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Selective single beam tweezers open tremendous perspectives in microfluidics and microbiology
for the micromanipulation, assembly and mechanical properties testing of microparticles, cells and
microorganisms. In optics, single beam optical tweezers rely on tightly focused laser beams, gener-
ating a three-dimensional (3D) trap at the focal point. In acoustics, 3D traps have so-far only been
reported experimentally with specific wavefields called acoustical vortices. Indeed, many types of
particles are expelled (not attracted to) the center of a focused beam. Yet the trapping capabilities
of focused beams have so-far only been partially explored. In this paper, we explore numerically
with an angular spectrum code the trapping capabilities of focused beams on a wide range of pa-
rameters (size over wavelength ratio and type of particles). We demonstrate (i) that 3D trapping
of particles, droplets and microorganisms more compressible than the surrounding fluid is possible
in and beyond Rayleigh regime (e.g. polydimethylsiloxane, olive oil, benzene, and lipid sphere) and
(ii) that 2D trapping (without axial trap) of particles with positive contrast factor can be achieved
by using the particles resonances.

I. INTRODUCTION

3D microparticle trapping with single beam optical
tweezers was demonstrated by Ashkin et al. in 1986 with
a focused laser beam under the condition that the parti-
cle refractive index is higher than that of the surround-
ing fluid medium [1]. The advantages of using a simple
focused beam to manipulate particles include: (i) Sim-
plicity: a focused beam is easy to produce with a sim-
ple lens. (ii) Excellent selectivity: the beam is focused
on the target particle and hence has little effect on the
neighbouring ones and (iii) Strong trap: A focused beam
leads to strong gradients near the focal point that are
thus suitable to create strong traps.

In acoustics the first to consider focused beams to trap
object was Wu in 1991 [2]. But Wu used two collimated
beams (not a single beam) propagating in opposite di-
rections to obtain an acoustic trap for latex particles and
clusters of frog eggs. By single beam we mean a beam
whose energy comes from only one direction of the space.
Single beam tweezers are more convenient to use exper-
imentally since they do not require to put sources or re-
flectors all around the target objects. Later on in 2009,
as an analogy to optical tweezers, Shung’s group [3] ex-
plored the possibilities offered by single focused beams to
trap particles. In their pionneering work, they succeeded
to trap laterally (hence in 2D) oleic acid lipid droplets
with a single beam at around 30 MHz in the Mie regime
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(with a/λ ≈ 1.26, where a designates the particle radius
and λ the wavelength). However, axial trapping was not
demonstrated. In addition, the ray method used to guide
and analyse their experiments [4, 5] was used beyond its
limit of validity since such a method can only be used
when a � λ. Later on, the same group demonstrated
experimentally 2D trapping of a single elastic particle
and human cell beyond the Rayleigh regime with focused
beams tweezers at frequencies up to 400 MHz [6–9]. Note
that the Rayleigh regime corresponds to the long wave-
length regime wherein a � λ, while the Mie regime
corresponds to a & λ. They also performed calibra-
tion and measurement of sound forces on liquid droplets
[10, 11]. All these demonstration were however limited
to 2D traps. Then, Silva et al. [12] explored numeri-
cally with partial wave expansion the possibility to trap
droplets in 3D with focused beams. They showed theo-
retically that 3D trap can be obtained in the Rayleigh
regime for specific silicone-oil droplet with a density of
1004 kg/m3 closed to the one of water and a compress-
ibility of 1050×10−12 Pa, i.e. more than two times the
one of water. However, (i) the trap was obtained only
with droplets more compressible than the surrounding
phase and (ii) 3D trapping beyond the Rayleigh regime
was not explored. Finally, more recently Yang et al. [13]
reported the levitation upward of relatively large PDMS
particle of radius 400 to 800 microns induced by a 1 MHz
focused beam in the regime a/λ ∈ [0.26, 0.52]. Again 3D
trap was not demonstrated in this regime.

Experimentally, 3D trapping against gravity of parti-
cles denser and stiffer than the surrounding phase with
single beam has only been demonstrated with specific
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wavefields called focused acoustical vortices [14], some
helical wave spinning around a phase singularity [15]. In-
deed, as we shall see in this paper, 3D particle trapping
of these types of particles is not possible at the center
of a focused beam. With acoustical vortices, 2D trap-
ping of small microparticles [16, 17] and cells [18] has
also been demonstrated with holographic tweezers based
on spiraling interdigitated transducers [19]. Later on, it
was shown theoretically [20] that these types of particles
could also be trapped in 3D with these type of devices.
The 3D manipulation of bubbles with axial compensa-
tion of Archimedes force and radiation force with these
wave structures was also demonstrated by Baresch et al.
[21].

Yet, (i) as discussed in the first paragraph, tweezers
based on focused beams would have many advantages in
terms of simplicity, selectivity and trapping force com-
pared to their vortex counterparts and (ii) their trapping
capabilities has only been partially explored. In this pa-
per, we investigate numerically with an angular spectrum
code [18, 22, 23] the trapping capabilities of focused beam
on a wide range of parameters (size and type of particles
or droplets) in and beyond Rayleigh regime. We demon-
strate (i) that 3D trapping is possible for some elastic
and fluid particles more compressible than the surround-
ing phase [e.g., Polydimethylsiloxane (PDMS), olive oil
and benzene] in Rayleigh regime and also at some specific
frequencies beyond the Rayleigh regime, (ii) that only
2D lateral trapping of the most common elastic parti-
cles used in experiments (Pyrex, Polystyrene (PS) and
Polyethylene (PE)) can be achieved at specific frequen-
cies in the Mie regime, and (iii) that typical human cells
cannot be trapped in 3D in a spherical focused beam,
while the lipid (fat) cell 3D trapping is possible at some
specific frequencies. This work is organized as follows:
Section II describes how focused beams can be synthe-
sized with holographic transducers. Section III A. and B.
give an overview of the angular spectrum method and of
the generalized Gor’kov theory used in this paper to com-
pute the radiation force for an arbitrary particle size and
in the Rayleigh regime respectively. Section IV A. and B.
discusses the 2D and 3D trapping ability for two groups
of particles, while biological particles are addressed in
Sec. IV C.

II. SYNTHESIS OF FOCUSED BEAMS WITH
ACTIVE HOLOGRAMS

It was shown recently by our team that complex high
frequency acoustic fields such as focused acoustical vor-
tices can be synthesized by using active holograms based
on InterDigitated Transducers [15–17, 19]. In short, the
binarized phase hologram of the targeted wavefield is ma-
terialized by a set of metallic electrodes of inverse polar-
ity deposited at the surface of a piezoelectric substrate.
While generally holograms are passive and require an ex-
ternal source, here the signal is directly synthesized by
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FIG. 1. Sketch representing the source and target plane and
the spherical coordinates.

the electrode hologram which activate the piezoelectric
substrate. The advantage of this method is that the
transducers are flat, transparent, miniaturizable, and can
produce high frequency signals to trap small particles and
can be adapted to synthesize arbitrary wavefields.

The simulations of this paper are conducted with real-
istic fields, produced by binary phase holograms designed
to produce focused beams at 40 MHz (which corresponds
to a wavelength of λ ≈ 37.5µm in water). The design of
the electrodes are simply obtained by taking the inter-
section of a converging focused beam with a source plane
(see Fig. 1) and determining two set of equiphases lines in
opposition of phase, which constitute a binary hologram
of the targeted wavefield. An ideal converging spherical
focused beam is described in the spherical coordinates
(r, θ, ϕ) as:

p∗(r, θ, ϕ) = p0e
i(kr−ωt)/r, (1)

where p0 is the wave amplitude, k = ω/c the wavenum-
ber, c the sound speed, and t the time. The equiphase
surfaces hence simply correspond to:

φ = arg (p∗) = kr − ωt = C + 2nπ (2)

where C is a constant, n an arbitrary integer and the time
t can be chosen arbitrarily and is hence chosen as t = 0
in the following calculation. To obtain the intersection of
these equiphase spherical surfaces with the source plane,
we must introduce the cylindrical coordinates (R,ϕ, z),
take z as a constant z = h in equations (2), where h
is the distance between the source plane and the focal
point (Fig. 1). Since R =

√
r2 − z2, we simply obtain

the following equations for the radius of the two set of
electrodes of opposite phases:

R1 =
1

k

√
(C + 2nπ)2 − (kh)2 (3)

R2 =
1

k

√
C + (2n+ 1)π)− (kh)2 (4)
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Note that the arbitrary constant C must be chosen so
that C > kh and that each value of n corresponds to a set
of two electrodes. Hence the aperture of the transducer
can be fixed by setting the maximum value N of n, with
n ∈ [0, N ]. Here, N was chosen to obtain an aperture
angle of ≈ 60◦ for a focal depth of h =1 mm.

The two set of electrodes are represented on Fig. 2(a)
and (b). Compared to the binary holograms of focused
acoustical vortices, the geometrical radii of the electrodes
do not evolve with the azimuthal angle resulting in two
set of circular concentric circles instead of spiraling ones.
The focalization results from the decrease of the radial
distance between two consecutive electrodes following the
principle of Fresnel lenses. The width of the electrodes
is chosen as half the distance between two consecutive
electrodes of inverse polarity given by Eqs. (3) and (4).
The pressure and velocity fields produced by these trans-
ducers are calculated with an angular spectrum method
[18, 22, 23] and represented on Fig. 2. The angular spec-
trum simply consists in (i) taking the 2D Fourier Trans-
form of the source to transform it into a sum of plane
wave, (ii) propagating each plane wave up to the target
plane and (iii) taking the inverse Fourier transform of the

sum of the transported plane waves [20].

III. CALCULATION OF THE ACOUSTIC
RADIATION FORCE

A. General case

The next step is to compute the radiation force that
would be exerted on a particle depending on its position,
size and composition. Different analytical formulations of
the radiation force exerted by an arbitrary acoustic field
on an arbitrary spherical particles have been derived by
Silva [24], Baresch et al. [25] and Sapozhinkov & Bailey
[22], whose equivalence has been demonstrated by Gong
& Baudoin [23]. Note the acoustic radiation torque can
also be calculated using the formulas proposed by [26]
and [27]. Here we use an homemade code [18] based on
the angular spectrum method [22] to compute the acous-
tic radiation force, which is more direct considering that
we also compute the acoustic field produced by the phase
hologram with the angular spectrum method. Hence the
force is calculated using the following formulas from Ref.
[20, 23]:

Fx =
1

4π2ρ0k2c2
Re

{ ∞∑
n=0

n∑
m=−n

Cn

(
−b−mn+1HnmH

∗
n+1,m−1 + bmn+1HnmH

∗
n+1,m+1

)}
, (5a)

Fy =
1

4π2ρ0k2c2
Im

{ ∞∑
n=0

n∑
m=−n

Cnb
m
n+1

(
Hn,−mH

∗
n+1,−m−1 +HnmH

∗
n+1,m+1

)}
, (5b)

Fz = − 1

2π2ρ0k2c2
Re

{ ∞∑
n=0

n∑
m=−n

Cnc
m
n+1HnmH

∗
n+1,m

}
. (5c)

where Cn = An + 2AnA
∗
n+1 + A∗n+1, bmn =√

[(n+m)(n+m+ 1)]/[(2n− 1)(2n+ 1)] and cmn =√
[(n+m)(n−m)]/[(2n− 1)(2n+ 1)]. Note that here

the partial wave coefficients Am
n reduce to An owing to

the spherical shape of the particle. The radiation force
for general shapes can be obtained from Eq. (13) in Ref.
[23] with Cm

n and Cm∓1
n given therein.

B. Simplification in the Rayleigh regime

When the particles are much smaller that the wave-
length, i.e. in the Rayleigh regime, the radiation force
formulas for spherical particles in Eq. (5) simplify into
[22]:

F =V0

{
−∇

[
f1

(
|p|2

4ρ0c20

)
− f2

(
ρ0|v|2

4

)]
+

(ka)3

3

[(
f21 +

2f1f2
3

)
Re

(
k

c0
pv∗

)
− f22

3
Im
(ρ0

2
v.∇v∗

)]}
, (6)

where V0 = 4/3πa3 is the volume of the spherical
shape with the particle radius a, f1 and f2 are the
monopolar and dipolar acoustic contrast factors, p and
v are the complex pressure and velocity of the inci-
dent acoustic fields, “Re” and “Im” designate respec-
tively the real and imaginary part of a complex num-
ber, and the supercript “∗” stands for the complex con-
jugate. The first term in the curly braces of Eq. (6)
is nothing but the seminal Gor’kov expression of the
radiation force introduced in [28], which describes the
contribution of a gradient force Fgrad = −∇U , with



4

(a)

y

x

Circular electrodes

z
x

(b)

Focal plane

y
(µm)

|vx|
2

(c)

300   

-100   100   

-300   

z (µm)

yx

300   -300   100   -100   

300   

-300   

-300   

300   

-100   

100   

-100   

100   

Ep=|p|
2
/(2ρ0c0

2
)

|vy|
2

|vz|
2

Ek=ρ0|vtotal|
2
/2

75

100

50

25

0

75

100

50

25

0

1.1

2.2

0

3.3

4.4

×10
3

5.5

R1

R2

RA

x (µm)

z (µm)

x (µm)x (µm) x (µm)x (µm)

z (µm) z (µm) z (µm)

x
(µm)

Piezo wafer

300   -300   300   -300   300   -300   

-100   100   -100   100   -100   100   

Ep=|p|
2
/(2ρ0c0

2
)

0.15

0.20

0.10

0.05

0

0.15

0.20

0.10

0.05

0

FIG. 2. (a) Schematic of a focused beam of finite aperture 60o synthesized by a binary phase holograms representing the signal
that would be generated by circular InterDigitated Transducers. The shape of the circular electrodes are given in the enlarged
figure with the designed principle given in Sec. II. (b) The acoustic potential energy Ep = |p|2/(2ρ0c20) in (x, y = 0, z) and
(x, y, z = 0) planes. The pressure amplitude in the source plane is 0.1 MPa for all the simulations. (c) The square amplitudes
of the three components of the acoustic velocity |vx,y,z|2 and the kinetic energy Ek = ρ0|vtotal|2/2 are depicted in (x, y, z = 0)
plane in the upper row, and in the (x, y = 0, z) plane in the lower row. The information are helpful to understand the trapping
properties of Rayleigh particles (size much smaller than the wavelength) in 3D.

U = V0
[
f1
(
|p|2/4ρ0c20

)
− f2

(
ρ0|v|2/4

)]
the so-called

Gor’kov potential. The remaining terms correspond to
the scattering force Fscat contributions. Note that for a
standing wave, the 2nd and 3rd terms vanish, while for a
plane progressive wave, the Gor’kov gradient force vanish
since |p|2 and |v|2 are homogeneous. Also, as can been
seen from this formula the gradient force is proportional
to O((ka)3), while the scattering force is proportional to
O((ka)6), so that the gradient forces are generally dom-
inant (if they do not vanish) over the scattering force in
the Rayleigh regime.

In the expression of the gradient force, the first term
is proportional to the monopolar acoustic contrast fac-
tor f1 = (1 − κp/κ0) and the acoustic potential en-
ergy density Ep = |p|2/2ρ0c20, with κp/κ0 the compress-

ibility contrast between the particle and surrounding
fluid. Hence this term is related to the relative compres-
sion/expansion of the particle compared to the surround-
ing fluid. Particles less compressible than the surround-
ing fluid f1 > 0 (respectively more compressible, f1 < 0)
are hence pushed by this term toward the pressure ampli-
tude minima (respectively maxima) of a wavefield in the
Rayleigh regime. The second term of the gradient force
is proportional to the dipolar acoustic contrast factor
f2 = 3(ρp−ρ0)/(2ρp +ρ0) and the kinetic energy density
Ek = ρ0|v|2/2, with ρp / ρ0 the density contrast between
the particle and the surrounding fluid. Hence this term
is related to the particle back and forth relative transla-
tion compared to the surrounding fluid. Particles denser
than the surrounding fluid, i.e. with f2 > 0 (respectively
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less dense, f2 < 0) are pushed by this term toward veloc-
ity amplitude maxima (respectively minima). If both the
density and compressibility differ and for standing wave-
fields (wherein the pressure antinodes coincide to velocity
nodes) it is convenient to introduce the so-called acoustic
contrast factor ΦSW ([29, 30]):

ΦSW =
5ρp − 2ρ0
2ρp + ρ0

− κp
κ0
, (7)

whose sign indicates whether particle migrate toward
pressure nodes or antinodes. Particle with positive con-
trast factor ΦSW > 0 (e.g., most solid particles and typ-
ical cells) get trapped at the pressure nodes, while parti-
cles with negative contrast factor ΦSW < 0, (e.g. certain
liquids droplets) get trapped at the pressure antinodes.

However, such analysis with the contrast factor is only
valid for standing waves in the Rayleigh regime, since (i)
for more complex wavefields the pressure maxima (min-
ima) do not necessarily coincide with the velocity minima
(maxima) (see e.g. [31] for a discussion of particle trap-
ping with spherical Bessel beams in the Rayleigh regime),
(ii) in cases wherein the gradient forces are small (due to
the homogeneity of the kinetic and potential energy den-
sity), the scattering force can also play a role, and finally
(iii) the radiation force cannot be decomposed into gra-
dient and scattering force beyond the Rayleigh regime.
Hence, for complex wavefields (such as the one-sided fo-
cused beam considered here) in the Rayleigh regime, the
contribution from the potential energy and the kinetic en-
ergy should be considered separately and added. This is
why it is interesting to represent both the potential and
kinetic energy (proportional to the pressure magnitude
square and velocity magnitude square) as is done in Fig.
2. This figure shows that: (i) For this type of one-sided
focused beams the focal point corresponds to both pres-
sure and velocity amplitude maxima. (ii) The focusing
magnitude, and hence gradients of the potential energy
are stronger than the ones of the kinetic energy, suggest-
ing that for equivalent monopolar and dipolar contrast
factors, the monopolar term will play a larger role than
the dipolar term.

In this paper, we consider many different types of par-
ticles and droplets suspended in water, whose properties
are summarized in table I, insonified by the one-sided fo-
cused beam represented on Fig. 2. Fig. 3 summarizes
the expected role played by the monopolar (potential en-
ergy) and dipolar (kinetic energy) terms on the particle.

IV. 3D TRAPPING WITH A FOCUSED-BEAM
ACOUSTICAL TWEEZERS.

In this section, we will study two groups of typical par-
ticles, which are commonly used in trapping experiments:
one group [Pyrex, Polystyrene (PS), and Polyethylene
(PE)] consists of materials less compressible (f1 > 0) and
denser (f2 > 0) than the surrounding medium, the other
[Olive oil, Benzene, and Polydimethylsiloxane (PDMS)]
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FIG. 3. Quadrant chart explaining in which direction (toward
pressure/velocity field maxima or minima) are pushed differ-
ent types of particles and cells by the monopole and dipole
forces depending on the sign of the monopolar and dipolar
contrast factors f1 and f2. The referenced medium is wa-
ter with the acoustic parameters given in Table I. For a 1D
standing wave, pressure maxima (anti-nodes) correspond to
velocity minima (nodes). Hence the movement of the par-
ticles in green quadrants are obvious since both the kinetic
and potential forces push in the same directions. In the other
quadrants it is necessary to calculate the contrast factor ΦSW

to determine whether particle migrate to the nodes or antin-
odes. However, the motion is less obvious for focused beams
wherein pressure maxima do not correspond to velocity min-
ima and conversely.

uses materials more compressible (f1 < 0) and gener-
ally lighter (f2 < 0), except for PDMS, whose density is
slightly higher than that of water. The detailed acoustic
parameters used for the simulations are listed in Table I.

A. Materials less compressible and denser than the
surrounding medium

The most common elastic particles used experimen-
tally, namely Pyrex, Polystyrene (PS), and PolyEthylene
(PE) belong to this category, as well as most typical hu-
man cells [32]. The case of biological particles will be
treated separately in subsection IV C.

1. Radiation forces in Rayleigh regime

In this section we consider microparticles of 1µm in
radius made of three different kinds of materials (Pyrex,
PS, and PE) and insonified by the acoustic field intro-
duced in Sec. II, with a wavelength over particle size
ratio a/λ ≈ 0.03 � 1. The axial radiation force Fz and
lateral radiation force Fx (represented in Fig. 4, first
and last columns respectively) are calculated with three
different methods: (i) with Gor’kov’s original expression
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TABLE I. Acoustic properties for particles and fluid medium (water). Density ρ0,p, Longitudinal speed of sound cl, Shear
speed of sound ct, compressibility κ = 1/K with modulus Ke = ρp

(
c2l − 4/3c2t

)
for elastic material and Kf = ρpc

2
l for fluid

material. Compared with water, the Pyrex, Polystyrene (PS), Polyethylene (PE), typical human cells are less compressible,
while Olive oil, Benzene, fat and Polydimethylsiloxane (PDMS) are more compressible. The acoustic contrast factor ΦSW for
Rayleigh particles in standing waves is also given for convenience.

Material ρ0,p (kg/m3) cl (m/s) ct (m/s) κ (1/TPa) f1 f2 ΦSW = f1 + f2
Water 1000 1500 ... 444
Pyrex 2230 5640 3280 25 0.942 0.676 1.618
PS 1050 2350 1100 243 0.452 0.048 0.500
PE 1000 2400 1000 225 0.492 0 0.492
Cell [1000-1210] ... ... [330-440] ... ... ...
Cell(avg) 1105 1535 ... 385 0.136 0.098 0.234
PDMS 1030 1030 110 929 -1.091 0.029 -1.062
Olive oil 900 1440 ... 535 -0.206 -0.107 -0.313
Benzene 870 1295 ... 685 -0.542 -0.142 -0.684
Lipid (fat) 950 1450 ... 500 -0.126 -0.052 -0.178
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of the gradient force, (ii) with the generalized Gor’kov
theory [22] taking into account the scattering contribu-
tion (Eq. (6)) and (iii) with the ASM complete expres-
sion of the force. As expected, the three calculations
give similar results since (i) the calculation is performed
in the Rayleigh regime ka � 1 and (ii) the field is not
homogeneous and hence the contribution of the gradi-
ent force dominates over the one of the scattering force.
The Gor’kov potential U is represented on the columns 2
and 3 of Fig. 4. Stable positions correspond to minima
of Gor’kov potential, while unstable ones to maxima of
Gor’kov potential.

All these figures show that these types of particles are
expelled both laterally and axially from the center of the
focused beam. Indeed, the center of the focused beam is
both a pressure and velocity magnitude maximum. Since
f1 > 0 and f2 > 0, the monopolar (potential energy) and
the dipolar (kinetic energy) contributions of the gradient
force will push respectively the particle away from the
beam center and toward the beam center respectively.
But since (i) the compressibility contrast is larger than
the density contrast for these particles leading to f1 > f2,
and (ii) the gradients of the potential energy are stronger
than the gradient of the kinetic energy (as discussed pre-
viously), the monopolar force is dominant and pushes the
particles away from the beam center.

2. Resonance scattering theory

Spherical particles constitute some cavities for the
wave. Hence, the particles exhibit some resonances when
the wavelength of the particle approaches the size of
the particle, leading to directional scattering patterns.
These resonances play a fundamental role on the radia-
tion force beyond Rayleigh regime. Hence, it is vital to
determine the resonance frequencies of the particle de-
pending on their composition to analyse the results. The
resonance scattering theory developed by Flax et al. has
been widely used in the literature to isolate the scattering
resonances and can predict the correct magnitude of the
scattering coefficients. However, they cannot predict the
useful phase information [33]. This theory was further
improved by Rhee & Park [34], who derived expressions
of both the magnitude and phase with the following res-
onance scattering coefficients:

sRes
n =

An −Ab
n

1 + 2Ab
n

, (8)

where An = (sn − 1)/2 and Ab
n are the total and back-

ground partial wave coefficients respectively. For elastic
materials, a background scattering from a rigid particle
with the same size can be used with the scattering coef-
ficients given in Appendix A 1 to only keep the contribu-
tion of the particle resonance. The scattering coefficients
for the total (elastic resonance and rigid background)
scattering are given in Appendix A 4. This method works

quite well for dense metal materials, for example, the
tungsten carbide with very sharp peaks of resonance [35].
The improved method by Rhee & Park is applied for the
three materials in the present work. The real part and
phase of the resonance scattering coefficients sRes

n with
different orders n ∈ [2, 6] as a function of the particle ra-
dius over wavelength ratio a/λ are represented in Fig. 5
for (a) Pyrex, (b) PS, and (c) PE, respectively. The sharp
peaks of real part of sRes

n with the corresponding π shift
in the phase information provide reliable resonances of
orders n = 2, 3, 4, 5 and 6. The exact value of the radius
over wavelength ratio for each resonance are collected in
Table II.

TABLE II. Particle size ratios (a/λ) at resonance frequencies
of different orders for Pyrex, PS and PE materials.

Order n = 2 n = 3 n = 4 n = 5 n = 6
Pyrex 0.902 1.347 1.727 2.084 2.428
PS 0.227 0.333 0.431 0.526 0.621
PE 0.207 0.306 0.398 0.486 0.574

3. 3D radiation forces beyond Rayleigh regime and 2D
trapping

As shown in Sec. IV A 1 for the considered particles,
there is no trapping in neither the axial nor the lateral
directions in the Rayleigh regime. Here, we study the
trapping possibility for these particles beyond Rayleigh
regime based on the angular spectrum method. To obtain
a 3D trap, restoring forces (pushing the particle toward
the beam center) are required in both axial and lateral
directions, which means that the radiation forces should
be negative when the particle is slightly displaced along
z or x axis (z > 0, x > 0) and positive when the par-
ticle is slightly displaced in the other directions (z < 0,
x < 0). Of course the magnitude of the restoring force
depends on the exact location of the particle. For simplic-
ity and efficiency, we first calculate the axial and lateral
radiation force as a function of the particle size ratios
a/λ = [0, 3] at the fixed positions (xs, zs) = (0, 30)µm
and (xs, zs) = (8, 0)µm respectively (see Fig. 6 (a,b,c)).
These positions correspond to the maximum of the trap-
ping force in the Rayleigh regime and remain in the cen-
tral bright spot of the focused wave. An axial trap and
a lateral trap at the center of the focused beam can be
obtained only if the values of the axial and lateral forces
at these positions are negative. Note that this is a nec-
essary but not sufficient condition to obtain a trap. Fig.
6 shows that for Pyrex, PS and PE particles, the ax-
ial force (black curve) is always positive at these posi-
tions, hence precluding any possibility for axial trapping
of these particles with focused waves. However, close to
the particle resonances (calculated in the previous section
and represented on these graphs by the dashed curves for
n=[2,6]), there are some strong variation of the lateral
force, which can become negative, hence suggesting that
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part is close to 0, the phase has a fluctuations π (the imaginary part is position) and −π (negative). The explicit size ratio for
different resonances are given in Table II.

there is some lateral restoring force. To further demon-
strate the 2D lateral trapping ability, three typical sizes
of each particle are selected which have positive axial
forces and negative lateral forces (corresponding to the
star, rectangle and triangles marks on the graphs (a,b,c).
The axial radiation forces versus z on the beam axis are
plotted in the second row (d,e,f), and the lateral forces
versus x at the focal plane (z = 0) are given in the third
row (g,h,i). It is clearly shown that the axial radiation
forces is always positive, which will push the particles
outside of the focus, hence confirming that there is no
axial trapping whatever the position of the particle. The
lateral force however is positive for x < 0 and positive
for x > 0 confirming that the lateral trapping ability at
these specific ratios of particle size over wavelength.

4. Conclusion

Our calculations show that Pyrex, PS and PE particles
are always expelled from the focal point in the Rayleigh
regime. Beyond Rayleigh regime, only lateral trapping
of these particles is possible at some specific particle size
over wavelength ratios, close to some of the particle res-
onances. The particle is however always pushed in the
axial direction by the radiation force.

B. Materials more compressible and/or less dense
than the surrounding medium

The second group of materials (Olive oil, Benzene,
Polydimethylsiloxane (PDMS)) considered in this sec-
tion are more compressible (f1 < 0) and generally lighter
(f2 < 0) than the surrounding water, except from PDMS
which is slightly heavier than water.

1. Radiation force in Rayleigh regime

The same analysis as in section IV A 1 is conducted
here for this new group of materials. Again the gradient
force dominates, so that Gor’kov expression is sufficient
to estimate the force in the Rayleigh regime. The results
represented on Fig. 7 show that all three types of parti-
cles are trapped in 3D at the focal point of focused beams
in the Rayleigh regime. Indeed, PDMS is the perfect
solid particle candidate to be trapped by a focused beam
in the Rayleigh regime since it is both more compressible
and denser than water, leading to f1 < 0 and f2 > 0
and hence to the contributions of both the potential and
kinetic energy to the gradient force pushing the particle
toward the focal point. For olive oil and benzene, f1 and
f2 are negative. Hence the gradient of the potential en-
ergy pushes the droplet toward the focal point while the
gradient of the kinetic energy pushes the droplet away
from the focal point. But since |f1| > |f2| and the gradi-
ent of the potential energy is stronger than the gradient
of the kinetic energy, the contribution of the monopo-
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FIG. 6. Three-dimensional acoustical radiation forces based on the angular spectrum method at a fixed axial (zs = 30µm )
and lateral (xs = 8µm ) position for different particle materials: (a) Pyrex, (b) PS, and (c) PE. The left and right vertical
axes are respective the axial (Fz, black solid line) and lateral (Fx, blue solid line) radiation forces, while the horizontal axis is
the ratio of particle radius over the wavelength a/λ from 0 to 3. Three explicit size ratios are chosen to show the possibility of
two dimensional trapping, whereas there is no axial trapping beyond the Rayleigh limit for (d,g) Pyrex with a/λ = 0.88 (F),
1.20 (�), and 2.37 (N); (e,h) PS with a/λ = 0.23 (F), 1.02 (�), and 1.97 (N); and (f,i) PE with a/λ = 0.21 (F), 0.93 (�), and
1.81 (N). It is possible to have lateral trapping but not axial trapping beyond the Rayleigh regime. While there is no axial or
lateral trap in Rayleigh regime as shown in Fig. 4.

lar term to the gradient force dominates and hence the
droplet is pushed toward the focal point, leading to 3D
trapping of the particle. This is clearly seen on the rep-
resentation of the Gor’kov potential U (columns 2 and 3
of Fig. 7), which is minimum at the focal point and from
the calculation of the axial and lateral forces (columns
1 and 4 from Fig. 7) which are positive and then neg-
ative around the focal point leading to some restoring
force which make the particle converge toward the beam
center.

2. Resonance scattering theory

Again it is interesting to localize the particle and
droplet resonances before studying their ability to get
trapped by a focused beam beyond the Rayleigh regime.
Since the acoustic impedance of the considered particles

and water are close, as shown in Table I, it is not easy
to isolate the resonance contribution by subtracting the
background from the total scattering field. For a fluid
bubble, the scattering from a soft sphere could be taken
as the background (see Appendix A 2). However, the soft
background is not suitable for the liquid spheres whose
density and velocity are close to those of the surround-
ing water. A more complicated intermediate (hybrid)
background may be used [35, 36] but this is still an open
question. In this work, an alternative method is applied
to clarify the resonance sizes for fluid spheres by finding
out the real roots of Re(Dn) = 0 for different nth par-
tial wave [37], with Dn a parameter introduced for con-
venience with the relation to the scattering coefficients
sn = −D∗n/Dn given in the Appendix A 3. The first sev-
eral roots are clarified in Fig. 8 for fluid spheres of mate-
rials (a) olive oil and (b) benzene. The explicit resonance
size ratios are listed in Table III. Note that the resonance
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FIG. 7. Axial radiation forces Fz (first column), Gor’kov potential U (second and third columns) and lateral radiation force
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The Gor’kov potential U exhibits a minimum in the beam center indicating that the gradient force Fgrad = −∇U pushes the
particle toward the focal point. The axial and lateral radiation forces versus their positions are given in the first and forth
columns, respectively. The results show clearly a 3D trap at the center of the focused beam for the considered materials.

sizes of PDMS spheres are not easy to determine and not
discussed here.

TABLE III. Particle sizes (a/λ) at resonance frequencies for
Olive oil and Benzene.

Order n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Olive oil 0.247 0.400 0.545 0.685 0.824 0.961
Benzene 0.180 0.295 0.404 0.510 0.616 0.721

3. 3D radiation forces beyond Rayleigh regime and 3D
trapping

The angular spectrum method is applied to compute
the 3D radiation forces for the more compressible parti-
cles beyond the Rayleigh regime. The axial and lateral
forces versus the particle size ratios a/λ are given in Fig.
9(a-c). Similarly to Fig. 6, the radiation force is first
calculated at the axial fixed position zs = 30µm on the
beam axis and the lateral fixed position is xs = 8µm in

the focal plane. This time, the results show that both ax-
ial and lateral negative radiation forces can be observed
for some specific size over wavelength ratios, hence sug-
gesting the possibility for 3D trapping. To confirm it
three typical sizes ratios with negative axial and lateral
radiation forces are selected for the three materials and
the evolution of the force along x and z axes is studied.
The axial radiation forces versus the position z on the
beam axis are given in the second row of Fig. 9 for (d)
PDMS, (e) olive oil, and (f) benzene, respectively, which
show the ability of axial trapping. To further study the
possibility of 3D trapping, the lateral force versus spatial
position x at the axial equilibrium position obtained in
(d,e,f,) are plotted in the third row. The results confirm
3D trapping capabilities of (i) PDMS spheres with the
three selected ratios a/λ =0.46, 0.83, and 1.35, (ii) olive
oil sphere with a/λ =0.43, and (iii) benzene spheres with
a/λ =0.39 and 1.06. Note nevertheless that for PDMS
the axial trap is asymmetric and much weaker than the
lateral force and that this trend is further accentuated
when inelasting scattering (absorption by the particle) is
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The explicit expression of |Dn| for a fluid sphere is given in
Appendix A3. The size ratio of different resonances are given
in Table III.

considered (see Appendix B). This is due to the fact that
PDMS strongly absorbs the wave leading to scattering
forces which push the particle in the wave propagation
direction. So far, only levitation of these particle in the
regime a/λ ∈ [0.26 0.52] has been reported [13] and 3D
trapping of PDMS particles requires further experimen-
tal confirmation.

4. Conclusion

The results of this subsection suggest the existence
of 3D radiation trap for PDMS particles and Olive Oil
and Benezene droplets at the center of one-sided focused
beams both in the Rayleigh regime and beyond Rayleigh
regime at specific frequencies.

C. Biological particles

The manipulation of biological microorganisms such
as cells is of primary interest for applications. Here we
review the abilities of focused beams to trap two types of
biological particles, namely typical human cells and lipid
cells.

1. Typical human cells

The density and and compressibility of typical human
cells are taken from Ref. [32] and given in Table I. Typ-
ical cells are slightly less compressible and denser than
water. Five sets of acoustic parameters corresponding to
the extreme and average values of Ref. [32] are considered
and the respective axial and lateral radiation forces ver-
sus size ratio a/λ are given in Fig. 10(a) and (b). Note
that these specific values do not correspond to specific
types of cell but are used to give tendencies depending
on the variation of the compressibility and density. As
in the previous sections, the force is first calculated at
a fixed axial position zs = 30µm and fixed lateral posi-
tion xs = 8µm. As observed, the negative axial radia-
tion force only occurs for [ρ, κ] = [1210, 440], while the
negative lateral force is possible for [ρ, κ] = [1000, 440],
[1105, 385], [1210, 330], and [1210, 440] at certain size
over wavelength ratios. This first calculation suggest the
possibility for 2D or 3D trapping for human cells with
some acoustic parameters in a spherical focused beam.
The examples of 2D trapping are given in Fig. 10(c) and
(d), which show clearly the lateral trapping without axial
trapping for the cases [ρ, κ] = [1105, 385] with a/λ = 0.81
and [ρ, κ] = [1210, 330] with a/λ = 0.84. 3D trapping
only occurs for the the largest density and compressibil-
ity [ρ, κ] = [1210, 440] compared with water as shown
in Fig. 10(e) and (f). The axial force and lateral force
at axial equilibrim position versus spatial positions are
calculated for a size ratio a/λ = 0.58. However these
extreme values might not correspond to existing cells.
Typical human cells could however be trapped by using
single beam tweezers based on vortex beam [20].

2. Lipid (fat) cells

The first experiments of single beam trapping with
acoustical tweezers based on focused beams were con-
ducted by Lee et al. for the oleic acid lipid droplets and
in this work only lateral 2D trapping was reported. The
typical density of lipid cells are [910-1010] kg/m3 [38].
Here, we take the acoustic parameters (density and sound
speed) of lipid droplet from Ref. [5] as listed in Table I.
At the fixed axial position zs = 30µm and the lateral
position xs = 8µm, the 3D radiation forces versus the
size ratios in the designed focused beam are first studied
as given in Fig. 11(a), which suggest the possibility for
3D trapping in the range of a/λ = 0 to 2. This is fur-
ther confirmed by Fig. 11 (b) and (c) which show the
axial and lateral radiation force versus the spatial po-
sition for three selected size ratios: a/λ = 0.5, 1, and
2. The lateral forces in Fig. 11(c) are calculated at the
axial equilibrium position obtained in (b). These figure
show both an axial and lateral restoring force. We fur-
ther investigate the trapping ability for the size rations
used in Ref. [5], i.e. a/λ = 4, 5, and 6. Since the
truncation number in the angular spectrum method de-
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FIG. 9. Three-dimensional acoustical radiation forces based on the angular spectrum method at a fixed axial (zs = 30µm )
and lateral (xs = 8µm ) position for different particle materials: (a) PDMS, (b) Olive oil, and (c) Benzene. The left and right
vertical axes are respective the axial (Fz, black solid line) and lateral (Fx, blue solid line) radiation force, while the horizontal
axis is the ratio of particle radius over the wavelength a/λ from 0 to 3. Three explicit size ratios are chosen to show the
possibility of three dimensional trapping beyond the Rayleigh limit for (d,g) PDMS with with a/λ = 0.46 (F), 0.83 (�), and
1.35 (N); (e,h) Olive oil with a/λ = 0.43 (F), 0.79 (�), and 2.49 (N); and (f,i) Benzene with a/λ = 0.39 (F), 0.61 (�), and
1.06 (N). The lateral radiation force versus x in the third row are plotted at the axial equilibrium positions as obtained in the
second. 3D trapping is possible for several particle sizes beyond Rayleigh regime.

pends on the frequency, the computational cost is large
when the particle size is in this regime, which make it
hardly possible to calculate the 3D radiation forces ver-
sus size ratio like Fig. 11(a) with our simulation hard-
ware platform with reasonable computation time. This is
why we computed the radiation force only for these spe-
cific values and made some convergence tests as a func-
tion of the truncation number (Fig. 11(d)) for the worst
case a/λ = 6. In this case, the truncation number [39]

Nmax = 2 + Int(8 + ka + 4.05 3
√
ka) = 62 for Eq. (5) is

larger than 42, which is the number starting to be con-
vergent in Fig. 11(d), with k the wavenumber and “Int”
denoting the integer part of the indicated argument. For
the 3 calculated ratios a/λ = 4, 5, and 6, the axial ra-
diation force versus z and the lateral forces versus x at
axial equilibrium position are given in (e) and (f), respec-
tively. These figures suggest that 3D trapping of lipid cell
at these particle size over wavelength ratio is possible.

3. Conclusion

Our results suggest (i) the possibility to trap typical
human cells in 2D, while 3D trapping might be possible
only for specific cells with large density and compressibil-
ity, and (ii) to trap lipid cell in 3D in Mie and geometric
optics regimes at specific frequencies.

V. CONCLUSIONS

Compared to their focused vortex counterpart, single
beam acoustical tweezers based on focused beams have
several advantages, such as easier synthesis, higher ex-
pected selectivity and forces due to stronger gradients,
no repulsive ring surrounding the trapped particle, which
complexifies particle assembly [31, 40] and no rotation of
the particle due to angular momentum transfer [27]. But
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FIG. 10. Three-dimensional acoustical radiation forces based on the angular spectrum method at a fixed axial (zs = 30µm )
and lateral (xs = 8µm ) position for cells with different acoustic parameters of density (kg/m3) and compressibility (1/TPa)
[ρ, κ] = [1000, 330], [1000,440], [1105,385],[1210,330], and [1210,440]. (a) Axial force Fz versus particle size ratio a/λ, and (b)
lateral force Fx versus a/λ. (c,d) give the axial and lateral radiation force versus positions for a fixed particle size as marked
out in (b): a/λ = 0.81 by � for [ρ, κ] = [1105, 385] and a/λ = 0.84 by F for [ρ, κ] = [1210, 330]. Only the lateral 2D trapping
is possible. Similar to (c,d), (e,f) give the axial and lateral three-dimensional radiation force for a cell with a/λ = 0.58 by N
for [ρ, κ] = [1210, 440]. The lateral radiation force versus x are plotted at the axial equilibrium positions in (f). At this case,
a 3D trapping occurs.

so far, 3D trapping with focused beams has never been
demonstrated. Our numerical analysis shows that single
beam acoustical tweezers based on focused beams may
have the potential (i) to trap elastic particles and droplets
more compressible than the surrounding medium in 3D
in and beyond Rayleigh regime; (ii) to trap less com-
pressible particles in lateral 2D direction for some size ra-
tios near resonances beyond Rayleigh regime; (iii) to trap
lipid cells in 3D and typical human cells in 2D. This work
provides a basis toward experimental investigation of 3D
trapping abilities of droplets, particles and microorgan-
isms with single beam tweezers based on focused beams.
Next step would include experimental confirmation and
also calculation and measurement of the streaming pro-
duced by the focused beam depending on the actuation
frequency and comparison of the streaming induced drag
force to the trapping force.
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Appendix A: Scattering coefficients of a sphere with
different materials

The scattering coefficients of sphere are well known
in the literature and are reviewed in the Appendix of
Gong’s thesis [41] which are recalled hereafter for con-
venience. Below, k corresponds to the wavenumber in
the fluid medium, a to the radius of the sphere, ρ to the
density and c to the sound speed at rest, respectively.

1. Rigid sphere

As a background scattering to isolate the resonance
contribution of an elastic sphere from the total scattering
field, the scattering coefficients of a rigid sphere are

sn = −h(2)n

′
(ka)/h(1)n

′
(ka), (A1)

where the indexes (1) and (2) indicate the first and sec-
ond kind of Hankel functions, and the prime (′) represents
the derivative with respect to the indicated argument to
the argument (ka).
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2. Soft sphere

The scattering from a soft sphere can be considered
as the background contribution of a bubble in liquid
with the impedance smaller than that of the surrounding
medium. The scattering coefficients of a soft sphere are

sn = −h(2)n (ka)/h(1)n (ka), (A2)

3. Fluid (liquid and air) sphere

In an ideal fluid sphere, only the longitudinal wave ex-
ists (no transverse wave). A parameter Dn is introduced
for convenience with the relation to the scattering coeffi-
cients given by sn = −D∗n/Dn [42], where

Dn = ρfkajn (ka/γc)h
(1)
n

′
(ka)−ρ (ka/γc) jn

′ (ka/γc)h
(1)
n (ka),

(A3)
and the asterisk ∗ indicates the complex conjugate, ρf
the density of the fluid sphere, γc = cf/c the ratio of
sound speed in the spherical fluid droplet (cf ) over that
in the surrounding fluid c, and jn the Bessel function of
the first kind.

4. Elastic sphere

For an elastic sphere, there are both longitudinal and
transverse components of elastic waves with their sound
speed cl and ct, and wavenumber kl = (c/cl)k and
kt = (c/ct)k, respectively. The density of the elastic
sphere is ρe. It is convenient to define the dimensionless
frequency in the fluid medium of longitudinal wave in the
elastic sphere xl = kla, and of transverse wave xt = kta.
A coefficient is introduced as N = n(n + 1) for conve-
nience. The scattering coefficients can be obtained by
sn = −|D∗n|/|Dn| with Dn consisting of 3 × 3 elements
[43]

d11 = (ρ/ρe)x
2
sh

(1)
n (x)

d12 =
(
2N − x2s

)
jn (xp)− 4xpjn

′ (xp)

d13 = 2N [xsjn
′ (xs)− jn (xs)]

d21 = −xh(1)n

′
(x)

d22 = xpjn
′ (xp)

d23 = Njn (xs)

d31 = 0

d32 = 2 [jn (xp)− xpj′n (xp)]

d33 = 2xsjn
′ (xs) +

(
x2s − 2N + 2

)
jn (xs) .

(A4)



15

where the symbol ‘||’ is the determinant of the matrices
D∗n and Dn. Note that for an elastic shell, the explicit
elements of Dn are given in Ref. [44].
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FIG. 12. The three-dimensional radiation forces versus the
spatial positions for the PDMS particles with and without
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focal plane zs = 0) directions. Three particle radii are taken
into consideration as a = 1µm, 0.5λ, and λ. The wavelength
is λ = 37.5µm.

5. Viscoelastic spherical shell filled with fluid

The scattering coefficients sn of a viscoleastic shell
filled with fluid can be obtained based on the Kelvin-

Voigt linear viscoelastic model [27, 45], and calculated
from the partial wave coefficients An with the relation
An = (sn − 1)/2, where

An = − Fnjn(x)− xjn′(x)

Fnh
(1)
n (x)− xh(1)n

′(x)
, (A5)

Here, the time harmonics e−iωt is applied so that the
Hankel function of the first kind should be used. The
explicit elements of Fn are given in detail in Appendix
A of Ref. [39]. The complex wavenumber is used when
the absorption is considered for the viscoelastic material
(i.e., the contribution from the imaginary part). When
the imaginary part vanishes, the model turns to an elastic
material. In addition, the shell model can degenerate into
a solid elastic sphere when the inner fluid is missing.

Appendix B: PDMS in viscoelastic model

The Kelvin-Voigt linear viscoelastic model [27, 45] is
applied to calculate the scattering coefficients as given
in Appendix A 5 when the absorption effects are consid-
ered inside the PDMS particles. The normalized absorp-
tion coefficients of the PDMS are calculated from Ref.
[46]. Here, the normalized absorption coefficients of the
longitudinal and transverse waves are γl = 0.0075 and
γt = 0.2673, respectively. The 3D radiation forces for
PDMS particles with and without absorption are stud-
ied based on the angular spectrum method with radii
a = 1µm, 0.5λ, and λ, as shown in Fig. 12. As shown,
the 3D trapping is still possible for small particles when
the absorption effect is under consideration, although the
axial pushing force increases due to the fact that the ab-
sorption of the linear momentum produce the positive
axial radiation force [47]. When the particle size reaches
a = λ, for instance, there is no axial trapping anymore
while the lateral trapping is still possible, see Fig. 12(c)
and (f). This gives us some guidance to use a focused
beam to trap compressible elastic particles in three di-
mensions for experimental demonstration, which has not
yet been done before to the authors’ knowledge. It is
noteworthy that the levitation of PDMS particles in Mie
regime (a/λ ≈ 1) by a focused beam using transducer
array has recently been implemented [13]. However, the
3D trapping was not demonstrated.
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