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Up-to techniques are a widely used family of enhancements of corecursion and coinduction. The soundness of these techniques can be shown systematically through the use of distributive laws. In this paper we propose instead to present up-to techniques as causal transformations, which are a certain type of natural transformations over the final sequence of a functor. These generalise the approach to proving soundness via distributive laws, and inherit their good compositionality properties. We show how causal transformations give rise to valid up-to techniques both for corecursive definitions and coinductive proofs.

Introduction

We assume familiarity with the most basic concepts of universal coalgebra [START_REF] Jacobs | Introduction to Coalgebra: Towards Mathematics of States and Observation[END_REF] in this introduction; we formally define them in Section 2.

Let us recall the corecursion up-to principle from [START_REF] Pous | Companions, codensity and causality[END_REF][START_REF] Pous | Companions, causality and codensity[END_REF], which encompasses (and is implicit in) various results from the literature [START_REF] Bartels | On generalised coinduction and probabilistic specification formats[END_REF][START_REF] Lenisa | Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads[END_REF][START_REF] Uustalu | Recursion schemes from comonads[END_REF][START_REF] Jacobs | Distributive laws for the coinductive solution of recursive equations[END_REF][START_REF] Milius | Abstract GSOS rules and a modular treatment of recursive definitions[END_REF][START_REF] Bonchi | A general account of coinduction up-to[END_REF].

Let B be a functor with a final coalgebra (Z, ζ), and let F be a functor with an algebra a : F Z → Z on the final coalgebra. Corecursion up to the algebra a is valid if for every BF -coalgebra (X, f ), there exists a unique morphism f a : X → Z making the following diagram commute.

X Z BF X BF Z BZ f f a ζ BF f a Ba ( 1 
)
When F is the identity functor (and a the identity morphism), this is just plain corecursion. Plain corecursion makes it possible, for instance, to define pointwise addition on streams. Indeed, streams (of real numbers, R ω ) form the final coalgebra for the functor BX = R × X on sets. Let us write x 0 for the first element of a stream x, and x ′ for its tail. If f is the following B-coalgebra

structure on (R ω ) 2 , (R ω ) 2 → B((R ω ) 2 )
(x, y) → (x 0 + y 0 , (x ′ , y ′ ))

then f id : (R ω ) 2 → R ω is nothing but pointwise addition on streams: the only binary operation ⊕ satisfying the following equations.

(x ⊕ y) 0 = x 0 + y 0 (x ⊕ y) ′ = x ′ ⊕ y ′ (Where x 0 and x ′ respectively denote the head and tail of a stream x.)

Corecursion up-to proves useful to define more complex operations like shuffle product (⊗), satisfying the following equations:

(x ⊗ y) 0 = x 0 × y 0 (x ⊗ y) ′ = (x ⊗ y ′ ) ⊕ (x ′ ⊗ y)
Indeed, in such a situation we need to call a function (pointwise addition) on objects which are not fully defined yet (the two corecursive calls x ⊗ y ′ and x ′ ⊗ y). Using the functor F X = X 2 and seeing ⊕ as an F -algebra on R ω , we can define shuffle product using corecursion up-to [START_REF] Aczel | A final coalgebra theorem[END_REF] and the following BF -coalgebra:

(R ω ) 2 → BF ((R ω ) 2 )
(x, y) → (x 0 × y 0 , ((x, y ′ ) , (x ′ , y)))

Here, the inner pairs ((x, y ′ ) and (x ′ , y)) correspond to the corecursive calls to ⊗, while the intermediate pair ((x, y ′ ) , (x ′ , y)) corresponds to a call to the F -algebra, i.e., in this case, pointwise addition.

Of course, not every algebra on a final coalgebra yields a valid corecursion up-to principle. Here are two sufficient conditions:

1. [START_REF] Bartels | Generalised coinduction[END_REF][START_REF] Bartels | Generalised coinduction[END_REF] a is induced by a distributive law λ : F B ⇒ BF and the base category has countable coproducts (or F is a monad and λ a distributive law of this monad over the functor B); 2. [START_REF] Pous | Companions, codensity and causality[END_REF] B is a polynomial set functor, and a is a causal F -algebra.

While the first condition is nice and well-known, it requires the machinery of distributive laws, and it is not always easy to show that a given algebra arises from a distributive law. The second condition does not suffer from this: causality is rather simple to check in practice (for instance, an algebra on streams is causal if and only if the n-th element of its output only depends on the n first elements of its inputs), but the condition that the starting functor is a polynomial set functor is often too strong (e.g., the finite powerset functor is not polynomial).

Shuffle product on streams is simple enough, so that the two approaches can both be used: the algebra we want to use, ⊕, arises from a simple distributive law, and it is obviously causal. In fact, the algebra induced by a distributive law on the final coalgebra of an ω-continuous3 set functor is always causal.

Causal transformations

Here we propose yet another condition based on the final sequence B of the functor B. Assuming that B is an endofunctor on a complete category C, recall that this final sequence is a sequence of objects indexed by ordinals, which, if it stabilises, yields a final coalgebra for B (cf. [START_REF] Barr | Algebraically compact functors[END_REF]Theorem 1.3], or earlier for the dual case of algebras [START_REF] Adámek | Free algebras and automata realizations in the language of categories[END_REF]). Here we shall present this sequence as a functor B : Ord op → C from the category of ordinals to the base category. We call a natural transformation of type F B ⇒ B a causal transformation for B.

Assuming that the final sequence stabilises at ordinal κ, so that for all causal transformations α, α κ is an algebra on the final coalgebra, our new condition is the following: 3. a is the κ-th element α κ of a causal transformation α.

Intuitively, looking at the final sequence as a sequence of approximations of the final coalgebra, an algebra satisfying the above condition must be defined not only on the final coalgebra, but also on all its approximations. Example 1.1. Let P f be the finite powerset functor, whose final coalgebra (T f , c) consists of all finitely branching trees quotiented by bisimilarity, and the function c mapping a tree to its finite set of children. Consider the "delay" function d : T f → T f that adds a unary node at the root of the given tree (formally, d(t) = c -1 ({t})), and suppose we want to define the function e that corecursively delays all inner nodes of a given tree. For all trees t, this function should satisfy

c(e(t)) = P f (d • e)(c(t)) .
Graphically, on two examples, we have:

d     . . . .     = . . . . . e       . . . . . . .       = . . . . . . . . . . . .
We can obtain e by corecursion up-to, using the identity functor for F , d for the algebra a, and c as P f Id-coalgebra: in this case, diagram (1) precisely yields the above equation for the solution e = c d .

In this example, condition 2/ is not satisfied: P f is not polynomial. Moreover, it is not obvious how to construct a distributive law yielding the algebra d, in order to fulfil condition 1/. In contrast, one can easily extend the algebra d into a causal transformation δ : P f ⇒ P f . To this end, recall that the final sequence of P f stabilises at ω + ω [START_REF] Worrell | On the final sequence of a finitary set functor[END_REF], and that it consists of all finite trees of depth at most n at all finite ordinals n, and of all compactly branching trees which are finitely branching up-to depth n at all ordinals ω + n for n finite. Intuitively, we can thus define a counterpart to the function d at all stages of this sequence: take a tree, add a unary node at the root, and, for the finite stages, truncate the resulting tree at the given depth. This is even easier formally: just set δ k (t) = P f (k + 1, k)({t}), where P f (k + 1, k) is the morphism from P f (k + 1) to P f (k) in the final sequence.

For polynomial set functors, the three conditions turn out to be equivalent (a consequence of [32, Theorem 8.6 and Corollary 9.6]) In the general case, condition 3/ is implied by condition 1/: every distributive law yields a causal transformation whose κ-th element is its induced algebra on the final coalgebra [START_REF] Pous | Companions, causality and codensity[END_REF]Lemma 6.2]. The converse is not true, cf. end of Section 5, but it is if the functor B has a companion [START_REF] Pous | Companions, causality and codensity[END_REF]. Condition 3/ also generalises condition 2/: on sets, when B is ω-continuous, there is a one-to-one correspondence between causal algebras and causal transformations [START_REF] Pous | Companions, causality and codensity[END_REF]Theorem 8.6].

That correspondence is non-trivial to establish, like the fact that condition 2/ provides corecursion up-to [START_REF] Aczel | A final coalgebra theorem[END_REF]. For the latter, the approach in [START_REF] Pous | Companions, causality and codensity[END_REF] goes via the construction of a distributive law starting from a causal algebra.

We use a much simpler path here, and we prove directly that condition 3/ implies validity of corecursion up-to (1), without mentioning any distributive law. And we actually get more: we obtain a corecursion up-to principle even in those cases where the final sequence does not stabilise.

Recall the notion of corecursive algebra [START_REF] Capretta | Corecursive algebras: A study of general structured corecursion[END_REF] (dual to recursive coalgebras [START_REF] Girard | Proofs and Types[END_REF]): a B-algebra (A, a) is said to be corecursive if for all B-coalgebras (X, f ), there is a unique morphism f ′ : X → A such that the following diagram commutes

X A BX BA f f ′ Bf ′ a
Paul Levy observed that all elements of the final sequence (which are B-algebras by definition), are corecursive [25, p. 5, footnote 2]. When we have a causal transformation α : F B ⇒ B, we prove here that for each stage k of the final sequence and for every BF -coalgebra (X, f ), there is a

unique morphism f α k : X → B(k) such that X B(k) BF X BF B(k) BB(k) f f α k BF f α k Bα k B(k+1,k)
In other words, the BF -algebra B(k, k + 1) • Bα k is corecursive. This generalises Levy's observation when F is the identity functor, and we recover that condition 3/ guarantees validity of corecursion up-to α κ when the final sequence stabilises at κ (so that B(κ, κ + 1) is an isomorphism, with inverse the final coalgebra).

This result shows that we can use up-to techniques to define operations on all approximations of the final coalgebra, even when this coalgebra does not exist! Example 1.2. Consider the full powerset functor (P), which does not admit a final coalgebra. At ordinal ω, its final sequence yields compactly branching trees T ω ≜ P(ω) [START_REF] Worrell | On the final sequence of a finitary set functor[END_REF]. Therefore, in order to define an operation on compactly branching trees, we can use PF -coalgebras for any causal transformation F P ⇒ P. For instance, we can define a similar operation as in Example 1.1. Call c : T ω → PT ω the function mapping a (compactly branching) tree to its set of children, and define δ : P ⇒ P as before: (Note however that here, unlike in Example 1.1, c is not an inverse of the morphism on the right: we only have P(ω + 1, ω) • c = id. Therefore, this diagram is weaker than the one with a c going down on the right.

δ k (t) ≜ P(k + 1, k)({t}), so that d ≜ δ ω : T ω → T ω is a "
We prove the aforementioned results in Section 3. Then we discuss compositionality of causal transformations (Section 4), and their lifting to coinductive predicates (Section 5).

Compositionality

A delicate point about up-to techniques for corecursion is compositionality. Indeed, given two algebras a : F Z → Z and b : GZ → Z on a final coalgebra, which are both valid for corecursion up-to (1), nothing guarantees that their composition (a • F b : F GZ → Z) or their coproduct ([a; b] : (F + G)Z → Z) remains valid for corecursion up-to. For instance, knowing that for streams, both corecursion up-to ⊕ and corecursion up-to ⊗ are valid is not enough to deduce that corecursion up-to both ⊕ and ⊗ is valid too.

In the context of bisimilarity and coinductive predicates, such questions have been studied extensively by Davide Sangiorgi [START_REF] Sangiorgi | On the bisimulation proof method[END_REF] early after the introduction of up-to techniques by Robin Milner [START_REF] Milner | Communication and Concurrency[END_REF]. This resulted in the concepts of respectful functions and then compatible functions [START_REF] Pous | Complete lattices and up-to techniques[END_REF], subclasses of valid up-to techniques enjoying nice compositionality properties.

In the context of categorical corecursion, distributive laws (condition 1/) and causal algebras (condition 2/) also enjoy such compositionality properties [START_REF] Bonchi | A general account of coinduction up-to[END_REF][START_REF] Pous | Companions, causality and codensity[END_REF]. We show in Section 4 that the situation is similar with causal transformations (condition 3/): these can be organised as a category with arbitrary products, in which some generic and useful basic transformations always exist. As a consequence, simple causal transformations can be assembled into more complex ones, achieving the expected modularity for corecursion up-to.

Liftings and coinductive predicates

Corecursion (up-to) makes it possible to define operations on final coalgebras (e.g., ⊕ and ⊗ on streams). Once such operations have been defined, one often needs to reason about them, to establish some of their properties (e.g., both ⊕ and ⊗ are associative and commutative). This is why we also need to develop the theory of coinductive predicates, and to provide up-to proof techniques for those. Typically, reasoning about an operation defined by corecursion up-to requires related coinduction up-to techniques.

We exploit the fibrational approach to coinductive predicates [START_REF] Hermida | Structural induction and coinduction in a fibrational setting[END_REF][START_REF] Hasuo | Coinductive predicates and final sequences in a fibration[END_REF][START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF] in Section 5, where we show how to get coinductive up-to techniques from causal transformations, provided that these causal transformation lift.

Preliminaries

We recall the basic categorical concepts we use in the paper. The reader familiar with universal coalgebra [START_REF] Jacobs | Introduction to Coalgebra: Towards Mathematics of States and Observation[END_REF] may safely skip this section.

Coalgebras, algebras. For a category C and a functor

F : C → C, an F -coalgebra is a pair (X, f ) with X an object in C and f : X → F X. A homomorphism of F -coalgebras h : (X, f ) → (Y, g) is a map h : X → Y such that g • h = F h • f .
Coalgebras for F form a category and an F -coalgebra is final if it is final in that category. An F -algebra is a pair (X, a) with X an object of C and a : F X → X.

Ordinals. We write ω for the first infinite ordinal. The category Ord of ordinals has as objects the ordinals themselves, and there is a unique arrow j → k iff j ≤ k. This is similar to the usual view of a poset as a category, except that the ordinals do not form a set.

Final sequence. The final sequence of a functor B : C → C in a complete category C is an ordinal indexed sequence of objects B i with connecting morphisms B j,i : B j → B i , i ≤ j constructed in the following way. The first object is B 0 ≜ 1, the final object of C and for a successor ordinal j + 1 we have B j+1 ≜ BB j . Further, B i,i ≜ id, B i,0 ≜ ! i : B i → 1 and B j+1,i+1 ≜ BB j,i . For a limit ordinal λ we have B λ ≜ lim i<λ B i and (B λ,i ) i<λ forms a limiting cone. We write B for the final sequence of B, seen as a functor Ord op → C. Accordingly, we write B(i) for B i and B(j, i) for B j,i .

We say that the final sequence B stabilises at ordinal κ if B(κ + 1, κ) is an isomorphism. In this case, B(κ) is a final coalgebra [5, Theorem 1.3] (shown for the dual case of algebras in [START_REF] Adámek | Free algebras and automata realizations in the language of categories[END_REF]). For ω-continuous functors (e.g., polynomial set functors), the final sequence stabilises at ω. Fact 2.1. Given a coalgebra f : X → BX, we can construct a cone f i : X → B i over the final sequence, inductively. We start with the unique map f 0 ≜ ! X : X → 1 and for a successor we define f i+1 = Bf i • f . For a limit ordinal k, the map f k : X → B k is the unique map obtained from the induction hypothesis and universality of B k .

Distributive laws. For functors F, B :

C → C, a distributive law of F over B is a natural transformation λ : F B ⇒ BF . When F comes with a monad structure (F, η, µ), we call λ : F B ⇒ BF a distributive law of a monad if it satisfies Bη = λ • ηB and λ • µB = Bµ • λF • F λ.
Every distributive law λ : F B ⇒ BF over a functor B admitting a final coalgebra (Z, ζ) induces an algebra on Z by considering the coalgebra λ Z • F ζ : F Z → BF Z and using finality.

Corecursion up-to causal transformations

Our main result does not explicitly mention corecursion. Remember that we call a natural transformation of the form F B ⇒ B a causal transformation. Given such a causal transformation, we inductively construct morphisms from any BF -coalgebra into each object of the final sequence B. We get validity of corecursion up-to as a special case, when we have a final B-coalgebra at ordinal κ in the final sequence (Corollary 3.4 below).

Theorem 3.1. Let B, F : C → C be endofunctors on a complete category C and let α : F B ⇒ B be a causal transformation. For every BF -coalgebra g : X → BF X and every ordinal k, there is a unique map g † k making the following diagram commute:

X B(k) BF X BF B(k) BB(k) g g † k BF g † k Bα k B(k+1,k)
Proof. We proceed by transfinite induction on the ordinal k, additionally proving that for all ordinals i < k, we have

B(k, i) • g † k = g † i (2) 
When k = 0, we have

X 1 BF X BF 1 B1 g ! X BF ! X Bα0 ! B1
Uniqueness and commutativity both follow from the uniqueness of the arrow ! X from X into the final object. The property (2) holds trivially.

For the case k = j +1 for some ordinal j, we assume the following commutative diagram:

X B(j) BF X BF B(j) BB(j) g g † j BF g † j Bαj B(j+1,j) (3) 
Now consider the following diagram, where g † j+1 is the map we wish to define:

X B(j + 1) BF B(j) BF X BF B(j + 1) BB(j + 1) g g † j+1 Bαj BF g † j+1 BF g † j Bαj+1 BF B(j+1,j) B(j+2,j+1) (4) 
The lower left triangle commutes as we have B(j

+ 1, j) • g † j+1 = B(j + 1, j) • Bα j • BF g † j • g = g † j by Eq. (3), meaning also BF B(j + 1, j) • BF g † j+1 = BF g † j .
The lower right trapezium commutes by naturality of α and functoriality of B:

F B(j) B(j) F B(j + 1) B(j + 1) αj αj+1 F B(j+1,j) B(j+1,j) BF B(j) BB(j) BF B(j + 1) BB(j + 1) Bαj Bαj+1 BF B(j+1,j) BB(j+1,j)
Taking g † j+1 ≜ Bα j • BF g † j • g, we see that this is the unique map we require, as it makes the diagram of Eq. ( 4) commute, and any such map making the successor case of (3) commute, must satisfy the above equation.

To show the property (2), let i < k and consider the following diagram

B(i) X B(j) B(k = j + 1) g † i g † j g † k B(j,i) B(k,j)
Then (2) follows by the induction hypothesis and definition of g † k . Finally, we have the case of a limit ordinal k. In this case, we assume we have the diagram as in (3) commuting for all j < k and note that, by definition of the final sequence, the maps B(k, j) for j < k form a limiting cone. We would like to use the universal property of such a limiting cone to construct a map into its apex, the object B(k). To do this, we require that the maps g † j : X → B(j) form a cone over the final sequence. This holds by the induction hypothesis, specifically the property of (2) for all j < k, and so by the universal property, we have a map g † k : X → B(k). This also immediately establishes the limit case of property [START_REF] Adámek | Free algebras and automata realizations in the language of categories[END_REF]. Now consider the following diagram:

B(j) X B(k) BF X BF B(j) B(j + 1) BF X BF B(k) B(k + 1) g † k g g † j B(k,j+1) B(k,j) BF g † j Bαj B(j+1,j) BF g † k BF B(k,j) Bα k BB(k,j) B(k+1,k) (5) 
We would like, for all j < k, the outer route from X to B(j) to be equal to g † j (in an equation:

g † j = B(k, j) • B(k + 1, k) • Bα k • BF g † k • g).
Then, by definition of g † k as the unique map such that B(k, j)

• g † k = g † j we will have commutativity of diagram (3) for the ordinal k, i.e., g † k = B(k + 1, k) • Bα k • BF g † k • g.
Equationally, the proof goes as follows:

B(k, j) • B(k + 1, k) • Bα k • BF g † k • g (6) = B(j + 1, j) • B(k, j + 1) • B(k + 1, k) • Bα k • BF g † k • g (7) = B(j + 1, j) • BB(k, j) • Bα k • BF g † k • g (8) = B(j + 1, j) • Bα j • BF B(k, j) • BF g † k • g (9) = B(j + 1, j) • Bα j • BF g † j • g (10) 
I.H.

= g † j ( 11 
)
To show this diagrammatically, we have included the inner part in Eq. ( 5). Then the upper right and right-hand triangles commute by definition of the final sequence [START_REF] Bartels | Generalised coinduction[END_REF], [START_REF] Bartels | On generalised coinduction and probabilistic specification formats[END_REF]. The lower right trapezium commutes by naturality of α and functoriality of B (9). Commutativity of the lower left square follows by property (2) as well as functoriality of BF [START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF]. The final equality [START_REF] Bonchi | A general account of coinduction up-to[END_REF] holds by the induction hypothesis. Together, this gives the required commutativity, and uniqueness of g † k . As announced in the introduction, the above theorem actually generalises some well-known facts: Proof. This is the special case of Theorem 3.1 where we take the identity functor for F , and the identity causal transformation for α. Proof. This is the special case of the previous corollary where we select the κ-th element of the final sequence.

More importantly for the present paper, Theorem 3.1 justifies condition 3/ from the introduction, for corecursion up to an algebra. Corollary 3.4 (Corecursion up-to from causal transformations). If the final sequence B stabilises at ordinal κ, and if α is a causal transformation for B, then corecursion up-to the algebra α κ is valid for B.

The above corollary does not require any distributive law to start with, only a causal transformation. This is the point we want to emphasise in the present work, and we shall study causal transformations in the following sections. Nevertheless, this result also gives a new way to get validity of corecursion up-to from a distributive law, which we discuss in the remainder of this section: Corollary 3.5 (Corecursion up-to from distributive laws). Let λ : F B ⇒ BF be a distributive law. If the final sequence B yields a final coalgebra at ordinal κ, then corecursion up-to the algebra induced by λ on this final coalgebra is valid.

Proof. It is shown in [START_REF] Pous | Companions, causality and codensity[END_REF]Lemma 6.2] that such a distributive law induces a unique α : F B ⇒ B with the property that α κ : F B(κ) → B(κ) is the algebra induced by the distributive law on B(κ). These properties allow us to apply the above corollary, giving the required result.

The statement of this last corollary is very close to the work of Falk Bartels on generalised coinduction [START_REF] Bartels | Generalised coinduction[END_REF][START_REF] Bartels | Generalised coinduction[END_REF]: in our terminology, Theorems 3.8 and 3.9 of [START_REF] Bartels | Generalised coinduction[END_REF] can be summarised as follows:

Theorem 3.6. Let λ : F B ⇒ BF be a distributive law. If B has a final coalgebra and either of the following two conditions holds:

the category C has countable coproducts, or -F is a monad and λ is a distributive law of a monad, then corecursion up-to the algebra induced by λ on the final coalgebra is valid.

In [32, Theorem 9.2] we showed a result analogous to Corollary 3.4 for the case of polynomial functors on Set (with κ = ω). The proof uses the companion of B (the final distributive law in a suitable sense) and uses Theorem 3.6 to conclude. The above direct proof from causal transformations is much simpler.

Let us highlight the differences between Theorem 3.6 and Corollary 3.5, first concerning the statements: 1/ we require a complete category where Bartels only needs countable coproducts (if any); and 2/ we require that the final sequence stabilises where he only needs the existence of a final coalgebra. Those differences disappear in the category of sets, which is complete and where the mere existence of a final coalgebra ensures that the final sequence stabilises [START_REF] Adámek | On the greatest fixed point of a set functor[END_REF]. Now let us compare the two proofs.

Under the first assumption of Theorem 3.6, Bartels uses the given distributive law to construct a B-coalgebra with the countable coproduct ∞ i=0 F i X as carrier. There is a unique map from that coalgebra into the final B-coalgebra, which is used to obtain the unique solution for the BF -coalgebra structure. Under the second assumption, the monad structure on F can be used to construct more directly a B-coalgebra with carrier F X. This idea also underlies the generalised powerset construction developed in [START_REF] Silva | Generalizing the powerset construction, coalgebraically[END_REF]: one determinises the given BF -coalgebra into a B-coalgebra with a larger carrier.

Interestingly, we never construct such a B-coalgebra in our proof, instead giving a direct construction of the required map into the final coalgebra, by transfinite induction. The downside is that we need ordinals and transfinite induction, where Falk Bartels does not. Therefore, in a sense his argument is more constructive (e.g., it can be formalised in type theory).

Compositionality

In this section, we show that the natural transformations of the form F A ⇒ B, which we will call causal transformations from A to B, enjoy good compositionality properties. This generalises the transformations F B ⇒ B of earlier sections and in fact, we define a category in which such causal transformations are the morphisms. This category has all products, and we obtain compositionality properties which are similar to those established in [START_REF] Bonchi | A general account of coinduction up-to[END_REF]Proposition 3.3] for compatible functors. Proof. We only deal with binary products to ease notation, leaving the general case to the reader.

For objects (A 1 , C 1 ), (A 2 , C 2 ) in K we construct the pair (A 1 ×A 2 , C 1 ×C 2 ), taking products in the category Cat. The projections must be causal transformations p i :

F i A 1 × A 2 ⇒ A i .
To obtain these we take F i to be exactly the projection π i in Cat, together with families of maps p i (k) :

π i • A 1 × A 2 (k) → A i (k)
which necessarily consist of identity maps, as we show now.

First, we claim that A 1 × A 2 = ⟨A 1 , A 2 ⟩. To prove this we use transfinite induction. For the successor case, assume that A 1 × A 2 (i) = ⟨A 1 , A 2 ⟩(i) = (A 1 (i), A 2 (i)) for some i. Then, we have

A 1 × A 2 (i + 1) = (A 1 × A 2 )(A 1 × A 2 (i)) (12) = (A 1 × A 2 )(A 1 (i), A 2 (i)) (13) = (A 1 (A 1 (i)), A 2 (A 2 (i))) (14) = (A 1 (i + 1), A 2 (i + 1)) (15) = ⟨A 1 , A 2 ⟩(i + 1) (16) 
where Eq. ( 13) follows from the induction hypothesis. For the limit case, let k be some limit ordinal and assume that A 1 × A 2 (l) = ⟨A 1 , A 2 ⟩(l) holds for all l < k. Now, we have

A 1 × A 2 (k) = lim l<k A 1 × A 2 (l) (17) = lim l<k ⟨A 1 , A 2 ⟩(l) (18) = ⟨A 1 , A 2 ⟩(k) (19) 
where Eq. ( 18) follows from the induction hypothesis. The last step, Eq. ( 19), follows from how limits are computed in a product category; the important point being that cones over a pairing of functors are the same as pairs of cones over the component functors.

From the established equality

A 1 × A 2 = ⟨A 1 , A 2 ⟩, we conclude that π i • A 1 × A 2 (k) = A i (k)
so that we can take each component p i (k) of our projections to be the identity. Naturality then holds trivially. It remains to show that the above construction is universal.

Suppose we have an object (Q :

D → D, D) ∈ K with morphisms (F i , α i ) : Q → (A i , C i ) for i = 1, 2.
Then we can construct the pair (⟨F 1 , F 2 ⟩, (α 1 , α 2 )) of the functors and causal transformations so that (α 1 , α 2 ) :

⟨F 1 , F 2 ⟩Q → A 1 × A 2 is a map in C 1 × C 2 .
As this is a product in Cat, we have the required property that for all j = 1, 2 (π j , id)

• (⟨F 1 , F 2 ⟩, (α 1 , α 2 )) = (F j , α j )
More concretely, the components of the causal transformations are maps of type

⟨F 1 , F 2 ⟩Q(l) → (A 1 (l), A 2 (l)) = (F 1 Q(l), F 2 Q(l)) → (A 1 (l), A 2 (l))
which, by definition of the product category, consist of maps in C 1 and C 2 which we consider in parallel. Further, uniqueness follows from the definition of the pairing ⟨F 1 , F 2 ⟩ and of maps in the product category. Finally, naturality follows by assumption on the α i , thus, we indeed have a categorical product.

Finally, we have the following basic morphisms in K, giving access to up-to constant techniques and to coproduct of up-to techniques. Proposition 4.4. For every endofunctor B : C → C, we have the following morphisms in K:

1. (∆ X , δ f ) : B → B where X is the carrier of a coalgebra f : X → BX and ∆ X is the constant functor associated to X.

2.

: C I → C, γ : B I → B, assuming that coproducts in C exist.

Proof. For Item 1, we define δ f as the cone given by Fact 2.1. Item 2 follows from the universal property of coproduct.

Together with Theorem 4.2 and Theorem 4.3, the above proposition makes it possible to define complex causal transformations out of basic ones, thus enabling compositional proofs of validity for complex corecursion up-to schemes.

Example 4.5. Suppose we work with streams, and we want to define a unary operation f satisfying the following equations

f (x) 0 = x 0 f (x) ′ = (x ⊕ f (x ′ )) ⊕ f (x ′′ )
In order to use corecursion up-to, we need an algebra combining the ability to call ⊕ twice in a row, with arguments which are either an existing stream (x), or corecursive calls to f on some existing streams (f (x ′ ) and f (x ′′ )).

We can use for that the functor F (F (R ω + Id) + Id) where F X = X 2 , and the associated algebra ⊕

• [⊕ • [id; id]; id] on R ω .
Thanks to the above results, showing that such an algebra arises from a causal transformation amounts to showing that ⊕ arises from a causal transformation, which is straightforward. This is sufficient because we know that we have identity morphisms in K and we can cope with the constant R ω functor via Item 1 of Proposition 4.4 since R ω is a coalgebra (the final one). Since we can take coproducts in Set, we can finally apply Item 2 of Proposition 4.4 and compose these constructions in K to obtain the required causal transformation.

As is the case for distributive laws [START_REF] Power | Combining a monad and a comonad[END_REF][START_REF] Watanabe | Well-behaved translations between structural operational semantics[END_REF][START_REF] Lenisa | Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads[END_REF][START_REF] Klin | Presenting morphisms of distributive laws[END_REF][START_REF] Pous | Companions, causality and codensity[END_REF], we can also define maps between causal transformations. We claim that the arrows of the above definition turn K into a 2-category, however we have not checked the details and the consequences of this are currently unclear. Of most interest is a possible correspondence with an analogous category DL with endofunctors as objects and distributive laws as maps [START_REF] Pous | Companions, causality and codensity[END_REF]Definition 6.1]. The definition of maps between distributive laws again yields a 2-category, from which there may be a 2-functor whose image on distributive laws are exactly the causal transformations obtained via the construction in [START_REF] Pous | Companions, causality and codensity[END_REF]Lemma 6.2]. There, it is already shown that the construction extends to a functor from distributive laws of A over B to causal transformations from A to B, so giving a 2-functor should generalise this result to the setting where A and B are not fixed. It is further known that, under certain conditions (e.g. the existence of the companion), we can also go back from causal transformations to distributive laws. We would like to further investigate this correspondence in the 2-categorical context and its relation to up-to techniques.

Up-to techniques for coinductive proofs

As explained in the previous sections, a causal transformation α : F B ⇒ B gives rise to a valid corecursion-up-to principle. In this section we show how it also induces up-to techniques for coinductive proofs. We take a fibrational view on coinductive predicates [START_REF] Hermida | Structural induction and coinduction in a fibrational setting[END_REF][START_REF] Hasuo | Coinductive predicates and final sequences in a fibration[END_REF], where coalgebras in the base category are viewed as state-based systems, and coinductive proofs arise as coalgebras in the fibre above the state space. These fibres are often assumed to be a complete lattices in this setting. The key technical result in this section is that any causal transformation in the base category gives rise to a causal transformation in the fibre above the final coalgebra (assumed to be a complete lattice), which enables its use as an up-to technique for coinductive proofs.

Coinduction up-to in a lattice

Let us first briefly recall the basic notions of coinduction and up-to techniques in complete lattices [START_REF] Pous | Advanced Topics in Bisimulation and Coinduction, chapter about[END_REF]. This can be viewed as a special case of the theory of coalgebras and corecursion (up-to), by instantiating the base category with a complete lattice viewed as a posetal category.

Let b : L → L be a monotone map on a complete lattice L. By the Knaster-Tarski theorem, b has a greatest fixed point νb, which is also the greatest post-fixed point. This gives a coinduction principle: if x ≤ b(x), then x ≤ νb.

The definition of corecursion up-to given in the Introduction (1) instantiates to the following coinduction up-to principle. Given a function f : L → L such that f (νb) ≤ νb (this is the algebra structure), coinduction up to f is valid if x ≤ bf (x) implies x ≤ νb. This amounts to the established notion of soundness in this setting, with the additional requirement that f preserves νb.

Conditions similar to 1/ from the Introduction have been developed independently in this setting [START_REF] Sangiorgi | On the bisimulation proof method[END_REF][START_REF] Pous | Complete lattices and up-to techniques[END_REF]:

a function f is called b-compatible if f b ≤ bf ,
that is, there is a distributive law of f over b. Compatibility implies validity in the above sense, and enjoys good compositionality properties (which the class of valid or sound functions does not).

Condition 2/ has no clear counterpart in this setting. In contrast, we considered condition 3/ in previous work [START_REF] Pous | Companions, codensity and causality[END_REF][START_REF] Pous | Companions, causality and codensity[END_REF]. In this case, a causal transformation f b ⇒ b is just a function which preserves the final sequence at any point, i.e., f b i (⊤) ≤ b i (⊤) for every ordinal i. In op. cit. we show that f satisfies this property if and only if f ≤ t, where t is the companion of b, that is, the greatest compatible function [START_REF] Pous | Coinduction all the way up[END_REF]. Such a property is very close to Parrow and Weber's characterisation of the greatest respectful function [START_REF] Parrow | The largest respectful function[END_REF] (which happens to coincide with the greatest compatible function-the companion). A constructive version was also used later in the context of Agda [START_REF] Danielsson | Up-to techniques using sized types[END_REF].

In the lattice-theoretic setting, these causal transformations form a class of valid enhancements which can be more convenient to work with than the stricter requirement of being compatible. In the remainder of this section, we show how to move from "categorical" causal transformations, in a base category where coalgebras are state-based systems, to these lattice-theoretic causal transformations. This is enabled by the use of fibrations, which provide us precisely with the infrastructure to move from coalgebras (as state-based systems) to coinductive proofs thereon.

Background on coinduction in a fibrational setting

We recall the basics of coinductive predicates in a fibration, but only briefly; see, for instance, [START_REF] Hasuo | Coinductive predicates and final sequences in a fibration[END_REF] for a detailed introduction. First, let B : Set → Set and recall that relation lifting assigns to every relation R ⊆ X × X a relation Rel(B)(R) on BX, defined by

Rel(B)(R) = {(Bπ 1 (t), Bπ 2 (t)) | t ∈ BR} . A bisimulation on a B-coalgebra (X, f ) is then a relation R ⊆ X × X such that R ⊆ (f × f ) -1 (Rel(B)(R))
, and bisimilarity is the greatest fixed point of the monotone map (f × f ) -1 (Rel(B)(-)) : Rel X → Rel X , where Rel X is the lattice of relations on X. It arises as the limit of the final sequence of (f × f ) -1 (Rel(B)(-)).

The situation can be massively generalised by moving from relations on sets to a fibration p : E → C, and from the relation lifting to arbitrary liftings of endofunctors on C. We omit the definition of fibration here (see [START_REF] Jacobs | Categorical Logic and Type Theory[END_REF]); we however recall the key notions associated to them.

For such a fibration p, we say an object R in E is above an object X in C if p(R) = X, and similarly for morphisms. Further, the fibre E X above an object X in C is the subcategory of E consisting of all objects above X, and all morphisms above id X . For every arrow f : X → Y there is a reindexing functor

f * : E Y → E X .
Throughout this section, we assume that p : E → C is a CLat ∧ -fibration (e.g., [START_REF] Sprunger | Fibrational bisimulations and quantitative reasoning: Extended version[END_REF]), which means that each fibre E X is a complete lattice, and reindexing preserves arbitrary meets. Below, we shall often refer explicitly to this poset structure, by writing R ≤ S if there exists an arrow from R to S in E X . These are instances of topological functors [START_REF] Herrlich | Topological functors[END_REF]. Every CLat ∧ -fibration is a bifibration, which means every reindexing functor f * has a left adjoint f .

A lifting of a functor B : C → C is a functor B : E → E such that p • B = B • p. For such a lifting and an object X in C, the functor B restricts to a functor between fibres B X :

E X → E BX . A lifting (B, B) is a fibration map if (Bf ) * • B Y = B X • f *
for any arrow f : X → Y in C (the inequality from right to left holds for any lifting).

Given a B-coalgebra (X, g) and a lifting (B, B), we define the functor (that is, monotone map)

g * • B X : E X → E X .
Its final coalgebra (greatest fixed point) ν(g * • B X ) exists by the assumption that each fibre is a complete lattice, and is referred to as the coinductive predicate defined by B X . It is the greatest post-fixed point (coalgebra) of g * •B X ; such postfixed points are called invariants in [START_REF] Hasuo | Coinductive predicates and final sequences in a fibration[END_REF]. This gives rise to the lattice-theoretic coinductive proof technique: to prove that an object R in E is below the greatest fixed point, it suffices to show it is a post-fixed point of g * • B X .

Example 5.1. Consider the category Rel where an object is a pair (R, X) of sets with R ⊆ X × X, and an arrow from (R,

X) to (S, Y ) is a map f : X → Y such that f (R) ⊆ S.
Reindexing is given by inverse image. The forgetful functor p : Rel → Set mapping (R, X) to X is a CLat ∧ -fibration. The relation lifting Rel(B) is a lifting of B, often referred to as the canonical lifting in this general setting. For a coalgebra (X, g), g * • Rel(B) X is precisely the monotone map described at the beginning of this subsection, whose greatest fixed point is bisimilarity on (X, g).

Other liftings of B give rise to other coinductive predicates. For instance, for the powerset functor P : Set → Set, consider the lifting

Rel ≤ (P)(R) = {(S, U ) | ∀x ∈ S. ∃y ∈ U. (x, y) ∈ R} .
Coalgebras for P are transition systems, post-fixed points of g * • Rel ≤ (P) are simulations, and its greatest fixed point is similarity. This is an instance of a much more general fibrational characterisation of similarity [START_REF] Hughes | Simulations in coalgebra[END_REF]. Other examples of coinductive predicates that have been explored in a fibrational setting are behavioural distances [START_REF] Baldan | Coalgebraic behavioral metrics[END_REF][START_REF] Bonchi | Up-to techniques for behavioural metrics via fibrations[END_REF][START_REF] Sprunger | Fibrational bisimulations and quantitative reasoning: Extended version[END_REF] and various unary predicates and invariants [START_REF] Hasuo | Coinductive predicates and final sequences in a fibration[END_REF][START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF] in the fibration of predicates over sets.

In the abstract setting of coinductive predicates via liftings, we can consider up-to techniques in the fibre as well, basically by instantiating the setting in Section 3. A systematic construction of such up-to techniques in a fibration is in [START_REF] Bonchi | A general account of coinduction up-to[END_REF]. Of particular interest is the contextual closure: given a lifting F of F and an algebra a : F X → X, it is defined as the map a • F X : E X → E X .

Example 5.2. On streams, the algebra ⊕ : F R ω → R ω for the squaring functor F X = X 2 , together with the canonical lifting of F , gives rise to the following monotone function on relations on streams:

⌊⊕⌋ : P(R ω × R ω ) → P(R ω × R ω ) R → {(x ⊕ y, z ⊕ t) | x R y and z R t}
Such a function often proves useful as an up-to technique in bisimulation proofs on streams: it makes it possible to use the coinductive hypothesis under calls to pointwise addition, and to get rid of common sub-expressions. This is typically convenient to reason about operations defined by corecursion up to ⊕, like shuffle product (see, e.g., the example in [START_REF] Pous | Coinduction all the way up[END_REF]Section 5]).

In [START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF]Theorem 6.7], it is shown that a • F X is valid (even compatible) if there is a distributive law λ : F B ⇒ BF such that (X, a, g) is a λ-bialgebra, and λ lifts to a distributive law FB ⇒ BF.

Causal transformations in the fibre

We now show how to move from a causal transformation in the base category of a fibration to one in the fibre above the state space of the final coalgebra. 

• F B(κ) • (ζ * • B B(κ) ) ≤ (ζ * • B B(κ) ) . Here, f ≜ ακ • F B(κ) : E B(κ) → E B(κ)
(ζ * • B B(κ) ) : E B(κ) → E B(κ)
is the monotone map in the fibre above B(κ), whose greatest fixed point (final coalgebra) is the coinductive predicate defined by B. Having such a causal transformation means that the up-to technique f is a valid enhancement for b. This is the contents of Theorem 5.5.

In the proof of Theorem 5.5, we use the following lemma, which relates the final sequence of ζ * • B B(κ) in the fibre to the final sequence of the lifting B. Recall from Fact 2.1 that every coalgebra (X, g) induces a cone g i : X → B(i) over the final sequence.

Lemma 5.4. Suppose (B, B) is a fibration map, and let g : X → BX be a coalgebra. For any ordinal i, we have (g

* • B X )(i) = g * i • B(i).
Proof. By transfinite induction on i. The base and successor case are shown in [START_REF] Kupke | Expressive Logics for Coinductive Predicates[END_REF]Lemma 5.4]. For k a limit ordinal, we compute:

g * k (lim i<k B(i)) = g * k ( i<k B * k,i (B(i))) = i<k g * k • B(k, i) * (B(i)) = i<k (B(k, i) • g k ) * (B(i)) = i<k g * i (B(i)) = i<k (g * • B X )(i) .
The first step follows from the computation of limits in CLat ∧ -fibrations, see, e.g., [START_REF] Sprunger | Fibrational bisimulations and quantitative reasoning: Extended version[END_REF]; this is a consequence of [19, Prop. 9. This brings us to the main result of this section:

Theorem 5.5. Suppose (B, B) is a fibration map, and suppose that for every ordinal i, we have αi (FB(i)) ≤ B(i) Then for every ordinal i:

ακ • F B(κ) • (ζ * • B B(κ) )(i) ≤ (ζ * • B B(κ) )(i) .
Proof. For any i, we have ακ

• F B(κ) • (ζ * • B B(κ) )(i) = ακ • F B(κ) • ζ * i (B(i)) (Lemma 5.4) ≤ ακ • (F ζ i ) * • F B(i) (B(i)) (basic property liftings) ≤ζ * i • αi • F B(i) (B(i)) (follows from naturality α) ≤ζ * i (B(i)) (by assumption)
For the one-but-last step, note that ζ i = B(κ, i), and thus naturality of α implies

α i • F ζ i = ζ i • α κ , and hence (F ζ i ) * • α * i = α * κ • ζ * i .
The desired inequality is obtained as the mate:

ακ • (F ζ i ) * ≤ ακ • (F ζ i ) * • α * i • αi = ακ • α * κ • ζ * i • αi ≤ ζ * i • αi ,
using the unit of the adjunction αi ⊣ α * i in the first step, and the counit of ακ ⊣ α * κ in the last step.

The condition that αi (FB(i)) ≤ B(i) holds for all i is equivalent to the requirement that α lifts to a natural transformation FB ⇒ B. In our setting of CLat ∧ -fibrations, it basically says that F and α need to preserve all approximations of the coinductive predicate of interest. For instance, for the lifting for similarity of transition systems defined below Example 5.1, the i-th component of the final sequence of Rel ≤ (P) consists of the i-steps similarity relation ≤ i ; and the condition that α lifts means that the direct image of F(≤ i ) under α × α is contained in ≤ i . This is the case, for instance, if F takes the transitive closure (and F is the identity functor, α the identity map); in that case, the requirement simply amounts to the fact that each element in the final sequence of Rel ≤ (P) is transitive. Indeed, up-to transitive closure is valid for similarity.

If F = Rel(F ) and B = Rel(B) in the relation fibration Rel → Set, the condition that α lifts vacuously holds. This follows, for instance, by the following lemma, which is closely related to the coinduction principle in [START_REF] Hermida | Structural induction and coinduction in a fibrational setting[END_REF]. It makes use of the equality functor Eq : Set → Rel, which maps a set X to the diagonal {(x, x) | x ∈ X}. Proof. By transfinite induction. For a limit ordinal k, use that Eq has a left adjoint (quotients, see [START_REF] Hermida | Structural induction and coinduction in a fibrational setting[END_REF]) so that it preserves limits. Then For a successor ordinal, we use that relation lifting preserves equality [START_REF] Jacobs | Introduction to Coalgebra: Towards Mathematics of States and Observation[END_REF], that is, Rel(B) • Eq = Eq • B:

Rel(B)(i + 1) = Rel(B)(Rel(B)(i))

= Rel(B)(Eq(B(i))) = Eq(BB(i)) = Eq(B(i + 1)) .

Using the above lemma we get Rel(F ) • Rel(B) = Rel(F ) • Eq • B = Eq • F • B, again using that relation lifting preserves equality, and thus we can define the lifting of α simply as Eq(α). Alternatively, we expect the fact that any causal transformation lifts in this way also follows similarly to the fact that any distributive law lifts in this case [START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF], using that Rel is a 2-functor [START_REF] Jacobs | Introduction to Coalgebra: Towards Mathematics of States and Observation[END_REF].

Curiously, in Theorem 5.5 we assumed that (B, B) is a fibration map. For the canonical relation lifting Rel(B), this means that B needs to preserve weak pullbacks for the above theorem to apply. This is in contrast to the result in [START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF], which does not make this requirement.

However, Theorem 5.5 cannot be easily generalised to functors that do not preserve weak pullbacks. Consider, for instance, the case where F = Id, α = id, and F(R) is the least equivalence relation containing R. The requirement that α lifts then says that each element of the final sequence of B is an equivalence relation.

A classical simple example of a functor B : Set → Set which does not preserve pullbacks is the one defined on objects as B(X) = {(x, y, z) | |{x, y, z}| ≤ 2}, see [START_REF] Aczel | A final coalgebra theorem[END_REF]. The final sequence of B stabilises immediately. The final sequence of its canonical lifting Rel(B) consists simply of the equality relation on a singleton (cf. Lemma 5.6). This is clearly an equivalence relation., and therefore the condition that α lifts holds in this case (thus taking B to be Rel(B)). But up-to-equivalence is not sound for this functor (a counterexample for up-to-bisimilarity is given in [START_REF] Rot | Enhanced coalgebraic bisimulation[END_REF], this can be adapted).

Indeed, the condition from [START_REF] Bonchi | Coinduction up-to in a fibrational setting[END_REF] that the distributive law between F and B lifts, is much stronger: it says that Rel(B) should commute with the equivalence closure functor F. This is not the case in general, if B does not preserve weak pullbacks. In fact, this example shows that not all causal transformations are definable by a distributive law.

Corollary 3 . 2 (

 32 [25, p. 5, footnote 2]). Every element B(k) of the final sequence B, seen as a B-algebra with structure map B(k + 1, k), is corecursive.

Corollary 3 . 3 .

 33 [START_REF] Adámek | Free algebras and automata realizations in the language of categories[END_REF][START_REF] Barr | Algebraically compact functors[END_REF] If the final sequence B stabilises at ordinal κ, then B(κ) is a final coalgebra (with structure map B(κ + 1, κ) -1 ).

Definition 4 . 1 .

 41 For functors F : C → D, A : C → C and B : D → D, a causal transformation from A to B is a natural transformation α : F A ⇒ B.

Theorem 4 . 2 .Theorem 4 . 3 .

 4243 We have a category K with the following data: objects are pairs (A, C) with A : C → C a functor on a complete category C. morphisms from (A, C) to (B, D) are pairs (F, α) with α : F A ⇒ B. Proof. The identity on an object (A, C) is the pair (Id, id). The composition of two morphisms (F, α) : (X, C) → (Y, D) and (G, β) : (Y, D) → (Z, E) is given by(G • F )X GY Z Gα βWhen the categories C and D are clear from the context, we write A → B for the homset from (A, C) to (B, D) in K. The category K has all products.

Definition 4 . 6 .

 46 Given two causal transformations (F, α), (G, β) : A → B, an arrow from (F, α) to (G, β) is a natural transformation κ : F ⇒ G such that β • κA = α. These arrows turn K into a 2-category.

Assumption 5 . 3 .

 53 Throughout this subsection, we assume: a CLat ∧ -fibration p : E → C into a complete category C; endofunctors B, F : C → C such that the final sequence of B stabilises at some ordinal κ; thus the final coalgebra is given by (B(κ), ζ); liftings B, F of B and F respectively; a causal transformation α : F B ⇒ B. Now, consider the final B-coalgebra (B(κ), ζ). The key idea is to extract from the above data a causal transformation ακ

  is the up-to technique induced by the lifting F and the algebra α κ , whereas b ≜

2 . 1 ]

 21 . The second step follows from the definition of CLat ∧ -fibrations. The third since CLat ∧ -fibrations are split. The fourth since the g i 's form a cone over the final sequence. And the last by the induction hypothesis.

Lemma 5 . 6 .

 56 For any functor B : Set → Set, we have Rel(B) = Eq • B.

  Rel(B)(k) = lim i<k Rel(B)(i) = lim i<k Eq(B(i)) = Eq(lim i<k B(i)) = Eq • B(k) .

  delay" function on compactly branching trees. At ordinal ω, we get a unique function e such that

	T ω		e		T ω
	c				P(ω+1,ω)
	PT ω	Pe	PT ω	Pd	PT ω

I.e., preserving limits of ω op -chains.
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