, 2019.

M. Limited. MISRA C++:2008 Guidelines for the use of the
C++ language in critical systems, June 2008.

A. Miné. Static analysis of run-time errors in embedded real-
time parallel C programs. Logical Methods in Computer Science
(LMCS), 8(26):63, Mar. 2012.

A. Miné and D. Delmas. Towards an Industrial Use of Sound
Static Analysis for the Verification of Concurrent Embedded
Avionics Software. In Proc. of the 15th International Confer-
ence on Embedded Software (EMSOFT’15), pages 65-74. IEEE
CS Press, Oct. 2015.

A. Miné et al. Taking Static Analysis to the Next Level: Proving
the Absence of Run-Time Errors and Data Races with Astrée. In
8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016), Toulouse, France, Jan. 2016.

MISRA (Motor Industry Software Reliability Association)
Working Group. MISRA-C:2012 Guidelines for the use of the
C language in critical systems. MISRA Limited, Mar. 2013.

Radio Technical Commission for Aeronautics. RTCA DO-178C.
Software Considerations in Airborne Systems and Equipment
Certification, 2011.

Software Engineering Institute SEI — CERT Division. SEI CERT
C Coding Standard — Rules for Developing Safe, Reliable, and
Secure Systems. Carnegie Mellon University, 2016.

J. Souyris, E. Le Pavec, G. Himbert, V. Jégu, G. Borios, and
R. Heckmann. Computing the worst case execution time of an
avionics program by abstract interpretation. In Proceedings of
the 5th Intl Workshop on Worst-Case Execution Time (WCET)
Analysis, pages 21-24, 2005.

OMG Systems Modeling Language (OMG SysML™) Ver-
sion 1.6. https://www.omg.org/spec/SysML/1.6/
PDF[retrieved: Jan. 2021].

B. Zimmer, C. Dropmann, and J. U. Hanger. A systematic ap-
proach for software interference analysis. In 25th IEEE Inter-
national Symposium on Software Reliability Engineering, ISSRE
2014, Naples, Italy, November 3-6, 2014, pages 78-87, 2014.

https://www.opengroup.org/archimate-forum/archimate-overview
https://www.opengroup.org/archimate-forum/archimate-overview
http://www.thinkmind.org/download.php?articleid=cyber_2019_3_10_80050
http://www.thinkmind.org/download.php?articleid=cyber_2019_3_10_80050
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/SysML/1.6/PDF

	Title
	Introduction
	Sound Static Source Code Analysis
	Data and Control Flow Errors
	Data and Control Flow Analysis
	Taint Analysis
	Program Slicing
	Data and Control Coupling
	Specifying Software Components
	Augmented Data and Control Flow Analysis
	Data and Control Coupling Analysis

	Experimental Results
	Conclusion

