
HAL Id: hal-03694444
https://hal.science/hal-03694444v1

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explaining a deep spatiotemporal land cover classifier
with attention and redescription mining
N. Méger, H. Courteille, A Benoit, A. Atto, Dino Ienco

To cite this version:
N. Méger, H. Courteille, A Benoit, A. Atto, Dino Ienco. Explaining a deep spatiotemporal land cover
classifier with attention and redescription mining. The XXIV International Society for Photogramme-
try and Remote Sensing Congress, Jun 2022, Nice, France. pp.673-680, �10.5194/isprs-archives-XLIII-
B3-2022-673-2022�. �hal-03694444�

https://hal.science/hal-03694444v1
https://hal.archives-ouvertes.fr


EXPLAINING A DEEP SPATIOTEMPORAL LAND COVER CLASSIFIER WITH
ATTENTION AND REDESCRIPTION MINING
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ABSTRACT:

Deep learning-based land cover classifiers learnt from Satellite Image Time Series (SITS) are known to reach high performances.
In order to explain, at least partly, the rationale leading to each one of their decisions, attention-based architectures have been
proposed to automatically weight the importance of predefined data components in the classification process. Though generated
for each decision separately, the informational content conveyed by such explanations can remain insufficient to end-users because
of the complex nature of SITS. Moreover, getting a general perspective about the way a classifier works requires merging all
explanations for each class and relating them to its mode of operation, which is not always straightforward. A preliminary and
complementary approach for automatically identifying the data features detected by a pixel-wise deep spatiotemporal land cover
classifier and explaining its behavior at the class level is therefore proposed in this paper. Classified pixels are first described
using interpretable features coming under the form of data mining patterns. A redescription mining technique is then employed to
automatically select, for each class, the features matching the different activation level configurations of the layer that is assumed
to capture the aforementioned patterns. Experiments based on a Sentinel-2 time series and a deep spatiotemporal neural network
implementing a channel-separated processing as well as a channel-based attention mechanism show the interest of such a combined
approach.

1. INTRODUCTION

Land Cover Classification (LCC) is a task that has been benefiting from the last advances in deep learning for several years (Vali et
al., 2020). Many works such as (Pelletier et al., 2019),
(Rußwurm and Körner, 2020) or (Censi et al., 2021) shows that high-performance deep land cover classifiers can be learnt from
Satellite Image Time Series (SITS). Moreover, the black-box nature of these Deep Neural Networks (DNNs) has been being ad-
dressed using different methods designed to gain insights into the rationale leading to their decisions (Campos-Taberner et al.,
2020). Among them, Saliency Masks (SMs) have been proven to be effective at explaining each one of the outcomes. These
masks can be produced by recent explanation methods such as Grad-CAM (Selvaraju et al., 2017) and SHAP (Lundberg and
Lee, 2017). Other explanation methods can be established by integrating specific operators to both enhance model relevance and
provide insights on the predictions, for example using attention-based architectures. Works such as (Garnot et al., 2020), (Rußwurm
and Körner, 2020), (Ienco et al., 2020), (Censi et al., 2021) or (Courteille et al., 2021) follow this direction. These architectures
weight the importance of predefined data components in the classification process. To our knowledge, no proposal taking into
account all SITS dimensions has emerged so far. In addition, no explanation regarding the results supplied by attention mechanisms
themselves is provided. Finally, as decisions are explained independently from each other, getting a general perspective about the
way a classifier works requires merging all explanations for each class and relating them to its mode of operation, which is complex.

A preliminary and complementary approach for identifying automatically the dataset features detected by a pixel-wise deep spati-
otemporal land cover classifier and explaining its functioning at the class level is therefore proposed in this paper. Each classified
pixel is first described using interpretable features coming under the form of data mining patterns. These features, built using all
SITS dimensions, are detailed in Section 2. Each pixel is then also characterized by the activation levels of the layer that is assumed
to summarize a large part of the processing performed by the network and capture high level concepts similar to the aforemen-
tioned intepretable features. Finally, pixel descriptions are analyzed for each class separately using redescription mining (Galbrun
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and Miettinen, 2017) to automatically extract correspondence rules between the interpretable features and the different activation
level configurations. The redescription mining technique adopted in this paper is presented in Section 3. The proposed approach
is assessed using a Sentinel-2 time series and a spatiotemporal deep neural network implementing a channel-separated processing
as well as a channel-based attention mechanism. This experimental setting is described in Section 4. Obtained results are made
available in Section 5. They show that, while preserving good performances, the attention-based explanations of the decisions are
meaningful and can be enriched with class level explanations relying on intepretable features identified by redescription mining.
Section 6 concludes this paper by summarizing the main contribution, discussing its limits and pointing to possible future work
directions.

2. GROUPED FREQUENT SEQUENTIAL PATTERNS

The first step of the proposed approach consists in characterizing each pixel for which a ground truth is available with interpretable
features. It is assumed that some of these features are captured by deep SITS land cover classifiers and could help understand
how the latter distinguish classes. With the object of exploiting all SITS dimensions, spatiotemporal features extracted from each
available channel are focused on. They are obtained by mining the so-called Grouped Frequent Sequentiel patterns originally
proposed in (Julea et al., 2011). These patterns are spatiotemporal data mining patterns designed to describe and summarize SITS
at the pixel level in an unsupervised way (Julea et al., 2011). We propose to characterize each pixel with such patterns by extracting
them from each channel separately. Let us consider a given channel. Its pixel values are first quantized with standard techniques
such as equal frequency bucketing or clustering (Julea et al., 2011). Quantized pixel values are then associated with symbols
denoting the quantization intervals they belong to. As a result, each pixel is described by a symbolic series containing as many
symbols as the number of images involved in the SITS. The set of symbolic series describing pixels is then mined to extract all
possible sequential patterns such as 2 ) 3 ) 2. This pattern, if observed for a symbolic series, indicates that, some time in the series,
the value of the pixel it describes is denoted by quantization interval ‘2’, then, some times later, by interval ‘3’, and finally, some
times later by interval ‘2’ once again. No timing constraint is imposed, and there might be other symbols occurring in-between
the occurrences of the pattern symbols. Moreover, if this pattern is observed for several other symbolic series, i.e., it affects other
pixels, no synchronisation constraint between pattern occurrences is considered. In other words, such a pattern is allowed to occur
anywhere in space and in time.

In order to reject spurious patterns and safely prune the search space, two spatial constraints must be fulfilled. A pattern is retained
if: 1) it affects a sufficient number of pixels, i.e., it covers a minimum surface and 2) affected pixels are sufficiently connected to
each other on average, i.e., they form homogeneous regions in space, whatever their shapes. The first constraint is simply set using a
minimum surface threshold termed minimum frequency threshold and denoted σ. The second constraint is evaluated by considering
the 3 × 3 neighbourhood of each affected pixel, counting the number of immediate neighbours that are also affected by the same
pattern, averaging all of these counts and checking whether this mean exceeds or not a minimum grouping threshold denoted κ.
If unclassified pixels are located in the neighborhood of affected pixels, it is assumed that they are not affected by any pattern.
Applying these spatial constraints allow to target sequential patterns whose occurrences are frequent and grouped, hence the name
of Grouped Frequent Sequential Patterns or GFS-patterns. In addition, only maximal GFS-patterns are selected to focus on the
most specific ones. A pattern is maximal if it is not contained in any other pattern of the output collection. The reader is referred
to (Julea et al., 2011) for a more formal definition of GFS-patterns and details regarding the corresponding extraction algorithm.
Finally, maximal GFS-patterns are ranked using a dedicated and efficient randomization approach designed to guide end-users
towards the most promising GFS-patterns, i.e., the patterns that are the less or the more likely to occur in randomized versions
of the symbolic datasets. More details about this ranking method can be found in (Méger et al., 2019). Back to this paper, it is
proposed to describe each pixel for which a ground truth is available by indicating, for each channel, which are the most promising
maximal GFS-patterns occurring in its symbolic series, if any. In the following, the most promising maximal GFS-patterns are
simply referred to as patterns when clear from the context.

3. REDESCRIPTION MINING

Redescription mining is ‘a data analysis task that aims at finding distinct common characterizations of the same objects’ (Galbrun
and Miettinen, 2017). For instance, if geographical areas are described on one side by the presence of mammal species, and, on the
the other side by their temperatures, it is possible to find the following redescription: ’The areas inhabited by either the Eurasian
lynx or the Canada lynx are approximately the same areas as those where the maximum March temperature ranges from -24.4
◦C to 3.4 ◦C.’ (Galbrun and Miettinen, 2017). More precisely, let us suppose that each studied object is described by as many
tables as they are distinct characterisations. Within such tables, each object, i.e. a row, is described by attributes, i.e. columns,
whose type can be numerical, categorical or Boolean. Each table can be separately used to produce descriptions of the objects,
i.e. expressions built using the attributes of the table. Each expression allows to assign a Boolean value to each object by checking
whether it characterizes it, even partially, or not. Back to the first redescription example, it can be alternately expressed with
descriptions p = Eurasian lynx ∧ Canadian lynx and q = [−24.5 ≤ March maximum temperature ≤ 3.4] originating
from the table denoting the presence of mammal species and the table reporting the temperatures respectively. The set of objects
for which a description is true is termed support. A redescription is a pair of descriptions such as (p, q), also denoted p ∼ q,
each description being produced from a different table. In order to rank redescriptions according to their accuracy, the Jaccard
index of each description p ∼ q is computed as |supp(p)∩supp(q)|

|supp(p)∪supp(q)| . It allows to evaluate to which extent the objects for which a
description is valid can be also characterized by the other description, i.e., to which extent descriptions p and q are similar. The



set of objects characterized by both p and q is the support of redescription p ∼ q. Finally, redescription mining is about finding
all redescriptions by taking into account potential additional constraints such as limiting the support of redescriptions, limiting the
length of descriptions or selecting redescriptions that are statistically significant. The reader is referred to (Galbrun and Miettinen,
2017) for a more formal and general overview of redescription mining.

In this paper, objects are pixels described by 1) the different activation levels of the neurons of the layer that is assumed to capture
GFS-patterns, and 2) GFS-patterns themselves. Let ai denote the activation level of neuron i. Since we aim to automatically
match the different activation level configurations with the presence of patterns, redescriptions such as [0.2 ≤ a1 ≤ 0.3] ∧ [0.7 ≤
a17 ≤ 0.9] ∼ 2 ) 3 ) 2 are expected. The ReReMi algorithm proposed in (Galbrun and Miettinen, 2012a) is therefore considered.
It can indeed handle Boolean data and automatically determine the optimal numerical intervals that should be considered when
establishing a description from numerical attributes. In addition, a wide range of descriptions are explored. Disjonctions and
conjonctions can be employed, and variables can be negated. Some restrictions are nevertheless considered to make extractions
tractable: the descriptions are evaluated from left to right, irrelevant of the operator precedence, and every variable can be used only
once. Basically, ReReMi can extract redescriptions whose Jaccard index is above a user-defined threshold and whose descriptions
are statistically dependent. This dependence is checked using a p-value expressing the probability that the supports of descriptions
overlap as much as observed. Such a test tends to favor redescriptions with low support and can be counter-balanced by rejecting
those whose support is below a user-defined threshold. Even if such additional constraints are fulfilled, the search space remains
exponential and an heuristic pruning is performed: the algorithm starts from the best redescriptions whose descriptions contain only
one variable and greedily expand their descriptions as long as they form the best redescriptions. More details about the algorithm
can be found in (Galbrun and Miettinen, 2012a).

4. EXPERIMENTAL SETTING

The experimental setting comprises a SITS for which a ground truth and accurate classifiers are available in the literature as well as
a dedicated deep spatiotemporal land cover classifier whose design is inspired by state-of-the-art classifiers.

4.1 The Sentinel-2 Time Series

A Sentinel-2 SITS covering the Réunion island, for which the ground truth is available in (Dupuy et al., 2020) and land cover
classifiers have been proposed in (Ienco et al., 2020) and (Courteille et al., 2021), is used. It consists of 21 images with size 6667
pixels × 5916 pixels. They were acquired between January and December 2017 and cover a 67 km x 59 km scene with a 10 m spatial
resolution. Clouds are filtered using a multi-linear interpolation (Ienco et al., 2020). The following spectral bands are available:
B2 (blue), B3 (green), B4 (red) and B8 (near-infrared). The Normalized Difference Vegetation Index (NDVI) and the Normalized
Difference Water Index (NDWI) (McFeeters, 1996) are also supplied. These standard indexes are defined by NDV I = f(B8, B4)
and NDWI = f(B3, B8) with f(x, y) = x−y

x+y
, an homogeneous function from R∗

+ × R∗
+ to [−1; 1]. Regarding the ground truth,

2% (880,828 pixels) of the pixels are annotated according to 11 unbalanced land cover classes listed in Table 3 along with their
class ratios.

4.2 The Deep Spatiotemporal Land Cover Classifier

The Deep Spatiotemporal Land Cover Classifier (DSLCC) used in this paper is designed to be as interpretable as possible. Neural
networks based on recurrent cell models such as Long Short Term Memory (LSTM) ones (Ienco et al., 2017) are thus discarded in
favor of Convolutionnal Neural Networks (CNN) such as (Pelletier et al., 2019) or (Ienco et al., 2020). Moreover, the CNN field of
view (fov), i.e., the extent of the input neighborhood influence, can be controlled by design. This allows us to specify the temporal
fov, which is crucial when dealing SITS as they generally contain few acquisitions. Following the work of (Courteille et al., 2021),
all the convolutions are performed for each channel separately, and a auxiliary attention branch weighting the importance of each
channel in the decision of the classifier is added. Such an attention operator is chosen because it delivers meaningful explanations
that can be easily merged for each class using box plots (Courteille et al., 2021). Its architecture is detailled in Table 1. Inspired
by the work of (Pelletier et al., 2019), temporal convolutions (layers 3⃝ and 4⃝) are applied at the pixel level. They are carried
out after having computed spatiotemporal ones whose spatial footprint is 3 × 3 to match the spatial extent used to extract GFS-
patterns (layers 2⃝). As a result, a description based on 96 neurons is obtained for each channel independently (layers 4⃝). These
neurons are assumed to summarize a large part of the processing performed by the network and capture high level concepts similar
to GFS-patterns. Their number is set so as to limit the number of activation level configurations and ease interpretability. Finally,
channel-wise features are gathered and then summarized with dimension reduction layers ( 5⃝, 7⃝ and 8⃝). For each channel, an
auxiliary attention branch (layer 6⃝) is added to weight the importance of each channel in the decision of the classifier. To fit the
Réunion SITS with T = 21 timestamps, the size of convolutional kernels is adjusted to set a temporal field of view such that
k1 = k2 = k3 = 7. Finally, the number of convolutional filters progressively decreases with N1 = 256, N2 = 64, and N3 = 32.

5. EXPERIMENTS



Layer Operation Specifications Tensor output
shape

1⃝ split 6 input channels (T, 3, 3, 1)(×6)

2⃝ (x 6) conv3d
kernel=(k1, 3, 3),
no padding,
nfilters = N1

(T1, 1, 1, N1)

3⃝ (x 6) conv1d
kernel=(k2),
no padding ,
nfilters = N2

(T2, N2)

4⃝ (x 6) conv1d
kernel=(k3),
no padding,
nfeat = N3

(T3, N3)

5⃝ stack 6 channels from 4 (6, T3, N3)
6⃝ attention 6 attention weights αi

7⃝ from 5⃝ hidden dense + relu 256 neurons
8⃝ final dense + softmax 11 neurons

Table 1. DSLCC architecture. Features are extracted by 3 different convolutional layers computed for each one of the 6 channels (6
times layers 2⃝, 3⃝, 4⃝). Attention layer 6⃝ is outing 6 channel attention weights.

5.1 Pattern extraction

All pixels for which a ground truth is available are characterized using patterns (see Section 2). The whole extraction process, from
pixel value quantization to pattern ranking is run using the free prototype DFTS-P2miner (Nguyen et al., 2019). Original pixel
values are quantized with three intervals using equal frequency bucketing. As a result, for each channel, pixel values are denoted
by symbols ‘1’, ‘2’, and ’3’, that respectively report ’low values’, ’medium values’ and ’high values’. Such a preprocessing is
commonly adopted to mine patterns (Julea et al., 2011). The minimum surface of a pattern is set so as to be able to find patterns
for each class. The class that is less represented, namely ‘greenhouse crops’, only contains 1, 931 pixels. Assuming that about half
of these pixels share the same kind of evolution, the minimum surface was set to 881 pixels, which is a very weak constraint since
it represents 0.1% of annotated pixels. The average connectivity constraint imposed on the pixels affected by a pattern is set to
5, which is a standard setting when processing optical SITS (Julea et al., 2011). The 20 patterns that are the more likely to occur
in randomized versions of the data are retained along with the 20 patterns that are the less likely to do so, which is once again a
standard setting (Méger et al., 2019). For a given channel, each pixel is thus described by indicating the absence or presence of 40
patterns.

5.2 Training of the DSLCC

The model optimisation is performed using TensorFlow2. Inputs are normalised channel-wise between 0 and 1 using a min-max
feature scaling to facilitate the convergence of the training process. A stratified sampling preserving class ratios is employed to split
annotated pixels into a training dataset (60%), a validation and test dataset (20% each). Pixels belonging to a same object all belong
to the same dataset. The network is learnt by considering the standard unweighted categorical cross-entropy CE and defining the
loss as Lglobal =CE(Y, Y main)+0.5×CE(Y, Yaux) where Ymain and Yaux are the model main and auxiliary outputs. Gradients
are back-propagated using an Adam optimizer and an L2-regularization with a weight decay of 1.10−6 to avoid overfitting on all
layers.

The performances of the DSLCC is assessed against a classical random forest (500 trees, 200 splits) and two deep land cover
classifiers, namely TempCNN (Pelletier et al., 2019) and Sdeep-B-Multi-ii (Courteille et al., 2021). Both work at the pixel level,
ignore the spatial dimension, exploit all bands and indexes, and rely on temporal convolutions. In addition, Sdeep-B-Multi-ii is
equipped with an attention operator weighting the importance of each channel in the final classification decision. The random
forest, TempCNN, Sdeep-B-Multi-ii and the DSLCC respectively reach 90.4%, 91.3%, 92.2% and 84.4% of accuracy. Though less
accurate, the performance of DSCLC is still decent. It is detailled in Table 2.

5.3 Explaining the DSLCC decisions

In order to produce explanations as general as possible, all annotated pixels are supplied to the DSLCC to infer their classes. As
expected, the overall accuracy is still high with a score of 87%. The precision and the recall obtained for each one the classes are
listed in Table 3.



Class Precision Recall % of annotated pixels
Sugar cane 88 89 10.1
Pasture 88 84 7.7
Market gardening 61 65 2.0
Greenhouse crops 17 35 0.2
Orchards 62 67 3.8
Wooded areas 83 86 23.3
Moor 84 79 17.6
Rocks 92 92 17.5
Relief shadows 78 91 6.2
Water 98 84 9.2
Urban area 81 80 2.2
Mean 75.8 77.4 -

Table 2. Precision and recall by class for the DSLCC on the test set (176,166 pixels).

Class Precision Recall % of annotated pixels
Sugar cane 96.7 96.6 12.4
Pasture 92.8 94.0 7.3
Market gardening 75.1 74.3 2.3
Greenhouse crops 52.9 52.3 0.2
Orchards 80.1 83.7 3.9
Wooded areas 87.3 94.4 23.5
Moor 92.4 77.9 16.0
Rocks 97.5 97.7 21.4
Relief shadows 94.3 98.7 5.1
Water 99.9 99.4 6.1
Urban area 84.6 91.0 1.8
Mean 86.7 87.3 -

Table 3. Precision and recall by class for the DSLCC for all annotated pixels (880,828 pixels).

5.3.1 Attention: As shown in Figure 1 for some classes of interest and all annotated pixels, the attention weights differ from
one class to another, which illustrates the interest of the attention operator. It can be noted that all bands are exploited to take
decisions. These weights are extremely similar to the ones obtained at the scale of the validation and test sets. One exception is
class ‘Water’. This can be explained by the presence of different evolution sub-classes. Finally, let us remark that merging attention
weights is simple when considering channels or the temporal dimension. Contrarily, doing so for the spatial dimension or a set of
dimensions is far from being straightforward.

5.3.2 Redescription mining: Channel attention-based explanations given by Figure 1 are enriched with redescriptions extracted
from annotated pixel descriptions, i.e., patterns and the activation levels of layer 4⃝ observed at inference time. This is performed
for each predicted class of interest and each channel using the free prototype SIREN (Galbrun and Miettinen, 2012b). In order to
extract expressive but yet simple redescriptions, disjunctions and negated variables are not considered, the maximum number of
variables is set to 4 for the neuron activation level ones and 1 for pattern ones. The minimum Jaccard index is set to the SIREN
default value, i.e., 0.01, to extract as much redescriptions as possible. The minimum number of pixels supporting a redescription
is arbitrarily set to the SIREN default value, i.e. 5%. The maximum p-value is set to the standard value 0.05. All other SIREN
parameters resort to default values. Finally, once redescriptions are extracted, redondant ones are filtered out by removing those
supported by pixels supporting other redescriptions whose Jaccard index is better.

The following table gives, for each predicted class of interest and each band, the number of extracted redescriptions (r), the fraction
of pixels supporting all of them (Sall), the minimum and maximum cardinality of their supports (Smin, Smax) as well as their
minimum and maximum Jaccard indices (Jmin and Jmax). Though redescriptions are statistically significant since their p-values



Figure 1. All annotated pixels: box plots of channel weight attention for 4 classes, normalized by class sums. Horizontal lines depict
activation thresholds (0.5 for a sigmoid).

are lower or equal to 0.05, the match between the activation level configurations and the patterns is not complete. According to
Jmin and Jmax, redescription accuracy indeed varies between 0.08 and 0.66. Moreover, since Sall reaches 0.7 as a maximum,
redescriptions extracted from different bands should be therefore considered jointly to explain as much decisions as possible, which
is no suprise since the classifier itself adopts this strategy to infer classes (see Section 5.3.1).

The cover of decisions by redescriptions Cr , i.e. the percentage of decisions that can be explained with one or more redescriptions
is given for each class in Table 5. This cover is provided along with the minimum, maximum and mode numbers of redescriptions
per decision, Rm, RM , Rd, and the minimum, maximum and mode numbers of bands from which these decisions originate, Bm,
BM , Bd. As it can be observed, a majority of decisions are covered by redescriptions (between 65% and 91%) using up to 8
redescriptions and all 6 bands. Reported modes also show that decisions are most frequently covered by one ore two redescriptions
extracted from one or two bands. Considering several patterns coming from different bands to explain decisions also makes sense
when considering input data characteristics. For example, 97% of the pixels labelled as ‘Pasture’ by the classifier are indeed affected
by up to 10 redescription patterns (i.e., the patterns occurring in redescriptions, not redescriptions themselves) while no more than 5
redescriptions patterns can be supplied by a single band for class ‘Pasture’. This cover of decisions by redescription patterns, Crp, is
given Table 5 for each class along with the minimum, the maximum and mode numbers of redescription patterns covering decisions,
Rm, RM , and Bd. Finally, since not all decisions can be associated with redescriptions, other extraction parameter settings could
be tried, in particular for the support of redescriptions and the number of patterns retained to describe each band.

For class ‘Pasture’, a very high attention is reported for B8, which is expected as it is a vegetation class. Redescriptions obtained
for B8 are given hereafter along with their accuracy, J , and the number of pixels supporting them, S:

• r1: [3.347221 < a10] ∼ 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 ) 3 (J = 0.42, S = 0.40)

• r2: [−35.42756 < a33 < −5.023269] ∧ −[7.611569 < a62 < −1.214998] ∧ [0.322748 < a70 < 1.388656] ∼ 3 ) 3 ) 3 )

3 ) 2 ) 2 ) 2 ) 2 ) 2 (J = 0.19, S = 0.08)

These descriptions illustrates the fact that a pattern can be captured using a single or more neurons. Redescription r1 indicates that
40% of the decisions are associated with a pattern exhibiting a continuous presence of vegetation at a quite high level: symbol ‘3’



Class / Band r Sall Smin Smax Jmin Jmax

Pasture / B2 2 0.28 0.05 0.23 0.18 0.45
Pasture / B3 3 0.33 0.05 0.18 0.19 0.47
Pasture / B4 5 0.70 0.06 0.20 0.23 0.40
Pasture / B8 2 0.48 0.08 0.40 0.19 0.42
Pasture / NDVI 1 0.05 0.05 0.05 0.15 0.15
Pasture / NDWI 2 0.41 0.14 0.27 0.27 0.45
Rocks / B2 2 0.11 0.05 0.06 0.08 0.33
Rocks / B3 3 0.20 0.05 0.10 0.11 0.41
Rocks / B4 5 0.33 0.05 0.09 0.15 0.40
Rocks / B8 3 0.15 0.05 0.05 0.12 0.24
Rocks / NDVI 1 0.05 0.05 0.05 0.17 0.17
Rocks / NDWI 4 0.38 0.08 0.12 0.22 0.39
Water / B2 2 0.31 0.14 0.17 0.48 0.51
Water / B3 4 0.36 0.05 0.16 0.17 0.44
Water / B4 1 0.06 0.06 0.06 0.39 0.39
Water / B8 0 - - - - -
Water / NDVI 0 - - - - -
Water / NDWI 1 0.60 0.60 0.60 0.66 0.66
Urban area / B2 1 0.15 0.15 0.15 0.48 0.48
Urban area / B3 1 0.05 0.05 0.05 0.08 0.08
Urban area / B4 2 0.10 0.05 0.05 0.13 0.21
Urban area / B8 4 0.26 0.06 0.08 0.23 0.39
Urban area / NDVI 2 0.11 0.05 0.06 0.19 0.23
Urban area / NDWI 2 0.27 0.09 0.18 0.20 0.27

Table 4. Support and accuracy of extracted redescriptions.

occurs in 20 images (the series contains 21 images). Though accounting for 8% of the decisions, redescription r2 is interesting as
it shows a loss of biomass with a series of 4 symbols ‘3’ followed by five symbols ‘2’. Both patterns can be localized within the
ground truth areas actually covered by pastures using synthetic colors to denote both their spatial extent and the date at which they
ends in the SITS. The temporal color palette used in this paper is given by Figure 2. The white color is also used to point out the
pixels of the ground truth belonging to class ‘Pasture’ that are not affected by patterns. Remaining pixels, i.e. black ones, are simply
not covered by pastures according to the ground truth. These SpatioTemporal Localizations Maps (STL-maps) (Méger et al., 2019)
have been computed and cropped to focus on a 12 km × 12 km area of interest located inland, in the region of la Plaine des Cafres.
The resulting maps are presented with figures 3 and 4 for the r1 and r2 patterns respectively. No significant temporal behavior is
observed for the r1 pattern, which is expected as it covers almost all the images of the SITS, i.e., 20 images out of 21. Contrarily,
the r2 pattern shows more dispersed settings since it is shorter and can end at different dates. This dispersion is particularly visible
in the northern part of La Plaine des Cafres as shown in Figure 5. As also evidenced by the STL-maps, and since no pixel can be
covered both by the r1 pattern and the r2 pattern1, these patterns are complementary spatially. These maps thus show that using
these patterns to predict class ‘Pasture’ makes sense even if, as underlined by white pixels, they do not characterize all of its pixels.
Knowing that the classifier is very accurate for that class, this is far from being surprising since about half of the decisions are
explained by r1 and r2 (S=0.48). STL-maps computed with respects to decisions ‘Pasture’ (and not the actual class ‘Pasture’) are
extremely similar for the same reason. They are presented in figures 6 and 7. The same color palette is used to denote the presence
of the pattern as well as its ending dates. The white color is used to show decisions for which the activation level conditions are
not fulfilled and the pattern is absent. The brown color is associated with decisions such that the activation levels conditions are
satisfied and the pattern is absent. If the pattern is present and the activation level conditions are not meet, then the gray color is
assigned to pixels.
Regarding NDVI, even if designed to monitor vegetation, the DSLCC hardly exploits it according attention weights (see Figure 1).
Let us have a look at the only one and quite weak redescription extracted for this index. It is supported by 5% of the pixels with an

1 There is only one symbol left undescribed for pixels affected by the r1 pattern, and this pattern contains no symbol ‘2’ while the r2 pattern contains
5 symbol ‘2’.



Class Cr Crp Rm RM Rd Bm BM Bd RPm RPM RPd

Pasture 0.91 0.97 1 8 2 1 6 2 1 10 2
Rocks 0.72 0.83 1 6 1 1 5 1 1 8 1
Water 0.73 0.78 1 7 1 1 4 1 1 7 1
Urban area 0.65 0.80 1 5 1 1 4 1 1 8 2

Table 5. Decision covers.

accuracy of 0.15%. It refers to pattern 1 ) 1 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 and thus expresses a gain and then a loss of biomass. Since
behaviors similar to B8 ones could also be expected, this confirms that mobilizing NDVI to detect pastures is indeed not of primary
interest for this SITS.

Figure 2. Temporal color palette: 21 acquisitions, from January 2017 (red) to December 2017 (magenta).

Class ’Water’ is detected by exploiting all channels at quite high levels according attention weights (see Figure 1). Though being
the less exploited according to attention weights, NDWI is generally expected to detect water. This is confirmed by a single but
strong redescription:

• r3: [−31.58766 < a92 < −2.46482] ∼ 1 ) 1 ) 2 ) 1 ) 1 ) 1 ) 1 (J = 0.66, S = 0.60)

Redescription r3 allows to describe 60% of the decisions leading to class ’Water’, which is the highest support reported for the
redescriptions extracted for the classes of interest. Its 22 km × 17 km STL-maps, for areas located along the northwest coast between
the towns of Saint-Paul and Saint-Denis, are given by Figure 8 and Figure 9. Though the r3 pattern contains few symbols, there
is few temporal dispersion with ending dates located at the end of the year. According to the ground truth, it mainly characterizes
maritime waters, i.e., the eight large blocks picked up by the experts in coastal waters. Contrarily, a set of inland water zones,
grouped at the lower left corner of the image is not captured by the pattern. They belong to the Réserve naturelle nationale de
l’étang de Saint-Paul and can not be detected using redescription patterns extracted from B2, B3 or B4. The latter indeed focus on
maritime waters as well. In more details, B2 is associated to redescription patterns expressing gradual increases as well series of
changes, all reflectance levels being mobilized. Band B3 supplies redescription patterns expressing the stability of either medium
or high reflectance values. Band B4 is exploited through a redescription expressing an abrupt increase from symbol ‘1’ to symbol
‘3’.

Finally, B8 and NDVI do not seem to be captured by the network in the way patterns do since no redescription is to be reported for
these bands. Knowing that the DSLCC identifies maritime waters as well as inland waters such as those of the Réserve naturelle
nationale de l’étang de Saint-Paul, one could simply argue that patterns do not characterize such areas. Among the 40 patterns
automatically extracted from B8, 7 can be manually identified as being able to detect such areas. This is reasonable since vegetation
is present in this pond region. Pattern 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 is a good example. Its STL-map for the whole 22
km × 17 km is presented with Figure 10. Please note that it is not restricted to actual water areas or areas identified as such by
the DSLCC. As evidenced, the inland water of the Réserve naturelle nationale de l’étang de Saint-Paul as well as other vegetated
areas are well exhibited while maritime waters are not detected. The pattern extraction parameters as well as the redescription
extraction parameters can thus be questioned. For example, more patterns could be considered to characterize each band and/or a
lower redescription support could be envisaged. If the latter option is chosen, and if the minimum number of pixels supporting a
decision is set to 1% instead of 5%, then 5 redescriptions are extracted. Two of them rely on the inland water patterns identified
manually, and pattern 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 is one of them. It is thus possible to relate inland water decisions with
patterns, as long as the support is correctly set. Interestingly, no such patterns are reported for NDVI while its attention weights are
higher than those of B8.

According to attention weights, class ‘Rocks’ mainly mobilizes visible and near-infrared channels. Rocks are indeed less likely to be
detected by vegetation nor water indices. They are also not likely to change that much, which is confirmed by available redescription
patterns. They indeed indicate that reflectance levels are quite stable. Though symbol ‘1’ can occur in a row, these levels are mainly
medium and high ones for B2, B3, and B4 (symbols ‘2’ and ‘3’) while they are lower ones for B8, NDVI, and NDWI. (symbols ‘1’
and ‘2’). Regarding the redescriptions provided for class ‘Urban area’, quite stable evolutions based on medium or high reflectance
values are extracted for B2, B3, B4. Contrarily, an increase from symbol to ’1’ to ’2’ is reported for NDVI and NDWI. NDWI also
provides a redescription pattern showing stability at low levels. Band B8 unveils more complex evolutions, i.e., stable ones with
series of symbol ‘2’ as well as decreases, either from symbol ‘2’ to symbol ‘1’ or from symbol ‘3’ to symbol ‘2’. This diversity is
exploited by the DSLCC since it mainly relies on B8 according to attention weights (see Figure 1).



Figure 3. STL-map of the r1 pattern, for ground truth areas covered by pastures, in the region of la Plaine des Cafres.

6. CONCLUSION

An original approach for explaining the behavior of a deep spatiotemporal land cover classifier is presented in this paper. It
unveils, for each channel and each class, the intepretable spatiotemporal features captured at the pixel level by the last convolutional
layer. These features are extracted using dedicated data mining patterns and matched with the different neuronal activation level
configurations using redescription mining. In order to demonstrate the feasibility of the proposed approach, a simple architecture
applying spatiotemporal and and temporal convolutions for each channel separately is considered for the deep classifier. As shown
by experiments on a Sentinel-2 time series, such explanations are meaningful and can enrich channel attention-based explanations.
Nevertheless, though indeed captured by the network, it is yet unclear to which extent they do account for the final decisions.
Masking methods are for example envisaged to assess this crucial aspect. Moreover, since some expected redescription-based
explanations are missing and decisions are not always covered by redescriptions, the selection of the patterns and the redescriptions
can also be questioned. In particular, the number of most promising GFS-patterns describing the pixels could be higher and
the support of the redescriptions could be lower. A method for setting them automatically would be of interest. More complex
redescriptions, e.g., with more activation level variables and disjunctions could also be extracted. In addition, it would be of interest
to check whether the presence/absence of patterns could help in understanding classifier errors or not. Finally, other layers such
as the final dense one should be studied, and other interpretable features could be considered, in particular the WECS (Wavelet
Energies Correlation Screening), a wavelet-based change measure recently proposed by (Fonseca et al., 2021).



Figure 4. STL-map of the r2 pattern, for ground truth areas covered by pastures, in the region of la Plaine des Cafres.
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Figure 8. STL-map of the r3 pattern for ground truth areas covered by maritime waters, between the towns of Saint-Paul and
Saint-Denis.



Figure 9. STL-map of the r3 pattern for areas identified as waters by the DSLCC, between the towns of Saint-Paul and Saint-Denis.



Figure 10. STL-map of pattern 3 ) 3 ) 3 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2, between the towns of Saint-Paul and Saint-Denis.


