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Abstract  

 The nitrogen (N) economics of plants are generally described in terms of functional traits and how 

these affect N availability in a given environment. However, recent studies have shown that plant 

symbionts play a crucial role in plant N economics. A plant together with its symbiont can be 

considered as a meta-organism, the holobiont. Plant-associated symbionts are shaped by the plant, 

thereby extending the plant’s phenotype. Decomposers also play an important role in plant N 

economics yet are usually not included in the plant holobiont. 

 In this review, we show the important roles that both symbionts and decomposers play in plant N 

economics. We focus on how plants respond to fluctuating N availability in a complex interaction 

network, which includes the plant’s strategies and its interactions and feedback loops with the soil 

biota and with neighbouring plants, through competition for N by exploitation and interference. 

 Synthesis: Plant N economics and the outcome of plant-plant interactions in a community cannot be 

fully described solely through the functional traits of plant individuals. Properties emerging from the 

interaction network bring new insights into plant N economics. Further research is now needed to gain 

a deeper understanding of plant N economics and resource economics in plant communities by 

integrating a broader extended plant phenotype. 

 

 

Introduction 

mailto:antoine.vernay@univ-lyon1.fr


 

 

Nitrogen (N) is an essential resource that plays a key role in plant metabolism through enzyme activities and 

plant growth. Plant productivity is largely limited by N availability in many terrestrial ecosystems (Du et al., 

2020). To mitigate this limitation, plant individuals can use N storage, internal N recycling and N exchanges 

with the environment. These uses define the plant’s N economy, mirroring market economy theory (Bloom et 

al., 1985). Plants respond to fluctuations in resource acquisition and utilisation to optimise their fitness, 

i.e. their reproduction, growth and survival performance (Semenova & Maarel, 2000; Violle et al., 2007). 

Plant economics make use of various strategies for the acquisition and processing of resources, of which N is 

an important one (Ficken & Wright, 2019).  

Plant economic strategies are usually described by a set of functional traits, namely morphological, 

physiological or phenological features measurable at the individual scale. They are most often classified on a 

spectrum ranging between two extremes: a conservative strategy, characterised by inherently slow growth, 

efficient internal recycling of resources and long-lifespan tissues (Reich, 2014), and an acquisitive strategy, 

promoting fast growth, resource acquisition and use, and biomass turnover. Plant trait values (their attributes 

sensu Violle et al., 2007) characterise plant individuals and position them on the spectrum of resource 

strategies between conservation and acquisition (Adler et al., 2014; Reich, 2014; Wright et al., 2004, 

Figure 1).  

The N economies of individual plants are not set in stone and can accommodate to fluctuating N availability. 

Plant attributes can vary with environmental conditions depending on their phenotypic plasticity (Pigliucci, 

2005; Sultan, 2000). Attributes can be heightened or attenuated in a given range (Arnold et al., 2019), the 

reaction norm, to respond to soil N availability and plant N status (Callaway et al., 2003; Lipowsky et al., 

2015). Phenotypic plasticity has so far been only weakly integrated into plant N economics. Plasticity has 

generally been described as a momentary response of a plant to N availability. Yet changes in plant plasticity 

can confer substantial long-term changes in plant fitness (Gibert, 2020; Roscher et al., 2018). 

Scientific advance has broadened the historical plant-centred view of plant strategies (Craine, 2007; Grime, 

1973; Tilman, 1982), adding biotic traits related to plant-soil interactions (Freschet, Violle, Roumet, et al., 

2018). Some plants rely on symbiotic relationships with N-fixing bacteria and mycorrhizal fungi to acquire N 

(Figure 1). A plant’s abilities to build symbiotic interactions have therefore been integrated into the root trait 



 

 

space (Reich, 2014; van der Heijden et al., 2015). Plants can also influence rates of decomposer activity, 

modifying N availability by acting on N cycling processes in the soil (Hobbie, 2015; Moreau et al., 2019). 

Another important driver that modulates plant N economics and induces changes in plant phenotype is 

neighbouring plants. A plant and its neighbours all draw on a finite common N pool in the soil and cause 

fluctuations in N availability, with ensuing competition and/or facilitation among individuals. Plants can 

impede resource access of neighbours without modifying overall availability. This process, called interference 

competition, often involves the release of chemicals from a plant that act on neighbours, soil biota and 

seedbed properties (Holdridge et al., 2016). This action alters the N economics of both the releasing plant and 

its neighbours. Interference interactions that use chemicals directly impacting neighbours are described as 

allelopathic and represent the most common form of interference between plants. However, although 

interference is a growing field of research, it is not yet fully integrated into plant N economics. Plant 

functional traits involved in interference processes can be confounded with those involved in resource 

acquisition and processing, making plant N economics more complex than was previously thought (Fernandez 

et al., 2020; Inderjit & del Moral, 1997).  

Plant N economics encompass (i) plant-plant interactions, (ii) plant-soil biota interactions and (iii) nitrogen 

availability, with reciprocal interdependencies. A new perspective is thus needed to gain a deeper mechanistic 

understanding of plant N economics. This will entail considering how these processes work together in the 

complex interaction network shaping plant N economics. Complexity is compounded by the fact that these 

interactions are bidirectional among all actors. Interaction networks can change according to their abiotic 

context because they can shift in nature and/or in intensity and importance according to resource availability 

(Pugnaire & Luque, 2001; Vernay et al., 2018b). 

In this review, we focus on how plant-plant interactions (exploitation and interference) and plant-soil biota 

interactions all help shape plant N economics. We demonstrate that a functional trait approach is necessary but 

not sufficient to understand plant N economics, since feedback loops with neighbouring plants and soil biota 

are important drivers of plant N strategies at different scales. We first describe the different plant N strategies 

and how plant-plant interactions can affect them. We also show how plant phenotypes can be extended to 

integrate symbiotic microorganisms enhancing plant N acquisition as a substantial component of those 



 

 

strategies. Secondly, we demonstrate why decomposers should also be included in the extended phenotype of 

plants and more generally in the individual plant N economy. Finally, we discuss the properties emerging 

from the complex interaction network including plant-plant and plant-soil biota interactions. We highlight the 

need to broaden the framework of plant N economics and consider the heterarchical effects of all processes on 

the plant-soil system (at all organisational levels). 

I. Plant traits relative to different N strategies 

A. Aboveground and belowground individual plant strategies to address fluctuating N 

availability 

It has been largely demonstrated that at the individual scale, the resource economic spectrum is widely 

conserved among species worldwide, especially for leaf traits (Díaz et al., 2016; Wright et al., 2004). Plant 

strategies may adjust to fluctuating N availability through phenotypic plasticity (Abakumova et al., 2016; 

Roscher et al., 2018). This enables plants to manage N availability by altering their morphological (Freschet, 

Violle, Bourget, et al., 2018) and ecophysiological attributes (Vernay et al., 2018b). Specific leaf area (SLA), 

leaf N content (Figure 1, circle 1) and metabolic rates of processes such as leaf respiration and photosynthesis 

are higher in acquisitive species than in conservative ones, while leaf tissue density and lifespan are higher in 

conservative plants (Figure 1, Table 1). However, as N availability changes in space and time, plants must 

adjust their N economies to meet their N requirements. 

 

A root economic spectrum has been proposed, analogous to the leaf economic spectrum. High specific root 

length (SRL), low root dry matter content (RDMC), high root N concentration (RNC) and high root 

respiration rate are associated with acquisitive species, whereas high RDMC and high lignin:N ratio are 

features found more often in conservative species (Prieto et al., 2015; Roumet et al., 2016). This pattern is 

closely related to N allocation and storage in the different organs. Acquisitive species can increase their 

abilities to forage for N by increasing their SRL (Hodge, 2010; Hodge et al., 1999; Oldroyd & Leyser, 2020), 

whereas the more conservative species preserve and store N in organs such as stems or taproots (Vernay et al., 

2018b, Figure 1, arrows A and B). 



 

 

The plant belowground compartment economy is more controversial than that of the aboveground 

compartment because root traits do not consistently validate a root economic spectrum mirroring the leaf 

economic spectrum (Mommer & Weemstra, 2012; Weemstra et al., 2016, 2021). The coordination of many 

morphological and architectural traits with the root economic spectrum remains unclear, especially for woody 

species (Erktan et al., 2018; Kramer‐Walter et al., 2016). The fine-root system taking up resources in the soil 

was long viewed as a belowground counterpart of leaves (Liese et al., 2017). However, whereas the main 

function of leaves is photosynthesis, the fine-root system plays a key role in taking up water and a plethora of 

nutrients that are not all available in the same quantities. This suggests that plant N economy is not reducible 

to the traditional economic spectrum. 

Bergmann et al. (2020) found a significant negative correlation between SRL and the duo root diameter and 

cortex fraction, all three traits being related to a distinct spectrum, independent of the root economic spectrum, 

and related to root tissue density and N content. This distinct spectrum accounts for a plant's ability to interact 

with soil biota to take up resources, whereby belowground interactions with the soil biota also shape plant N 

economy. This new axis, the collaborative axis, runs from a “do-it-yourself” plant strategy to an 

“outsourcing” strategy. Plants with a “do-it-yourself” strategy rely on their own functional traits to acquire N, 

and generally have a high SRL and small root diameter and cortex fraction. Conversely, plants with an 

“outsourcing” strategy rely on a strong interaction with root symbionts and show a low SRL but a high root 

diameter and cortex fraction. These attributes increase potential habitats for fungal symbionts, especially 

arbuscular mycorrhizal (AM) fungi. In the “outsourcing” strategy, the plant invests a large part of its C to 

strengthen interactions with mycorrhizal fungi, increasing their N acquisition (Bergmann et al., 2020). 

Considering root traits among the collaborative and economic gradients in the root trait space gives a new 

perspective on plant N economics. The soil biota closely associated with plants may thus be interpreted as an 

extended phenotype of plants, i.e. a plant genotype expression at a higher level than the plant population 

(Dawkins, 1982; Whitham et al., 2003, Figure 1). This extension had previously been suggested (Ehlers et al., 

2020; Heath et al., 2010) and is a strong argument for broadening plant N strategies beyond the individual 

scale (Lekberg et al., 2018). 

 



 

 

B. Plant community response to N availability 

 

At the plant community scale, plant-plant interactions for resources can be considered as a biotic trigger of 

phenotypic plasticity. The nature of the neighbours and/or their density modify plant N nutrition by altering N 

availability in the soil (Bruelheide et al., 2018; Minden & Venterink, 2019; Vernay et al., 2018b). To cope 

with a neighbourhood-induced change in N availability, target plants can accommodate N acquisition by 

improving (i) N use efficiency (NUE, biomass produced per unit of N taken up), (ii) N uptake efficiency (N 

uptake amount per unit of root biomass), or (iii) internal N cycling (assimilation and remobilisation) 

(Berendse & Aerts, 1987; Bouchet et al., 2016; Millard & Grelet, 2010). For instance, remobilisation at 

budburst of N stored in the tissues of deciduous species during the previous year will enhance photosynthesis 

early in the growing season (e.g. on oak species, Bazot et al., 2016; Vernay et al., 2018a). The N resorption 

rate, i.e. the percentage of N translocated from senescent tissues to living tissues before abscission, is 

generally higher in an N-depleted plant, a trait often associated with conservative species (Figure 1, arrow C) 

(Daufresne & Hedin, 2005). A recent global meta-analysis corroborated this claim and highlighted the 

importance of nutrient resource availability in resorption plasticity (Drenovsky et al., 2019). If plant species 

use the same N source, they may also spatially and temporally differentiate their N acquisition from the rest of 

the plant community to escape the influence of neighbours (Figure 1, arrow A and circle 4, Jia et al., 2020; 

Persson et al., 2003). 

 

Similarly, plant interspecific relationships influence belowground plant strategies. Delayed or accelerated 

phenology, together with partial spatial segregation of plant root systems when soil depth allows it, offer 

means to escape from times and places of intense competition for N exploitation (Mueller et al., 2013; 

Schofield et al., 2018; Trinder et al., 2012). Historically, two opposite strategies have been proposed to 

explain root foraging behaviour: (i) root segregation, where plants keep their root system in free space where 

no neighbours are already settled and (ii) root overproduction, where plants deplete N resources down to a 

very low level to starve out potential competitors. A recent model showed that the two behaviours are 



 

 

expressed concomitantly when tissue development and the dynamics of N in the soil are considered: plants 

overproduce roots in space not colonised by a neighbour and reduce root production in an area already 

colonised by a neighbour in accordance with the evolutionarily stable strategy (Cabal et al., 2020). Another 

strategy consists in changing N sources to escape from competition with neighbours. Trees may shift the N 

form they usually take up to accommodate competitive pressure. This hypothesis was supported by studies 

showing equal performance of trees despite a change in N source, through acclimation in surface area, length 

or diameter of fine roots, depending on the species (Zhou et al., 2019). 

 

II. Root symbionts, an extended plant phenotype influencing N 

availability and plant N economy 

A. Mycorrhizae and N2-fixing bacteria 

Root symbionts increase a plant’s N acquisition ability by extending the potential pool of N available to it 

(Bruno et al., 2003; Gerz et al., 2018). The most widespread of these symbiotic associations are with 

mycorrhizal fungi taking up N from soil (Figure 1, circle 3, van der Heijden et al., 2015) and N2-fixing 

bacteria (Rhizobium and Frankia, Figure 1, arrow H) fixing atmospheric N in an organic form (Carranca, 

2013; Carvalho et al., 2014). These associations can promote photosynthesis and growth and contribute to an 

acquisitive economic strategy (Parisi et al., 2015; Simard & Durall, 2004). Mycorrhizal fungi enable a host 

plant to expand its N prospection area and help it compete for N with decomposer microbes (Fellbaum et al., 

2012; Hodge & Fitter, 2010; S. Simard et al., 2015). Accordingly, mycorrhizal colonisation rate is considered 

as a biotic root trait characterising plant N strategies (Bardgett et al., 2014; Fellbaum et al., 2014; M. L. 

McCormack et al., 2017). Plant N strategies thus imply some processes occurring at the scale of the holobiont, 

a functional entity composed of the plant host and the associated microorganism communities (Gordon et al., 

2013; Hassani et al., 2018). The concept of plant holobiont implies resource exchanges and an associated C-N 

exchange trade-off between the plant and its microbiome, to meet the needs of both partners and sustain the 

reciprocal interactions (Ke et al., 2015; Meiners et al., 2017; Pregitzer et al., 2010). 



 

 

Although plant-symbiont interactions remain essential for both partners, the relationship can in some cases be 

viewed as reciprocal parasitism (Cahill & McNickle, 2011). Some studies have revealed “cheater” strategies 

in root symbiotic biota: microorganisms may trade a small amount of N or other nutrients for an unfairly large 

supply of C or other resources from the plant. This behaviour shifts the two-way interaction to the advantage 

of the root symbionts, at the expense of the fitness and performance of their plant host (Kiers et al., 2003). To 

redress this imbalance, plants can deploy a “reward-sanction” strategy: they supply more C to the best N 

symbiont suppliers and cut back supplies to the “cheaters” to restore equity (Fellbaum et al., 2014; Kiers et 

al., 2003). However, the soil symbiotic biota also have control over the symbiosis, and can supply more N to 

the most carbohydrate-generous host plants and still make a net profit (Fellbaum et al., 2014; Weremijewicz et 

al., 2016).  

Overall, the regulation of the symbiosis by both partners may turn a suboptimal trait value for an individual 

(e.g. loss of C transferred by a plant to its symbionts) into an advantage at the holobiont scale, improving the 

potential benefit of association with a partner (Carthey et al., 2020; Friesen et al., 2011). As far as we know, 

cheating behaviour cannot be maintained in the long term. Instead, there are probably constant reciprocal 

adaptations between the plant and the symbionts until they find a satisfactory trade-off (Batstone et al., 2020). 

The cooperative behaviour between the plant host and its symbionts may be altered by environmental 

conditions, swinging temporally to the advantage of either the plant host or the symbionts before reverting to a 

more mutualistic relationship (Frederickson, 2013, 2017). For instance, Heath et al. (2010) showed in their 

study that the interactions between legumes and rhizobia changed according to partner genotypes and the 

availability of nitrates. These changes in the symbiotic interaction towards an optimised mutualism were 

observed in several generations. The nitrate response of legume-rhizobium nodulation is akin to a strongly 

plastic extended plant phenotype that maintains the reciprocal benefits for the legumes and rhizobacteria 

despite environmental variation and genetic diversity of the rhizobacteria symbionts. 

B. Plant growth-promoting rhizobacteria 

Plant growth-promoting rhizobacteria (PGPRs) are a growing subject of study in both natural and crop 

environments. They are free-living bacteria found in the soil close to a plant that can enhance plant growth 

through direct processes such as production of phytohormones, reduction of ethylene, and increased biotic 



 

 

resistance to pathogens. They can also promote indirect processes such as pathogen control or the stimulation 

of symbiosis (Antoun & Prévost, 2006; Lugtenberg & Kamilova, 2009; Van, 2007). Although PGPRs have 

been largely studied to improve field crop yields (Backer et al., 2018; Kumar et al., 2018; Vejan et al., 2019), 

the processes are also relevant for less strongly anthropised ecosystems despite some differences in the PGPR 

community diversity (Flores-Núñez et al., 2018). PGPRs can help plants acquire N through mechanisms very 

close to those involving rhizobia. For instance, Azospirilium can produce nodules on a plant’s roots and are 

also able to fix atmospheric N2 (Antoun & Prévost, 2006). More interestingly, the combination of PGPRs and 

symbionts can have a synergetic effect on plant growth. Studies show that the presence of PGPRs promotes 

root length density, increasing N foraging plant abilities and the potential sites of infection by rhizobia 

(Dobbelaere et al., 2003 and references therein). Similarly, PGPRs stimulate AM fungi colonisation and then 

N uptake by hyphae, thereby enhancing plant growth (Antoun & Prévost, 2006). The effect of PGPRs on 

ectomycorrhiza (EM) colonised trees is more controversial as both beneficial and adverse effects on 

mycorrhization have been observed (Antoun & Prévost, 2006). We do not know of any general review or 

metanalysis of PGPR effects on plants in natural ecosystems. These effects thus warrant more research, 

especially since their importance for plant N strategies could be critical. 

 

III. Decomposers as part of the plant extended phenotype 

Decomposer organisms are also important determinants of plant N economics owing to the key role they play 

in shaping soil properties and N cycling (Table 1). The common definition of holobiont combines plant host 

and associated microorganisms. Symbiotic microorganisms interact very closely with their plant hosts because 

they are physically coupled to them, whence a broad consensus in the scientific community to include 

symbionts in the plant holobiont (Simon et al., 2019; Vandenkoornhuyse et al., 2015). However, free-living 

microorganisms in the rhizosphere are not always included in the holobiont (Gordon et al., 2013; 

Vandenkoornhuyse et al., 2015). In this section, we advance some arguments for integrating decomposers into 

the extended phenotype of a plant and in the plant holobiont structure, as they are also engaged in close 

reciprocal interactions with plants (Figure 1). 



 

 

A. Influence of biotic interactions between plants and decomposer microbes on N economy 

Decomposer microbes play an important role in soil N cycling by depolymerising and metabolising litter 

(Figure 1, arrow E and circle 2,), thereby allowing the recycling of litter N back into dissolved forms (mineral 

or organic) available for uptake by plants (Schimel & Bennett, 2004). There has so far been a consensus that 

acquisitive species adapted to fertile habitats promote N mineralisation and mineral N availability to plants by 

producing large amounts of labile N-rich litter that decomposes quickly. Conversely, conservative species 

dominating infertile habitats promote N immobilisation in microbial biomass and restrict N availability to 

plants by producing recalcitrant N-poor litter that decomposes slowly (Figure 1, arrows D, E & F, Wardle et 

al., 2004). This paradigm has mainly focused on the early stage of litter decomposition and overlooked soil 

organic matter (SOM) that has undergone further processing by decomposer organisms (Hobbie, 2015). 

However, microbes decomposing fresh litter often experience stoichiometric imbalance because fresh litter is 

usually too N-poor to meet the N requirements imposed by their relatively homeostatic behaviour 

(Mooshammer et al., 2014). The resulting N limitation of microbial growth explains why decomposer 

microbes typically retain most of the organic N from litter rather than mineralising it early during 

decomposition (Mooshammer et al., 2014). When the stoichiometric imbalance is too high, decomposer 

microbes can also immobilise mineral N from the surrounding soil to meet their N demand (Hobbie et al., 

2006; Parton et al., 2007). Consequently, the decomposition of fresh litter and particulate organic matter 

(POM) lead to a minor increase or even a decrease in N availability to plants (Fornara et al., 2011; Whalen et 

al., 2000). This could preclude short-term positive feedback to soil N availability operating through litter 

decomposition (Knops et al., 2002). Nevertheless, organic matter becomes progressively more N-enriched 

over the course of decomposition because part of its C is lost by microbial respiration (Mooshammer et al., 

2014). Some of the remaining organic matter is then used by microbial decomposers for their growth, and 

when these die, the accumulating plant and microbial residues could form N-rich SOM (Angst et al., 2019; 

Schmidt et al., 2011). When the reactivity of soil minerals is high enough to form chemical associations with 

organic matter, SOM formation can also eventually lead to large amounts of organic N being stored as 

mineral-associated organic matter (MAOM) in soil mineral layers (Cotrufo et al., 2019; Lehmann & Kleber, 

2015). Although MAOM has historically been considered a relatively passive reservoir of soil organic N, 



 

 

recent conceptual progress based on a growing body of empirical evidence now highlights the dynamic nature 

of MAOM as a large reservoir of SOM enriched in N that can be actively mined by microbes and roots (Daly 

et al., 2021; Jilling et al., 2018). The decomposition of SOM found in humified organic layers or as MAOM in 

mineral layers has been found to promote N mineralisation (Whalen et al. 2000, Fornara et al. 2011, 

Mooshammer et al., 2014b), thus representing a major source of N available to plants (Figure 1, arrow F). 

There is now a large body of evidence that plants can actively accelerate the decomposition of SOM through 

their living root activities, a phenomenon called the “rhizosphere priming effect” (Dijkstra et al., 2020). Plant 

roots release organic compounds such as exudates, sloughed cells and mucilage to soil by rhizodeposition, 

which represents around 10% of plant C input to soil (Pausch & Kuzyakov, 2018). Rhizodeposition of soluble 

and energy-rich compounds such as carbohydrates can stimulate rhizosphere microbes and their production of 

exoenzymes catabolising SOM decomposition (Zhu et al., 2014). Rhizodeposition of organic acids acting as 

ligands can also increase the accessibility of MAOM for microbial decomposers by disrupting organo-mineral 

associations (Clarholm et al., 2015; Keiluweit et al., 2015). Finally, rhizodeposition of labile C coupled to root 

N uptake can induce N limitation of microbial growth in the rhizosphere, thus causing microbes to use 

rhizodeposition to mine N-rich SOM to meet their demand (Craine, 2007; Fontaine et al., 2011; Henneron, 

Kardol, et al., 2020). Although the stimulation of microbial growth in the rhizosphere can lead to strong N 

immobilisation in the short term, plant roots are stronger competitors than microbes for N acquisition in the 

long run because of their longer lifespans and the release of microbial N by faunal grazing (Kuzyakov & Xu, 

2013; Trap et al., 2015). The rhizosphere priming effect has been shown to be associated with enhanced gross 

rates of soil N mineralisation and faster microbial biomass turnover, thereby greatly improving N availability 

for plant uptake (Dijkstra et al., 2009; Henneron, Kardol, et al., 2020). 

The positive feedback among plants, soil properties and N cycling differs markedly between plant economic 

strategies (Table 1, Hobbie, 2015). Acquisitive plant species are often found in fertile soils with moderate 

acidity and abundant reactive minerals (Kramer‐Walter et al., 2016; Maire et al., 2015; Ordoñez et al., 2009), 

and their production of large amounts of labile N-rich litter can therefore lead to the formation of N-rich SOM 

stored as MAOM in mineral layers (Angst et al., 2019; Cotrufo et al., 2019; Craig et al., 2018). This can 

promote N mineralisation and allow marked nitrification, thereby further increasing N availability, given the 



 

 

higher mobility of NO3
− relative to NH4

+ (Fornara et al., 2011; Legay et al., 2020; Orwin et al., 2010). 

Acquisitive plant species are associated with higher rates of rhizodeposition (Guyonnet et al., 2018; Henneron, 

Cros, et al., 2020; Sun et al., 2021; Williams et al., 2021), thus accelerating soil N cycling through rhizosphere 

priming of SOM decomposition (Han et al., 2020; Henneron, Kardol, et al., 2020). Acquisitive plant species 

can thus promote soil N mineralisation by rhizosphere priming and regulate the balance between soil organic 

N formation and mineralisation depending on their demand (Fontaine et al., 2011; Henneron, Kardol, et al., 

2020). They thereby improve their nutrition and sustain their fast growth in fertile habitats while also 

promoting N retention in microbial biomass during plant resting periods (Abalos et al., 2018; Cantarel et al., 

2015; de Vries & Bardgett, 2016). 

Unlike acquisitive plants, conservative plant species are mostly found in infertile soils with marked acidity 

and sometimes a low abundance of reactive minerals, and their production of recalcitrant N-poor litter 

decomposing slowly leads to the formation of relatively N-poor SOM in organic layers or as POM in mineral 

layers (Cotrufo et al., 2019; Ponge, 2013). This leads to strong N retention by decomposer microbes because it 

promotes low mineralisation of litter N and high immobilisation of soil mineral N, thereby keeping N 

availability to plants at low levels dominated by dissolved organic forms of N (Högberg, 2007; Northup et al., 

1998; Wardle et al., 2012). Some plant species can limit short-term N losses due to leaching or denitrification 

by controlling biological inhibition of nitrification or denitrification in their rhizosphere (Bardon et al., 2014, 

2018; Lata et al., 2004; Subbarao et al., 2009). Another important mechanism by which conservative woody 

plant species inhibit litter decomposition and soil N mineralisation is through their high production of 

secondary metabolites such as polyphenols (Hättenschwiler & Vitousek, 2000; Kraus et al., 2003). Condensed 

tannins produced by woody plant species are known to form complexes with proteins that are then recalcitrant 

to decomposition. Given the high mobility of mineral N, the sequestration of organic N in soil by conservative 

plant species could help prevent long-term ecosystem N losses due to leaching or denitrification in infertile 

habitats (de Vries et al. 2012, Grigulis et al. 2013, Arnoldi et al., 2020; Northup et al., 1998). This also 

promotes a slow but dominant plant uptake of organic N, bypassing the mineralisation by microbial 

decomposers (Näsholm et al., 2009; Schimel & Bennett, 2004). Conservative plant species are also able to 



 

 

enhance SOM decomposition by rhizosphere priming, but this promotes availability of N to plants in organic 

rather than mineral form (Adamczyk et al., 2019). 

B. Mycorrhizal influence on decomposition 

Different groups of mycorrhizal fungi are associated with contrasting plant economic strategies and ecosystem 

N dynamics (Averill et al., 2019; Phillips et al., 2013; Tedersoo & Bahram, 2019) (Figure 1, circle 3). 

Acquisitive plant species are mostly associated with AM fungi that have limited decomposition abilities. AM 

tree species are usually associated with faster SOM decomposition (Taylor et al., 2016; Wurzburger & 

Brookshire, 2017), and AM fungi have been found to help acquisitive plant species accelerate SOM 

decomposition through rhizosphere priming by enhancing rhizodeposition supply to soil (Hodge & Fitter, 

2010; Paterson et al., 2016) and to enhance plant N acquisition of mineralised N from SOM decomposition 

(Hodge & Fitter, 2010). Conversely, conservative plant species are mostly associated with ericoid mycorrhizal 

(ERM) or ectomycorrhizal (ECM) fungi that have strong decomposition abilities. ERM, and to a lesser extent 

ECM fungi, have been found to enhance the ability of conservative plant species to mobilise N sequestered in 

their litter as tannin-protein complexes (Wurzburger & Hendrick, 2009). For example, it has been shown that 

the presence of poorly decomposable leaf litter and ECM fungi together improve N acquisition and growth in 

beech tree seedlings through decreasing N immobilisation by free-living microbial decomposers (Trap et al., 

2017). ERM and ECM fungi are thus key drivers of organic N nutrition for conservative species, helping them 

compete for N against decomposer microbes. 

C. Consequences of decomposer and mycorrhizal activities associated with N cycling for 

plant-plant interactions  

The influence of plant species on soil N cycling can have strong effects on interspecific competition for N in 

plant communities. For example, the dominance of conservative ericoid plant species in early successional 

stages of heathlands has been attributed to the production of poorly decomposable litter, excluding more 

acquisitive grass species by maintaining low soil mineral N availability (Berendse, 1998). After atmospheric 

N deposition has increased soil N availability, grasses gradually become dominant as the accumulation of N-

rich SOM formed from their litter leads to an increase in soil N mineralisation, thus further enhancing long-



 

 

term mineral N availability. This deprives the ericoid species of their relative advantage owing to organic N 

nutrition by ERM fungi and increases the competitiveness of the grasses relying on soil mineral N. Similarly, 

high production of condensed tannins by ericaceous shrubs promoting the sequestration of soil N as tannin-

protein complexes has been suggested to improve the competitive ability of ericaceous shrubs relative to ECM 

tree seedlings by favouring organic N uptake by their ERM fungi during forest regeneration in boreal forests 

(Joanisse et al., 2009). 

A given plant species can also regulate its influence on soil N cycling in response to the presence of 

neighbours and their identities by phenotypic plasticity. For example, following treefall disturbances and tree 

canopy opening in temperate forests, mature oak trees have been found to produce leaf litter poorer in 

nutrients and richer in condensed tannins, slowing down its decomposition and increasing N immobilisation 

(Henneron et al., 2017). This litter N sequestered in tannin-protein complexes can then be mobilised by oak 

seedlings through their ECM partners, while it will be unavailable to AM understory plants. This could 

therefore represent an adaptive strategy of oak trees, which by monopolising the N contained in their litter to 

save their pre-empted N pool from capture by outcompeting understory plants, can be more competitive in 

treefall gaps during forest regeneration. 

Overall, decomposers are strongly influenced by plant strategies, and their activities in turn affect plant fitness 

in a given environment by modulating N availability (Henneron, Kardol, et al., 2020; Moreau et al., 2019; 

Trap et al., 2017). We therefore argue that decomposers should be included in the extended plant phenotype 

together with the symbiotic soil biota, and that decomposers thus belong to the plant holobiont. 

IV. Plant N economics in a complex heterarchical network 

Changes in plant performance and attributes will trigger modifications in plant-soil biota interactions 

(Zhalnina et al., 2018), in turn modifying holobiont N economics. Conversely, plant-soil biota interactions 

may induce changes in a plant’s attributes. The resulting feedback loops can change the plant and soil 

community properties and produce effects at ecosystem scale by modifying N fluxes and plant community 

structure (Cantarel et al., 2015; Legay et al., 2016; Png et al., 2019). Plant N economics thus operate in a 

heterarchical network. A heterarchical network is an organisation in which all the actors of the system may 



 

 

interact with each other. It differs from a hierarchical network, which allows only vertical interactions 

between an organisation level n and its next higher level (n + 1). It also differs from a network with no 

organisation levels (Cumming, 2016). In a heterarchical network, for a given scale (individual plant, 

holobiont, soil biota, plant community), top-down, bottom-up and peer-to-peer interactions all occur, 

producing effects at different scales. The concept of the heterarchical network thus seems well-suited to plant 

N economics. The earlier hierarchical “Russian dolls” approach (plants influence soil biota to acquire N, in 

turn changing their performance and impacting the community properties, and finally affecting ecosystem 

functioning) did not really embed plant-plant and plant-soil biota interactions as a strong driver of plant N 

economics. Heterarchical interaction, though making plant N economics much more complex, opens new 

ecological perspectives. Because plant N economics do not depend merely on an individual plant’s trait but 

also on its extended phenotype, with its own response to N availability and biotic interactions, the plant at the 

individual and holobiont scales must exchange numerous signals between all components of the heterarchical 

system. 

A. Impact of multiple cues from neighbours on rhizosphere community and on plant-soil 

biota interactions 

Effects of interference on plant N economics have been less thoroughly explored than resource interactions, 

even though interference can have a marked impact on a plant’s ability to acquire and use N. Interference 

involves signalling pathways connecting emitter and receiver plants or soil microorganisms (Figure 1, 

circle 3). An increasing number of studies have identified key chemical cues with a signalling function, 

mainly in litter and rhizodeposits released by plants (Pierik et al., 2013, van Dam et al., 2016), such as organic 

acids, sugars, mucilage and secondary metabolites, or foliar substances. Exudates impact the recruitment of 

symbionts and decomposers, thereby indirectly shaping resource availability conditions (Boeddinghaus et al., 

2019; Guyonnet et al., 2018; Lombardi et al., 2018). Through root exudation, plant-plant interactions can be 

exacerbated. In a heterospecific context, a 15N labelling study recently demonstrated that purple moor grass 

(Molinia caerulea), a strongly monopolistic grass, could induce higher N-rhizodeposition from an oak 

seedling neighbour and take up this new N source for its own use in addition to soil N (Fernandez et al., 



 

 

2020). In the case of Molinia versus Quercus interactions, the acquisitive strategy of the grass allows a quick 

capture of N exudates, thereby precluding its re-uptake by oak seedlings (Vernay et al., 2016). 

Nodulation or mycorrhizal colonisation can be reduced after the release of cues from a focal plant, increasing 

its competitiveness via a decreased N symbiont supply to its neighbour. This mechanism is well documented 

for Alliaria sp., which releases allelopathic substances disturbing the mycorrhization of neighbours (Callaway 

et al., 2008). Conversely, root-associated soil biota can inactivate a plant neighbour’s chemical cues in the soil 

and reduce the competitiveness of that neighbour for N acquisition (Cipollini et al., 2012, and references 

therein). As an interface between plant and soil, symbionts are important players for improving plant N 

acquisition, but they also represent a target in plant-plant interactions to degrade a neighbour’s 

competitiveness. 

As exudate composition changes during a plant’s life and in response to environmental fluctuations, exudates 

also induce a change in the root symbiont community, modifying the holobiont properties related to N 

economics (Zhalnina et al., 2018). The symbiosis is changed according to the plant’s requirement regardless 

of N availability. Chemical cues then regulate plant-plant and plant-soil interactions and trigger changes in 

competitiveness or cooperativeness in the plant community (Sasse et al., 2018; Wang et al., 2021). (Figure 1, 

arrow G, Wang et al., 2021). Released substances such as strigolactones may favour colonisation by 

mycorrhiza (Kessler & Kalske, 2018), while flavonoids improve rhizobia or PGPR recruitments (Hassan & 

Mathesius, 2012). Concomitantly, PGPRs and rhizobacteria, belonging to the plant extended phenotype 

(e.g, Azospirillium, Ps. Putida, A. brasilense) are known to release some phytohormones such as indole-3 

acetic acid (Richardson et al., 2009; Spaepen et al., 2007) or ethylene (Richardson et al., 2009). These 

substances indirectly increase plant N uptake, promoting root elongation, higher SRL, root branching and root 

hair proliferation. This helps extend the prospection zone. 

The control by plants of the release of chemical cues and their potential multiple effects in the surrounding 

environment needs further research (Pierik et al., 2013). How receiver plants or soil biota perceive a secreted 

chemical cue is still uncertain, since the effect of the cue on the receiver depends on the plant legacy and 

adaptation to neighbours (Callaway et al., 2008). Several studies have demonstrated the importance of 

recognition to form the holobiont and to attract specific soil biota in the rhizosphere (Badri & Vivanco, 2009; 



 

 

Brencic & Winans, 2005; Reinhold-Hurek et al., 2015). However, quantifying this exudation flux and 

identifying its molecular composition in vivo remains a challenge, although recent methodological progress is 

encouraging (Buckley et al., 2019; Oburger & Jones, 2018). Improving the methodology would greatly help in 

elucidating the mechanisms of interference processes and the impact of N availability on exudation rates 

(Kaštovská et al., 2017). 

B. Are plant N strategies a “family business”? 

In a conspecific interaction context, a neighbour’s response depends on kinship (i.e. the degree of relatedness 

of individuals), which implies kin recognition independently of N availability (Dudley & File, 2007). A study 

suggested a change in D. cespitosa trait values that increased its foraging abilities in the presence of non-kin 

individuals (Semchenko et al., 2014). This change could potentially increase N availability for the kin by a 

decrease in competition by exploitation and reduce it for heterospecific neighbours. The kin recognition 

processes lead to a change in plant behaviour to adapt plant N economics. The study found that root exudates 

contained specific information about kinship, supporting the crucial signalling role of compounds released by 

a plant. The differential plant response depending on the relatedness of neighbours can be interpreted in either 

of two ways: (i) the kin limit their own competitive pressure for N resources to increase N availability for their 

relatives or (ii) the kin increase their competitive abilities when they encounter unrelated or heterospecific 

individuals. Either way, the altered plant N economics have effects at plant population and community levels, 

potentially fostering N availability for conspecific individuals to the detriment of heterospecific individuals. 

Kin recognition shows that resource exploitation and interference co-occur in a plant community, involving 

interactions at different scales in the heterarchical system. 

C. Soil biota, a vector of cues 

Chemical cues can be conveyed through the mycorrhizal network, as can allelopathic substances (Figure 1, 

circle 3) (Canarini et al., 2019). Compounds inducing positive or negative responses in the receiver can be 

translocated through different pathways, at either the individual or the holobiont scale. The initial net 

reciprocal benefits of the symbiotic interaction between a plant and its mycorrhizal fungi may shift to a net 

negative effect, at least on the plant. Besides N, mycorrhizal fungi may convey allelopathic compounds, 



 

 

whose negative effect may undo the benefit of the N supply (Barto et al., 2011; Gorzelak et al., 2015). The 

mycorrhizal network can be used by plants to transfer N compounds to a neighbour (He et al., 2019; Simard, 

2018), which may be beneficial at least for one plant partner in the network (Figure 1, circle 3). Teste et al. 

(2015) showed that a plant can transfer up to 4% of its N to another plant through the mycorrhizal network. 

They suggest that a source-sink relationship between donor and receiver drives the transfer, a growing 

receiver increasing the N amount transferred from the donor to meet its requirements. This would mean that 

the plant’s strategy impacts N flux: acquisitive plants, with high N demand, would then be stronger sinks than 

conservative ones. Fernandez et al. (2020) showed the involvement of hyphae in the transfer of N between oak 

seedlings and Molinia. This prompted the authors to suggest that Molinia uses the mycorrhizal network to 

induce a high N transfer from oak for its own benefit, but this hypothesis needs more supporting evidence. 

Although N mycorrhizal transfer was first demonstrated with legumes as donor, it also occurs among non-

legume plants (Fernandez et al., 2020; Teste et al., 2015). This process can substantially influence plant-plant 

interactions and plant N economics and emphasises the need for more research to determine the drivers of 

these transfers and their consequences at holobiont scale. 

V. Perspectives  

The foregoing sections highlight the complex interaction network in which plants are engaged. For plant N 

economics, we show that this network depends on several actors at different organisational levels. At the 

individual scale, plant N uptake and processing is influenced by the plant strategies (i.e. their trait attributes) 

together with their symbionts and associated decomposers, considered as part of their extended phenotype. 

The holobiont scale at the uppermost level has its own properties linked to N economics, which may benefit 

the plants and/or their associated soil biota. At different scales, plants interact with other neighbouring plants. 

The heterarchical interaction network increases the complexity of plant N economics and reveals some 

emerging properties influencing N cycle and plant-plant interactions, ultimately leading to plant population 

and community changes. 

Environmental modulation of holobiont properties and N availability can induce changes in the intensity and 

importance of biotic interactions among plants. Biotic interaction intensity refers here to the absolute effect of 



 

 

the presence of a neighbour on a focal plant and the relative importance of these biotic interactions compared 

with environmental factors on the focal plant’s performance (Brooker et al., 2005; Corcket et al., 2003; 

Weigelt & Jolliffe, 2003). We know that at an individual scale, plant interactions change along an 

environmental gradient as a result of different strategies and tolerance to abiotic stress (Bertness & Callaway, 

1994; Fajardo & McIntire, 2011; Pugnaire & Luque, 2001). However, while the symbiont and decomposers 

exert strong interactions with their host, they also respond to environmental fluctuations. The intensity and 

importance of plant-plant interactions may then be altered as previous studies have shown, but the 

mechanisms will involve not only the plant’s trait plasticity but also the response of the whole holobiont to the 

environmental changes. Holistically, it would thus be more relevant to investigate plant holobiont-plant 

holobiont interactions to describe plant N economics. 

Taking the soil biota associated with plants as an extended plant phenotype and including them in the plant N 

economics lends more flexibility to the interpretation of N dynamics in a plant community. N economics depend 

on more complex interactions than mere resource acquisition strategies. In their perspective, Franklin et al. 

(2020) claimed that model predictions on vegetation dynamics might diverge because of “contrasting or 

incomplete representations of nitrogen (N) uptake, responses to soil moisture and mortality”. We recognise that 

in a modelling perspective, increasing complexity will necessarily lead to increased uncertainty. However, the 

mechanistic approach at different scales can provide some explanations for the variability observed in model 

estimates of N and community dynamics. Although we agree with Franklin et al. (2020), we still emphasise the 

key role of the heterarchical network of biotic interactions in a plant community. However, this raises some 

unanswered ecological/ecophysiological questions. What are the processes that trigger and modulate the release 

of interfering cues in the soil? What are the targets of these cues? Can interference mechanisms change the 

nature and the intensity of N exploitation interactions? From the perspective of biotic interactions, it is unclear 

to what extent soil biota influence plant behaviour in response to N availability. A subsidiary question may then 

arise. How intense and important are the reciprocal influences between plants and associated soil biota? How 

do their intensity and importance vary according to biotic and abiotic factors? Focusing on feedback plant 

response to plant-plant interactions, it would also be useful to know whether plant litter composition is a plastic 

trait that varies in response to plant-plant interactions, influencing SOM decomposition. Finally, what emergent 



 

 

properties characterise the holobiont? To what extent do emergent properties of the holobiont influence its 

environment? 

As pointed out in a recent review, plant community functioning, in our case focused on N economics, should 

be characterised in terms of the processes linking each node in the system. Merely understanding each actor in 

the plant community network is not sufficient to describe the community, because interactions and their 

associated ecophysiological processes need to be considered (Perronne et al., 2017). The effects of 

environmental changes and biotic interactions on actors in the network will then feed back over the network. 

The dynamic interactions in this heterarchical network and the induced feedback loops will lead to self-

organisation, i.e. a dynamic reshaping of the internal structure of the network. The network will tend to 

maximise network complexity to maximise network stability (Levin, 2005; Parrott, 2010). Stabilisation will 

result from stronger or more numerous interactions between each component of the plant community; the 

network is then more robust when threatened with disturbances that could impair some of the interactions. We 

therefore argue that plant strategies result in complex plastic behaviour, integrating the effects and responses 

of all the network participants at different scales. Considering the dynamism of interactions in a heterarchical 

system will help gain a deeper understanding of plant N economics, with possible applications such as in 

agroecological or conservation management (Abalos et al., 2019; Zirbel et al., 2017). 

 

Conclusion 

In this review, we reconsider N economic strategies. Historically, plant strategies were most often described in 

terms of their functional traits for a given soil N fertility. Symbiotic partners were later added as a critical part 

of these strategies. Here we further broaden their scope by considering free decomposers influenced by the 

plants. Extending the plant phenotype allows a more holistic characterisation of plant N economy because the 

holobiont encompasses the complex network of biotic interactions influencing plant N strategies. This 

prompts us to argue for a more integrative view of plant N strategies. N economy is not an individual feature 

but the dynamic net outcome of plant traits, neighbour influence, and plant-soil biota interactions according to 

N availability. The complex feedback loops between these three compartments need to be integrated to gain a 



 

 

mechanistic understanding of how plants manage N resources in plant communities. Considering the close 

association of a plant with its symbionts and decomposers as an extended plant phenotype would thus place 

plant N economics in a new light. It is now time to consider plant N economics in a complex system 

perspective to better understand how local abiotic and biotic conditions shape plant N economics. Alongside 

resource exploitation processes, interference mechanisms and signalling chemical compounds make an 

important contribution to the interaction network, and so should not be neglected when considering plant N 

economics. Further research should focus on the relative contributions of interference versus resource 

exploitation as competition mechanisms to help explain plant community dynamics. This approach can 

produce different outcomes in terms of plant abundance, composition, and plant functional group distribution 

from overall predictions based on plant functional traits alone (Bruelheide et al., 2018). 
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Figure captions 

Figure 1. Overall scheme of plant-plant and plant-soil interactions driving plant N economics. Acquisitive 

(left) and conservative (right) plants are represented with their different impacts on the N cycle. The size of 

the arrows represents the relative weights of the mechanisms between the two contrasting strategies. Arrows 

show the different pathways and directions of N and chemical cues exchanged between plants. 
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Plant species with an acquisitive  

economic strategy 

Plant species with a 
conservative 

economic strategy 
Empirical evidence 

Plant traits       

Plant growth rate High  Low Kramer‐Walter et al., 2016; Lambers & Poorter, 1992; Orwin et al., 2010 

Leaf and root lifespan Low High 
Craine et al., 2002; L. M. McCormack et al., 2012; Tjoelker et al., 2005; 
Wright et al., 2004 

Leaf and root respiration rate High  Low Craine et al., 2002; Tjoelker et al., 2005; Wright et al., 2004 

Leaf photosynthetic rate High  Low Tjoelker et al., 2005; Wright et al., 2004 

Root nitrogen uptake rate High  Low Legay et al., 2020; Maire et al., 2009 

Root exudation rate High  Low 
Guyonnet et al., 2018; Henneron, Cros, et al., 2020; Sun et al., 2021; 
Williams et al., 2021 

Leaf and root nitrogen resorption 
efficiency 

Low High Deng et al., 2018; Vergutz et al., 2012 

Leaf and root decomposability High  Low Freschet et al., 2012; Hobbie et al., 2006; Northup et al., 1998 

Dominant mycorrhizal types Arbuscular mycorrhizae 
Ericoid or 

Ectomycorrhiza 
Averill et al., 2019; Craig et al., 2018; Phillips et al., 2013 

Soil properties       

Dominant humus form Mull Moder or Mor Reich et al., 2005; Wardle et al., 2012 

Forest floor turnover rate High  Low Hobbie et al., 2006; Reich et al., 2005 

Soil organic matter C:N ratio Low High 
Craig et al., 2018; Högberg, 2007; Kramer‐Walter et al., 2016; Ordoñez et 
al., 2009; Reich et al., 2005 

Dominant soil organic matter 
fraction 

Mineral-associated organic matter 
Particulate organic 

matter 
Angst et al., 2019; Cotrufo et al., 2019; Craig et al., 2018 

Rhizosphere priming effect on soil 
organic matter 

High  Low Han et al., 2020; Henneron, Cros, et al., 2020 

Acidity Low High 
Högberg, 2007; Kramer‐Walter et al., 2016; Maire et al., 2015; Reich et al., 
2005 

Base cation saturation High  Low Reich et al., 2005 

Dominant soil food web energy 
channel 

Bacterial-based energy channel 
Fungal-based energy 

channel 
Högberg, 2007; Kramer‐Walter et al., 2016; Maire et al., 2015; Reich et al., 
2005 

Dominant soil fauna Earthworms 
Enchytraeid and 
microarthropods 

Reich et al., 2005 

Decomposer abilities of mycorrhizal 
fungi 

Low High Phillips et al., 2013; Wurzburger & Hendrick, 2009 

Soil nitrogen cycling       



Dominant form of dissolved 
nitrogen 

NO3
- / NH4

+ NH4
+ / amino acid 

Craine et al., 2002; Legay et al., 2020; Northup et al., 1998; Phillips et al., 
2013; Wardle et al., 2012 

Gross protein depolymerisation rate High? Low? Little evidence, but see Mooshammer et al., 2012 

Gross nitrogen mineralisation rate High  Low 
Fornara et al., 2011; Henneron et al., 2020; Högberg, 2007; Mooshammer 
et al., 2014 

Nitrogen immobilisation by 
microbial biomass 

High on short-term but low on 
long-term  

Low on short-term 
but high on long-term  

de Vries & Bardgett, 2016; Grigulis et al., 2013; Henneron et al., 2020; Vries 
et al., 2012 

Net nitrogen mineralisation rate 
High net mineralisation to low net 

immobilisation 

Low net 
mineralization to high 

net immobilisation 

Craine et al., 2002; Deng et al., 2018; Hobbie et al., 2006; Ordoñez et al., 
2009; Orwin et al., 2010 

Nitrification rate High  Low Cantarel et al., 2015; Laughlin, 2011; Orwin et al., 2010; Phillips et al., 2013 

Denitrification rate 
Low on short-term but high on 

long-term  
High on short-term 

but low on long-term  Abalos et al., 2018; Cantarel et al., 2015; Grigulis et al., 2013 

N leaching 
Low on short-term but high on 

long-term  
High on short-term 

but low on long-term  de Vries & Bardgett, 2016; Grigulis et al., 2013; Vries et al., 2012 
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