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A two-field Hamiltonian gyrofluid model for kinetic Alfvén waves retaining ion finite
Larmor radius corrections and parallel magnetic field fluctuations is used to study direct
turbulent cascades from the magnetohydrodynamic to the sub-ion scales. For moderate
energy imbalance and weak enough magnetic fluctuations, the spectrum of the transverse
magnetic field and that of the most energetic wave display a steep transition zone near
the ion scale, while the parallel transfer (and thus the parallel dissipation) remains weak.
In this regime, the perpendicular flux of generalized cross-helicity displays a significant
decay past the ion scale, while the perpendicular energy flux remains almost constant.
A phenomenological model suggests that the interactions between co-propagative waves
present at the sub-ion scales can play a central role in the development of a transition zone
in the presence of a helicity barrier.

Key words: plasma nonlinear phenomena, plasma simulation, space plasma physics

1. Introduction

Alfvén wave (AW) turbulence, which plays an important role in magnetized collisionless
plasmas such as the solar wind (Bruno & Carbone 2013, 2016), is often imbalanced in
the sense that the energy carried by the waves propagating in the forward and backward
directions relative to the ambient field have significantly different magnitudes (Tu, Marsch
& Thieme 1989; Lucek & Balogh 1998; Wicks et al. 2013). The degree of imbalance
is dependent on the type of wind (Tu, Marsch & Rausenbauer 1990) and also on the
distance from the Sun (Roberts et al. 1987; Marsch & Tu 1990; Chen et al. 2020). For
example, in a classical model of solar wind, outgoing AWs are emitted at the Sun’s surface,
as a consequence of reconnection processes in the chromospheric magnetic network,
while ingoing waves result from reflection of these waves on density gradients (Perez
& Chandran 2013; Chandran & Perez 2019), or from parametric decay instability (Malara,
Primavera & Veltri 2001). In the case of low-frequency highly transverse perturbations,
corresponding to the assumptions underlying the gyrofluid model derived in Passot, Sulem
& Tassi (2018), imbalance is associated with a non-zero value of an invariant referred
to as generalized cross-helicity (GCH), which identifies with the cross-helicity at the
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magnetohydrodynamic (MHD) scales and with the magnetic helicity at sub-ion scales. As
cross-helicity cascades to small scales and magnetic helicity to large scales (Miloshevich
et al. 2021), the question arises as to the behaviour of the GCH flux arriving from large
scales to the transition zone between MHD and sub-ion scales. Two publications recently
addressed this issue. One uses a gyrofluid model (in the limit of small values of the electron
beta parameter) which isolates the AW dynamics (Meyrand et al. 2021). The other is based
on a hybrid kinetic particle-in-cell simulation which enables the coupling of low-frequency
quasi-transverse AWs with quasi-parallel high-frequency ion cyclotron waves (ICWs)
(Squire et al. 2022). The role of ICWs and of the dissipation associated with the proton
cyclotron resonance at the spectral break separating the MHD and the sub-ion ranges was
indeed stressed, using the data from the Messenger and Wind spacecraft missions (Telloni,
Bruno & Trenchi 2015; Woodham et al. 2018).

In the regimes studied by Meyrand et al. (2021), the nonlinear parameter, defined as
the ratio of the inverse nonlinear time to the AW frequency, is typically above unity.
The dynamics then rapidly develops a significant transfer of energy towards large parallel
wavenumbers, resulting in the breaking of the asymptotics underlying gyrofluid models.
Despite this shortcoming, the gyrofluid simulation reveals the existence of a helicity
barrier which depletes the energy flux towards the small perpendicular scales, leading to a
transfer in the parallel direction at the ion scale, together with a steepening of the energy
(and magnetic) spectra. Energy accumulates at large scales and imbalance increases until
saturation occurs under the action of a strong parallel dissipation. In contrast to usual
fluid turbulence, the energy level that is reached depends on the magnitude of the parallel
viscosity coefficient. In this framework, dissipation, which plays a central role in the
dynamics, is not associated with any realistic physical phenomenon. The above scenario
was then validated by the kinetic simulation of Squire et al. (2022), where the dissipation
originates from ion cyclotron resonance. In this simulation, performed at βe = 0.3, the
level of fluctuations remains moderate because cyclotron resonance is rapidly triggered.
In fact, an argument based on critical balance, together with the requirement that k‖di = 1
(where di is the ion inertial length) at perpendicular scales such that k⊥ρi = 1 (ρi denoting
the ion Larmor radius), leads to a saturation amplitude scaling like β

1/2
i . As a consequence,

when βe is taken of order unity (for comparable ion and electron temperatures), one
may expect that high-amplitude fluctuations should develop before a stationary regime
can establish. Recent observations using Parker Solar Probe support the results of the
above simulation, with evidence of the coincidence between the presence of ICWs and of
magnetic spectra displaying an ion transition zone associated with a polarity change, as
expected when AWs trigger the formation of ICWs (Bowen et al. 2021).

Transition zones are commonly observed in the solar wind at 1 AU, where the plasma
beta parameter is of order unity or larger (see e.g. Huang et al. (2021) and references
therein). When the amplitude of the fluctuations is moderate (such as in the fast wind),
the above argument suggests that ICWs can hardly be excited at the perpendicular ion
scale. In this context, an alternative mechanism should be at work, like for example the
effect of co-propagating AW interactions that become relevant at ion scales (Voitenko &
De Keyser 2016; Gogoberidze & Voitenko 2020). In order to address this question, it is
appropriate to use a two-field gyrofluid model (Passot et al. 2018), where driving and
dissipation have been supplemented, which only retains the AWs, but requires that the
fluctuation amplitudes remain small and the parallel dynamics sub-dominant (conditions
that can be checked a posteriori). We chose to prescribe the ‘energy imbalance’ (referred
to as imbalance in the following) by maintaining constant the amplitudes of the largest
modes retained in the simulations, a driving process classically used in hydrodynamics
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Direct kinetic Alfvén wave energy cascade 3

turbulence (Siggia & Patterson 1978). It turns out that, in the quasi-stationary phases of
the simulation, the GCH and energy injection rates are roughly constant (equal to the total
dissipation rates), the ‘injection imbalance’, measured by their ratio, resulting from the
dynamics.

The paper is organized as follows. Section 2 describes the model and the numerical
set-up. Section 3 discusses the gyrofluid simulations, showing that, for moderate
imbalance, the spectrum of the magnetic fluctuations (and also that of the most energetic
wave) displays a steep transition zone near the ion scale, while the parallel transfer (and
thus the parallel dissipation) remains weak. The helicity barrier is mostly conspicuous on
the perpendicular GCH flux, which displays a significant decay past the ion scale, while the
transverse energy flux remains almost constant. In the situation where parallel energy and
cross-helicity dissipations are negligible, the effect of co-propagating wave interactions
seems to be the only alternative mechanism at the origin of the transition zone within
the context of the present model. Section 4 discusses this mechanism using a Leith-type
phenomenological spectral model. Section 5 presents the conclusions.

2. Equations and numerical set-up

Let us consider a situation where the plasma dynamics results from weak perturbations
of a homogeneous equilibrium state characterized by a density n0, isotropic ion and
electron temperatures T0i and T0e (characterized by their ratio τ = T0i/T0e) and subject to
an ambient magnetic field of amplitude B0 along the z direction. The various characteristic
scales are conveniently measured in terms of the sonic Larmor radius ρs = cs/Ωi, where
cs = √

T0e/mi is the speed of sound and Ωi = eB0/(mc) the ion gyrofrequency. In
particular, the ion Larmor radius ρi = vth i/Ωi (where the ion thermal velocity is given by
vth,i = (2T0i/mi)

1/2) and the ion inertial length di = vA/Ωi (where vA = B0/(4πn0mi)
1/2 =

cs
√

2/βe is the Alfvén velocity) satisfy ρi = √
2τρs and di = √

2/βeρs.
The two-field gyrofluid model is derived from the full gyrofluid model of Brizard (1992)

under specific scaling assumptions. Such a simple reduced fluid model does not retain
physical phenomena like kinetic dissipation, but also misses nonlinear couplings with
other modes. Discarding these effects, one here focuses on the nonlinear dynamics of
AWs, or kinetic AWs. Fully kinetic simulations will ultimately be necessary to validate the
findings. Like the parent model, the model is not restricted to the small-βe regime, unless
physics at the electron inertia scale de is retained (in the absence of electron finite Larmor
radius terms in the two-field equations, the electron Larmor radius must indeed remain
smaller than de). More precisely, leaving aside issues related to kinetic damping, the model
reproduces reduced MHD in the limit of large transverse scales, and electron reduced
MHD at sub-ion scales, both systems describing AWs or kinetic AWs, uncoupled to slow
waves, with no restriction on βe (especially since the parallel magnetic field component is
retained). Only at the ion scales, where the system includes a dispersive term associated
with the electron pressure gradient, can a coupling between AWs and slow waves become
relevant (see Appendix E of Schekochihin et al. 2009). We here neglect the electron inertia,
so the model covers a spectral range extending from the MHD to the sub-ion scales, within
an anisotropic scaling where the transverse scales are much smaller than the parallel ones.

2.1. The two-field gyrofluid model
The model (which retains no dissipation process) is written as equations for the electron
gyrocentre number density Ne and the parallel component of the magnetic potential A‖.
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4 T. Passot, P.L. Sulem and D. Laveder

When electron inertia is neglected, it takes the form

∂tNe + [ϕ, Ne] − [Bz, Ne] + 2
βe

∇‖Δ⊥A‖ = 0, (2.1)

∂tA‖ + ∇‖(ϕ − Ne − Bz) = 0. (2.2)

Here, Δ⊥ = ∂xx + ∂yy is the Laplacian in the plane transverse to the ambient field
and [ f , g] = ∂xf ∂yg − ∂yf ∂xg the canonical bracket of two scalar functions f and g.
Furthermore, Γn denotes the (non-local) operator Γn(−τΔ⊥) which in Fourier space
reduces to the multiplication by the function Γn(τk2

⊥), defined by Γn(x) = In(x)e−x, where
In is the modified Bessel function of first type of order n. For a scalar function f , the
parallel gradient operator ∇‖ is defined by ∇‖f = −[A‖, f ] + ∂zf .

The equations are written in a non-dimensional form, using the following quantities
as unities: Ω−1

i for time, ρs for the space coordinates (and thus ρ−1
s for the wavenumber

components), B0 for the parallel magnetic fluctuations Bz, n0 for the electron gyrocentre
density Ne, Te/e for the electric potential ϕ and B0ρs for the parallel magnetic potential A‖.

Introducing the operators L1 = 2/βe + (1 + 2τ)(Γ0 − Γ1), L2 = 1 + (1 − Γ0)/τ −
Γ0 + Γ1, L3 = (1 − Γ0)/τ and L4 = 1 − Γ0 + Γ1, the parallel magnetic fluctuations are
given by Bz = M1ϕ, with M1 = L−1

1 L2, and the electrostatic potential by ϕ = −M−1
2 Ne,

where M2 = L3 + L4L−1
1 L2 is positive definite. Thus, Bz and ϕ can both be expressed in

terms of Ne.
At the linear level, the phase velocity vph = ω/kz is given by

v2
ph ≡

(
ω

kz

)2

= 2
βe

k2
⊥

1 − M̂1 + M̂2

M̂2

, (2.3)

where the caret refers to the Fourier symbol of the operator. The associated operator Vph
is given by

Vph = s(−Δ⊥)1/2(1 − M1 + M2)
1/2M−1/2

2 , (2.4)

where s = (2/βe)
1/2 is the equilibrium Alfvén velocity in sound speed units. In physical

space, the eigenmodes, which can be viewed as generalized Elsasser potentials, are given
by μ± = Λϕ ± sA‖, where Λ = (−Δ⊥)−1(1 + M2 − M1)

1/2M1/2
2 .

In the absence of dissipation processes (needed in the turbulent regime), the system
(2.1)–(2.2) preserves the energy E and the generalized cross-helicity C:

E = 1
2

∫ (
2
βe

|∇⊥A‖|2 + 4δ2

β2
e

|Δ⊥A‖|2 − Ne(ϕ − Ne − Bz)

)
d3x, (2.5)

C = −
∫

NeA‖ d3x. (2.6)

In terms of μ±, the two invariants are rewritten (D = (−Δ)1/2)

E = 1
4

∫ {
(Dμ+)2 + (Dμ−)2} d3x, (2.7)

C = 1
4

∫
V−1

ph {Dμ+)2 − (Dμ−)2} d3x. (2.8)
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2.2. Numerical set-up
Equations (2.1)–(2.2) with βe = 2 and τ = 1 were solved in an isotropic periodic box of
size L, using a spectral method for the space variables and a third-order Runge–Kutta
scheme for the time stepping. An eight-order hyper-dissipation operator ν⊥(Δ⊥)4 + νz∂

8
z

acting on Ne and on A‖ is supplemented in the equations for the corresponding quantities.
For convenience, the parameters ν⊥ and ν‖ are referred to as transverse (or perpendicular)
and parallel viscosities. The system is driven by freezing the amplitude of the modes whose
transverse wavenumber stands in the first spectral shell and the parallel one corresponds
to kz(L/2π) = ±1, as in Siggia & Patterson (1978). A main interest of this procedure is
that it permits simulations with a high imbalance and a moderate nonlinearity parameter.
In such a regime, the injection rates of energy and of GCH are not prescribed, in contrast
with the situations where the system is driven by an external random force or by a negative
damping (Meyrand et al. 2021).

3. The GCH barrier
3.1. Spectral transition zone and arrest of the GCH cascade

In addition to the imbalance given by the ratio I = E+/E+ of the energies of the forward-
and backward-propagating waves, another quantity governing the dynamics is provided
by the nonlinearity parameter χ , defined as the ratio of the inverse nonlinear time to the
Alfvén frequency. At early times, when the maintained modes are dominant, a simple
phenomenological argument (Miloshevich et al. 2020) leads to χ ≈ (k⊥0/kz0)|B⊥(k⊥0)| =
|B⊥(k⊥0)|, where B⊥ is the transverse magnetic fluctuations (measured in units of the
ambient field), and the index zero refers to the maintained modes for which k⊥0 = kz0
in the (anisotropic) units of the gyrofluid model. At later times, in the isotropic simulation
box, the root-mean-square value of the magnetic fluctuation is used as an estimation of χ .
In this paper, we concentrate on the case where the nonlinearity parameter keeps moderate
values (initially χ ≤ 0.5), unless otherwise stated. Several simulations, referred to as R1,
... R8, were performed in the above framework. Their parameters are specified in Table 1.

We first illustrate our main results on a large-resolution simulation (run R1) that displays
extended inertial ranges. At the end of this simulation, the system did not yet reach a
stationary state. Nevertheless, as mentioned in § 3.2, the observed dynamics is similar
to that found in a lower-resolution simulation (run R2), carried out until saturation is
reached. For the R1 simulation characterized by an initial imbalance I = 100 and an
initial value χ0 = 0.47 of the nonlinearity parameter, performed in a computational box
of size L = 11 × 2π, figure 1 displays the transverse spectra (integrated over kz) E±(k⊥)
of the forward- and backward-propagating waves (figure 1a), and EB⊥(k⊥), EBz(k⊥) of
the transverse and parallel magnetic fluctuations (figure 1b), averaged over the time
interval [14 656, 14 760] corresponding to 1.5 Alfvén crossing times (see figure 3 for a
characterization of this interval relatively to the full simulation). The spectra E+(k⊥) and
EB⊥(k⊥) display a transition zone at scales slightly larger than the sonic Larmor radius
(corresponding to k⊥ = 1), with a spectral index close to −3, located between a sub-ion
range with a spectral index −2.7 and a MHD range whose extension is strongly limited by
the numerical constraints which make difficult the simulation in a box that would ideally
cover a more extended range at large scale, while also retaining the small-scale dynamics.
The transition zone is seen to extend up to the wavenumber where the spectrum EBz(k⊥)
changes from a quasi-flat range to a decay range displaying the same spectral exponent as
EB⊥(k⊥). The large-scale Bz fluctuations are much smaller than those of B⊥ as expected
when only AWs are excited at large scale (see e.g. Kobayashi et al. 2017).

https://doi.org/10.1017/S0022377822000472 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000472
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(a) (b)

FIGURE 1. Transverse energy spectrum E± of the forward- and backward-propagating waves
(a) and energy spectrum of the transverse and parallel magnetic fluctuations EB⊥ and EBz (b),
averaged on three Alfvén crossing times L/vA, for run R1.

N L/2π I χ0 χfinal νperp νz/νperp �t Colour code

R1 7843 11 100 0.47 0.61 3 × 10−9 1 2 × 10−3 —
R2 2803 5.5 100 0.50 0.68 5 × 10−9 1 3.125 × 10−3 red
R3 2803 5.5 10 0.43 0.60 2 × 10−8 1 3.125 × 10−3 green
R4 2803 5.5 1 0.36 0.56 5 × 10−8 1 3.125 × 10−3 orange
R5 2803 5.5 100 0.87 1.2 2 × 10−8 1 3.125 × 10−3 magenta
R6 2803 5.5 100 0.50 0.45 5 × 10−9 0.025 3.125 × 10−3 blue
R7 2803 5.5 100 0.50 0.43 5 × 10−9 0 3.125 × 10−3 cyan
R8 7203 5.5 1400 0.49 0.55 2 × 10−10 1 8 × 10−4 violet

TABLE 1. Parameters of the runs, together with the values χ0 and χfinal of the nonlinear
parameter at the beginning and at the end of the simulation, estimated by the square root of
the magnetic energy at this time. The colour code refers to the colour of the lines in figures 7–11.

Figure 2 shows the perpendicular fluxes of energy and GCH, averaged over the same
time interval as the spectra displayed in figure 1. One observes that the energy flux is
quasi-constant, even if the temporal fluctuations are comparable to the mean value (not
shown) at scales larger than the transition one. Differently, the GCH flux undergoes a
conspicuous decay at the transition range, a consequence of the helicity barrier whose
existence was pointed out by Meyrand et al. (2021) in similar simulations (although in
the asymptotic regime βe → 0), performed in the large-χ regime where the energy flux to
small transverse scales is also significantly inhibited by the barrier.

Because of numerical constraints, run R1 was performed in three steps, associated
with increased resolutions (N = 4203, 5603 and 7843 mesh points) and decreased
(equal) parallel and perpendicular viscosities. This procedure permitted us to analyse the
sensitivity of the parallel and perpendicular dissipations of energy (figure 3a) and GCH
(figure 3b). We observe that the perpendicular dissipations are essentially not affected by
the transition from one step to the following one, as expected in a usual turbulence cascade:
reduction of the viscosity does not affect the dissipation and only shifts the dissipation
range to smaller scales. In contrast, we observe that this is not the case for the parallel
dissipation of energy and even more for GCH, which both decrease with the viscosity,
confirming the absence of a standard turbulent cascade in the direction of the ambient
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Direct kinetic Alfvén wave energy cascade 7

FIGURE 2. Energy and GCH fluxes in the transverse direction for run R1 averaged in the same
time interval as in figure 1.

(a) (b)

FIGURE 3. Parallel energy (a) and GCH (b) dissipations Dz(E) and Dz(C), respectively, for run
R1. The run was started using equal perpendicular and parallel viscosity coefficients ν = 5 ×
10−8 using a resolution of 4203 collocation points (red line); a first restart was then performed
with ν = 5 × 10−9 and 5603 collocation points (green line), and another one with ν = 3 × 10−10

and 7843 collocation points (blue line). The insets show the corresponding perpendicular energy
and GCH dissipations D⊥(E) and D⊥(C). Due to lack of space, the time labels are not specified
for the insets that cover the same time interval as the main graphs.

field, at least in the regime of small or moderate nonlinear parameters considered in the
present study.

Figure 4 displays two-dimensional colour plots of the time-averaged parallel (figure 4a)
and perpendicular (figure 4b) GCH dissipations, defined by DC

z (k⊥, kz) = νzk8
z EC(k⊥, kz)

and DC
⊥(k⊥, kz) = ν⊥k8

⊥EC(k⊥, kz), respectively, where both the viscosities ν⊥ and νz are
here equal to 3 × 10−10 (and where EC(k⊥, kz) stands for the GCH power spectrum, after
angle-averaging in the transverse plane). In addition to the usual small-scale dissipation
in both parallel and perpendicular directions, one clearly observes the existence of a
significant parallel dissipation of GCH, which is larger near a transverse wavenumber
close to k⊥ = 1 than at the smallest scales.

These observations can be understood by considering the contributions of the + and −
waves, separately. Figure 5 shows the two-dimensional colour plots of the time-averaged
parallel dissipations D+

z (k⊥, kz) = νzk8
z E+(k⊥, kz) and D−

z (k⊥, kz) = νzk8
z E−(k⊥, kz) of the
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(a) (b)

FIGURE 4. Parallel (a) and perpendicular (b) dissipation of GCH in the (k⊥, kz) plane
(logarithmic coordinates) for run R1.

(a) (b)

FIGURE 5. Parallel dissipation of the energies of the + (a) and − (b) waves in the (k⊥, kz)
plane for run R1.

energies associated with the forward- and backward-propagating waves. A dissipation spot
is visible near k⊥ = 1 in the case of the + waves only. In contrast, comparable dissipations
of the forward- and backward-propagating waves take place at small scales, in both the
parallel and perpendicular directions. Indeed, the (weak) perpendicular transfer ε− of
E− is almost not affected by the GCH barrier, while ε+ is reduced past the barrier to
a value close to ε− since at these scales imbalance has almost disappeared (see also
Meyrand et al. (2021), in a case where the helicity barrier affects the energy transfer
more significantly than in the present simulation). In order to reach a stationary state,
the transfer in the z direction and the resulting parallel dissipation thus have to become
sizable near the ion scale for the + waves. At small scale, the dissipations of the two types
of waves are comparable and thus almost cancel out in the GCH dissipation, making the
parallel dissipation of GCH to be dominant at transverse wavenumbers close to k⊥ = 1, as
observed in figure 4.

A synthetic view of the dissipations in terms of the transverse wavenumber is obtained
when integrating on kz the dissipations D+

z , D−
z , D+

⊥, D−
⊥ associated with the energy

of the backward- and forward-propagating waves, and the analogous dissipations DC
z ,

DC
⊥ for the GCH. The resulting functions d+

z (k⊥), d−
z (k⊥), d+

⊥(k⊥), d−
⊥(k⊥), dC

z (k⊥),
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Direct kinetic Alfvén wave energy cascade 9

(a) (b)

FIGURE 6. (a) Parallel (red) and perpendicular (blue) dissipations of the energy of the + wave,
and parallel (green) and perpendicular (magenta) dissipations of the energy of the − wave,
integrated on kz, versus k⊥ for run R1. (b) Parallel (red) and perpendicular (blue) dissipations
of GCH, integrated on kz, versus k⊥ for the same run.

(a) (b)

FIGURE 7. Influence of the imbalance on the perpendicular E+(k⊥) spectrum (a) and on the
ratio E+(k⊥)/E−(k⊥) (b): I = 10 (run R3), I = 100 (run R2), I = 1400 (run R8).

dC
⊥(k⊥) are displayed in figures 6(a) (dissipation of energies) and 6(b) (dissipation

of GCH), under the same time averaging as in figures 4 and 5. The perpendicular
energy dissipation is concentrated at small scales, with comparable magnitudes for both
directions of propagation. Differently, for the parallel dissipation, while the energy of
the backward-propagating waves is dissipated at small scales only, the dissipation of
the forward-propagating waves, and thus the GCH, also displays a maximum near the
transition zone.

It turns out that the effect of the helicity barrier is enhanced when the large-scale
imbalance is increased, resulting in a steeper transition zone, in agreement with solar
wind observations reported in Huang et al. (2021). This is exemplified in figure 7(a) which
displays the time-averaged spectrum E+(k⊥) for three runs with different initial imbalance:
I = 10 (run R3), I = 100 (run R2) and I = 1400 (run R8). Time averages are performed in
the intervals [20 000, 25 000], [30 000, 40 000] and [7064, 7096], respectively. Compared
with run R1, they have a similar value of χ but are integrated in a box of size L = 5.5 × 2π,
with resolutions of 2803 (for I = 10, 100) and 7203 (for I = 1400) mesh points. When
considering the ratio E+(k⊥)/E−(k⊥) (figure 7b), we observe that it becomes close to
unity for k⊥ � 2, whatever the value of the imbalance at large scales.
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(a) (b)

FIGURE 8. Time evolution (averaged over three Alfvén crossing times) of the energy (a) and
GCH (b), normalized to their initial values, for runs R2, R3 and R4, with similar values of
the nonlinear parameter χ (whose time evolution is displayed in the inset in b) and different
imbalances: I = 100 (red), I = 10 (green), I = 1 (orange), respectively; a fourth run (R5) with
I = 100 and a larger χ is also displayed in magenta.

3.2. Temporal evolution of the dissipations and of the ideal invariants
While at zero imbalance the energy quickly reaches its saturation value (with nevertheless
significant temporal oscillations), when the imbalance is increased, the time needed
to reach saturation can become very large. This is shown in figure 8 which also
indicates that, for a small initial value of χ , the typical saturation time increases with I
(runs R2, R3, R4).1

Interestingly, for run R2 with an energy imbalance I = 100, the injection imbalance,
given by the GCH to energy injection ratio, is relatively small, with a value close to 0.1
at saturation, as seen in figure 9(a). Here, the injection rates are given by the slope of
the cumulative injections, estimated as the sums of the energy or the GCH and of their
respective cumulative dissipations. Figure 9(b) displays the energy and GCH fluxes for run
R2 in the steady state. They look qualitatively similar to those of run R1, and in particular
confirm the persistence of the GCH barrier in the saturated regime, in spite of the small
value of the injection imbalance. In contrast, an energy barrier is hardly visible in this
regime.

Furthermore, as illustrated in figure 10, the ratio of perpendicular to parallel energy and
GCH dissipations at saturation decreases as I increases. When saturation is reached with a
small value of χ , perpendicular transfer and dissipation still strongly dominate the parallel
ones. This is no longer the case when I is large, as illustrated with run R5. Note that in this
simulation, the initial value of χ was increased in order to shorten the time needed to reach
saturation. For such a large value of χ , the parallel dissipation rapidly becomes comparable
to the perpendicular one. It is to be noted that this situation is not specific to imbalanced
turbulence but also occurs for balanced simulations at large χ (not shown), indicating
that the breakdown of the asymptotics is not limited to imbalanced runs. Moreover, it is
conspicuous that the ratio of the perpendicular to parallel dissipation is always smaller for
the GCH than for the energy, pointing out that the barrier acts predominantly on the GCH.

As the nonlinear parameter χ is increased, the transition zone is less extended and
displays a shallower slope (not shown), except possibly when the imbalance is also
increased, as in the simulations presented in Meyrand et al. (2021).

1In order to perform simulations significantly longer than run R1, we resorted to reducing the numerical resolution
to 2803 mesh points and using a smaller computational box, of size L = 5.5 × 2π.
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(a) (b)

FIGURE 9. (a) Cumulative injections of energy (solid line) and GCH (dashed line). (b)
Energy (solid line) and GCH (dashed line) fluxes of run R2, averaged on the time interval
[30 000, 40 000].

(a) (b)

FIGURE 10. Time evolution (averaged over three Alfvén crossing times) of the ratio between
perpendicular and parallel dissipations of energy (a) and GCH (b), for the simulations shown in
figure 8 (same colour code).

3.3. Transition zone with negligible parallel dissipation
The transition zone not only exists in regimes where νz = ν⊥ (as in all the runs
presented in the previous sections), but persists when the parallel viscosity νz is
decreased while keeping ν⊥ unchanged. Figure 11(a) shows the transverse energy spectra
E±(k⊥) when νz is reduced by a factor 40 relative to its value in run R2. Parallel
viscosity can in fact be taken arbitrarily small and even zero without significantly
affecting the accuracy of the numerical simulation during a significant integration
time. As seen in figure 11(b), when reducing νz the perpendicular dissipation remains
unchanged, while the parallel one (which is always sub-dominant) decreases further
and the contribution of the spectral range close to k⊥ = 1 still dominates that of the
small transverse scales. Regimes with small parallel dissipation are in fact relevant
for the solar wind where the dynamics being quasi-transverse (Sahraoui et al. 2010),
the parallel transfer and consequently the parallel dissipation at the smallest scales are
much weaker than the transverse ones. The above results suggest that the existence
of the transition zone is not a consequence of the parallel dissipation, at least for
small values of the nonlinear parameter. A possible origin of the transition in this case
could be the interactions between co-propagating waves that take place at the sub-ion
scales, as suggested by Voitenko & De Keyser (2016) and Gogoberidze & Voitenko
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(a) (b)

FIGURE 11. (a) Energy spectra E±, averaged over the time interval [15 000, 20 000], for run
R6 with a parallel viscosity smaller by a factor of 40 than in run R2. (b) Perpendicular (solid
lines) and parallel (dotted lines) energy dissipations (averaged over three Alfvén crossing times)
for simulations performed with different parallel viscosities, all other parameters being kept
unchanged (red, run R2; blue, run R6; cyan, run R7).

(2020). This issue is addressed in the next section, using a semi-phenomenological
model.

4. Modelling of the transition zone
4.1. A phenomenological model including co-propagating wave interactions

We here concentrate on a diffusion model in spectral space which was first derived in
Passot & Sulem (2019), and then reproduced in Miloshevich et al. (2020) using a heuristic
approach based on the conservation of the energy and and of the GCH, together with
a phenomenological estimate of the transfer times. This model does not capture the
interactions between co-propagating waves, not only in the MHD range, where they do
not exist, but also in the sub-ion range where co-propagative kinetic AWs can actually
interact. In Passot & Sulem (2019), following Voitenko & De Keyser (2016), we enriched
the model by retaining interactions between triad wavenumbers which are comparable
but not necessarily asymptotically close. We introduce the nonlinear characteristic
frequencies for the mode k propagating in the ± direction, γ

±(↑↑)

k = V (↑↑)

k

√
k3

⊥E±(k⊥)

and γ
±(↑↓)

k = V (↑↓)

k

√
k3

⊥E∓(k⊥) (where V (↑↑)

k and V (↑↓)

k estimate the strength of the
corresponding interactions), associated with the interactions between co-propagating (↑↑)
or counter-propagating (↑↓) waves, respectively. Restricting the discussion to the case
where both waves undergo strong nonlinear interactions, we can define global inverse
transfer times as (τ±

tr,G)−1 = γ
±(↑↑)

k + γ
±(↑↓)

k . The ratio α(k⊥) = V (↑↑)

k /V (↑↓)

k should be an
increasing function of k⊥, which is essentially zero in the MHD range and saturates to a
finite value in the dispersive range. Identifying the inverse transfer times γ

±(↑↓)

k associated

with the counter-propagating waves with the nonlinear frequencies
√

k3
⊥v2

phE∓(k⊥), the
new inverse transfer times are then rewritten as

(τ±
tr,G)−1 ≈ k3/2

⊥ vph
(
(E∓)1/2 + α(k⊥)(E±)1/2) . (4.1)

Defining u± = E±/k⊥, the equation governing the evolution of E±(k⊥) is rewritten, in the
stationary regime, as

d
dk⊥

u±(k⊥) = −C
ε ± ηvph

k5
⊥vph

1
u∓(k⊥)1/2 + α(k⊥)u±(k⊥)1/2

, (4.2)
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where the energy and GCH fluxes ε and η are a priori functions of k⊥ and C is a numerical
constant. This equation is similar to (7.34) of Passot & Sulem (2019) when ν = 0, except
that the weighting factor of the co-propagating wave interactions is here taken to be α(k)
instead of its square.

The function α, which is taken as α(k⊥) = 3((1 + ck2
⊥)1/2 − 1)/((1 + ck2

⊥)1/2 + 1) in
Voitenko & De Keyser (2016), with c denoting a slowly varying function of k⊥, can also
be written as

α(k⊥) = d
(

vph(k⊥) − s
vph(k⊥) + s

)
, (4.3)

where s = √
2/βe is the Alfvén velocity (in sound speed units) and d is a free constant

parameter. An important remark, related to the existence of the helicity barrier, is that
(4.2) does not have a satisfactory solution when η �= 0. The linear growth of the phase
velocity vph at small scales implies that for k⊥ large enough, depending on the sign of η,
one of the spectra E+ or E− increases with k⊥.

4.2. Numerical integration of the phenomenological model
As discussed in Passot & Sulem (2019), (4.2) can be considered either as an initial-value
problem when the energy and GCH fluxes ε and η are given and the spectra E± prescribed
at a wavenumber k⊥ = k0 or, alternatively, as a nonlinear eigenvalue problem for ε and
η, when the spectra are specified at k0 and prescribed to decrease to zero at infinity.
Numerical integration of these equations is best performed as an initial-value problem
where k0 is taken close to the largest wavenumber of the spectral domain. Indeed, the
eigenvalue problem (where ideally k0 is chosen at the lower end of the spectral domain)
requires a shooting method and turns out to be extremely difficult to solve numerically,
due to its instability. Indeed, under the effect of any small perturbation, the small-scale
spectrum takes the form of an absolute equilibrium or goes to zero at a finite value of k⊥,
depending on the boundary conditions.

In the integrations presented below, we choose β = 2, τ = 1, k0 = 200 and small
enough initial conditions such as to obtain a solution where the spectra tend to zero
for a value of k⊥ slightly in excess of k0. As suggested by the numerical simulations
of the gyrofluid equations, in the conditions where χ is not too large, ε can be taken
constant. We used ε = 1 (close to the almost constant energy flux observed in the gyrofluid
simulations) and C = 15. Differently, the gyrofluid simulations show that the flux of GCH
undergoes a significant decrease at the barrier.2 To comply with this observation, we were
led to prescribe that η decreases faster than 1/vph(k⊥). For simplicity, we here chose
to take η(k⊥) = η0/v

γ

ph(k⊥). The numerical factor η0 = 0.82 ensures that the imbalance
at large scales tends to a value close to 100, as in most of the numerical simulations
presented in § 3, while the exponent γ = 1.1 leads to a small-scale imbalance which is also
compatible with the simulations. A larger value of γ would produce a smaller imbalance
at small scales. Note that decaying transfer rates also arise in nonlinear diffusion models
of turbulence retaining Landau damping (Howes, Tenbarge & Dorland 2011).

In figure 12, we display the E± spectra (figure 12a,c) and their local spectral exponents
(figure 12b,d) for the cases d = 3 (figure 12a,b) and d = 0 (figure 12c,d), the other
parameters being taken as mentioned above. In the absence of co-propagating wave
interactions (d = 0), the E+ spectrum exponent undergoes a transition, at k⊥ close to unity,
between the Kolmogorov exponent −5/3 and a value slightly steeper than the theoretical

2As discussed in Passot & Sulem (2019) and Miloshevich et al. (2020), a constant GCH flux would lead to
unrealistically large amplitudes and large imbalance at large scale, a consequence of the fact that transfer in the z direction
is not retained by the diffusion model.
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(a) (b)

(c) (d )

FIGURE 12. Spectra E±(k⊥) (a,c) and local slopes (b,d) predicted by the phenomenological
model for d = 3 (a,b) and d = 0 (c,d), with C = 15, ε = 1, η(k⊥) = 0.82/v1.1

ph (k⊥).

value −7/3, as expected in the presence of imbalance (Passot & Sulem 2019). When d = 3
(a value compatible with kinetic theory, used by Voitenko & De Keyser (2016)), a clear
overshoot of the spectral index is observed, associated with the existence of a transition
zone which starts for k⊥ slightly smaller than unity, the steeper slope being equal to -3.28
at k⊥ = 1.18. Near this wavenumber, the E− spectrum displays a weak flattening.

Several remarks can be made concerning the influence of the various parameters of the
model, which, at this stage, remains only qualitative. First, the slope of the transition zone
is steeper (shallower) as d in increased (decreased). This further indicates the role of the
co-propagating wave interactions in the generation of this transition zone.

At larger imbalance (e.g. when taking η0 = 0.92, which leads to a large-scale imbalance
close to I = 1000), the transition zone is slightly steeper, with a slope reaching 3.52 at
k⊥ = 1.11.

In the absence of co-propagating wave interactions, and when the variation of η is such
that ηvph(k⊥) is constant, the imbalance remains independent of k⊥. This is no longer the
case when η decreases faster than 1/vph(k⊥). As γ is increased from the value 1.1 chosen
in the figure, the imbalance at small scale is strongly reduced but the transition zone takes a
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different form. While the slope of the E+ spectrum is not as steep as for smaller values of γ ,
the E− spectrum becomes shallower. The case where η decreases faster can be associated
with a stronger transfer and/or dissipation in the z direction and thus a larger value of χ .
This effect is seen in some simulations but a systematic study has not been performed.

5. Conclusion

Using a two-field gyrofluid model retaining AWs only, we have observed that, for βe of
order unity or larger and a weak or moderate energy imbalance, a transition zone can exist
in the absence of a significant parallel energy dissipation, in contrast with the mechanism
based on the dissipation induced by ion cyclotron resonance, recently proposed by Squire
et al. (2022). This transition zone is found to be steeper at larger imbalance, in line with
Parker Solar Probe observations (Huang et al. 2021). In these simulations, a helicity barrier
also forms, associated with a decay of the perpendicular CGH flux at the ion scales, while
the corresponding energy flux is almost scale-independent. Such simulations are consistent
with the possible effect of the interactions between co-propagating AWs. The efficiency
of this mechanism is supported by the analysis of a phenomenological model based on
diffusion equations in the spectral space, in the spirit of the Leith model (Leith 1967)
for hydrodynamic turbulence. It turns out that, in the presence of co-propagative waves,
and only in this case, the energy barrier, modelled by a decay of the GCH flux with the
transverse wavenumber, leads to a spectral transition zone. As a consequence of weak or
negligible parallel dissipation, the injected energy accumulates and a relatively long time
is needed for turbulence to reach a steady state. As a consequence, in the context of a
more realistic model, one may suspect that before an ICW can be excited, other dissipative
effects can come into play, among them Landau damping or stochastic heating. Kinetic
simulations for values of the beta parameters of order unity or larger are necessary to
address these issues.
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