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ABSTRACT

Statistical shape models (SSMs) represent the distribution of labeled points across a training set of shapes. The
standard practice for SSMs based on principal component analysis (PCA) is to use clipping, thresholding the
latent representation so that all shapes lie within 3 standard deviations of the mean. This practice precludes
the representation of shapes that are not well represented by the training set, constraining the model to realistic
solutions, but making it impossible to work with shapes at the edges of the statistical population. In this
study, we investigate the impact of clipping in a PCA-based SSM and whether using L2 regularization is a good
replacement for clipping in the context of the automatic 2D to 3D reconstruction of the spine. We first show that
using L2 regularization is equivalent to using a probabilistic PCA with two error variables, accounting for the
suppression of the least important principal components and for the fact that the training set cannot perfectly
represent all shapes at test time. Secondly, we use two data sets of 1746 and 768 patients with adolescent
idiopathic scoliosis to study the effect of regularization, for different regularization weights and with or without
clipping, for removing landmark detection errors using a simulated noise or a reconstruction pipeline. In both
sets of experiments, we show that regularization removes noise in a way similar to clipping without preventing
the reconstruction of out-of-distribution shapes, leading to outputs closer to ground truth, demonstrating that
using a regularized SSM should be preferred to clipping.

Keywords: Satistical shape model, principal component analysis, clipping, scoliosis, spine, vertebrae, automatic
reconstruction

1. INTRODUCTION

Statistical shape models (SSM) learn the typical distribution of labeled points from a training data set. They
are used to bring statistical information when detecting shapes in images, for segmentation tasks and 3D shape
reconstruction from 2D images, such as in 1 for the fully automated reconstruction of the 3D scoliotic spine.

The first statistical shape model, proposed in 2, relies on an average shape and deformation modes computed
using principal component analysis (PCA). This original method proposed to set limits on the latent represen-
tation, as parameters are assumed to follow a gaussian distribution and 99.7% of the data set should lie within
three standard deviations (std) of the average shape. This procedure known as “clipping” does not allow the
reconstruction of shapes that are poorly represented by the training set. Since then, different PCA-based SSMs
have been proposed to represent vertebrae models,3,4, 5 the whole spine1,6, 7 or the rib cage8 for example. Several
studies used variations of the PCA, using hierachical models,9 kernel PCA,5 a mixture of probabilistic PCAs.8
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Despite the number of variations proposed around the original method, clipping remains a standard practice for
3D reconstruction,10 but to our knowledge its impact has never been evaluated.

In 1 the authors proposed to use a regularization term which penalizes large values for coordinates in the
latent space. This regularization has an effect similar to clipping, with a major difference: it attributes a higher
cost to large values without making them impossible. This regularization therefore has the potential to constrain
the SSM outputs to realistic shapes in a way similar to clipping while allowing the reconstruction of spine
shapes poorly represented in the training set. No theoretical justification has however been proposed for this
regularization, and it has never been used without clipping.

In this study, we investigate the impact of clipping in a PCA-based SSM of the spine. We use the model
proposed in 1, and investigate whether the added regularization term can replace the clipping procedure, allowing
to reconstruct shapes that are not well represented in the training set while correcting errors in landmark detec-
tion. Our contribution is two-fold. Firstly, we propose a theoretical justification for the PCA-based SSM with
regularization proposed in 1, using a probabilistic PCA with two error variables, accounting for the suppression
of the least important principal components and for the fact that the training set cannot perfectly represent all
shapes at test time. Secondly, we investigate the impact of clipping this SSM in the context of the automatic
3D reconstruction of the scoliotic spine, using a simulated noise and using the reconstruction pipeline described
in 1, on data sets of 768 and 1746 patients.

2. MATERIALS AND METHODS

2.1 Theoretical proposition

In this section, we propose a theoretical justification for the addition of a regularization term to the PCA-based
SSM model proposed in 1. We first detail the solution proposed in 1 before showing that it is equivalent to
maximising the posterior distribution of a probabilistic PCA model given partial data.

2.1.1 Existing model

Let the data set be composed of nr shapes, each one represented by landmarks contained in a row vector of size
nc. The data set can be represented as a matrix X ∈ Rnr×nc . When fitting the model to a new shape, only a
subset of the landmarks are observed and used as targets for the model. In 1, the authors propose to minimize
the distance between the target observed landmarks of a shape xo and the SSM output for coordinate i by using
the objective function

m̂ = arg min
m

 nc∑
i=1

wi(xo,i − (x+Bm)i)
2 +

β

2

|m|∑
k=1

m2
k

 (1)

B contains the representation modes, m the latent representation of the shape and x the mean shape model.
This equation is equivalent to minimizing the squared distance between the observed landmarks and the PCA
outputs while penalizing deviation from the mean shape using a L2 penalty,11 with a regularization weight β. In
addition, 1 clips the latent representation, ensuring that the output is within 3 standard deviation of the mean
shape by thresholding m to a minimum of -3 and a maximum of 3. Assigning a weight of wi = 1 to all landmarks
the solution to equation 1 is :

m̂ = (BTo Bo + β2I)−1BTo (xo − xo) (2)

where Bo contains the rows of B corresponding to the observed landmarks. We show here that this model is
equivalent to maximising the posterior distribution of a probabilistic PCA model given partial data, as proposed
in 12, while accounting for two kinds of loss of information.
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2.1.2 Maximum likelihood estimation for probabilistic PCA

Following 8, we use a probabilistic PCA model and define each shape x as a linear transformation of the latent
variable m: x = x+Bm+ ε. The latent variable m and the noise ε are assumed to follow gaussian distributions,
such that m ∼ N (0, Id) (Id being the identity matrix of size d× d) and ε ∼ N (0, σ2Inc) (Inc being the identity
matrix of size nc × nc). As a result, x also follows a gaussian distribution13 defined as x ∼ N (x,BBT + σ2Inc).

The parameters B, x and σ can be chosen so as to maximize the likelihood.13 Noting C = BBT + σ2Inc
and

Σ the covariance matrix of X, the log-likelihood can be written as :

ln(p(X | x,B, σ2)) = −nr
2
ln(2π)− nr

2
ln|C| − 1

2

nr∑
i=1

(x− x)TC−1(x− x)

= −nr
2
ln(2π)− nr

2
ln|C| − Tr(C−1Σ)

(3)

where Tr(A) is the trace of matrix A.

The maximum likelihood estimation of the parameters is given by B = Ud(Λd−σ2I)
1
2 , σ2 = 1

nc−d
∑nc

j=d+1 λj ,

m̂i = (Λd − σ2I)
1
2UTd (x− x), where Ud ∈ Rnc×d contains the first d eigenvectors of the covariance matrix of X,

sorted by decreasing eigenvalues, and Λd contains the corresponding eigenvalues λj .

2.1.3 Handling observed and missing landmarks

Although all coordinates are known for all shapes in the training set, at test time only a subset of landmarks
detected in the images, xo are observed. The other landmarks are estimated using the statistical shape model,
so as to minimize the distance on the observed landmarks. However, because the training set is not fully
representative of the test set, the desired shape, using the observed landmarks, might not be perfectly represented
by a linear combination of shapes in the training set. Following 12, we represent this variability by introducing
a second slack variable ε2 concerning only the observed landmarks: xo = xo +Bom+ εo + ε2, where Bo contains
the rows of B corresponding to the observed entries, and εo contains the corresponding elements of ε.

The slack variable ε2 also follows a gaussian distribution ε2 ∼ N (0, σ2
2Inc

), therefore ξ = εo + ε2 follows a
gaussian distribution defined by ξ ∼ N (0, σ2

ξInc), with σξ = σ + σ2. Therefore, xo | m ∼ N (xo +Bom,σ
2
ξIq).

We note M = BTo Bo + σ2
ξI. Following 14, the conditional probability distribution of the latent variable m

knowing xo is m | xo ∼ N (M−1BTo (xo−xo), σ2M−1). The latent vector maximising this distribution is therefore

m̂ = (BTo Bo + σ2
ξI)−1BTo (xo − xo) (4)

This solution is equivalent to the one proposed in 1 and described in equation 2, with β = σ2
ξ .

2.1.4 Interpretation

Two slack variables are introduced in this model. The first one, ε, accounts for the loss of information due to
the use of the d first eigenvectors only. The second one, ε2, accounts for the representation of shapes that do not
belong to the training set. The combination of these slack variables explain the addition of the regularization
term in equation 1.

2.2 Data set

Two data sets are used to perform two sets of experiments, described in section 2.3. Firstly, the AIS (adolescent
idiopatic scoliosis) data set is composed of 768 AIS patients from the Sainte-Justine mother and child university
hospital center, affiliated with the University of Montréal in Canada. Secondly, the mixed data set combines
adults and AIS patients in a training set of 1536 patients and an evaluation set of 210 patients. All data sets
were retrospectively collected after ethical approvals from ethical committees of the Montreal University Hospital
Center (CHUM) and the École de technologie supérieure (ÉTS), Montréal, Canada. They contain two low dose
x-ray images (in sagittal and frontal views) acquired with the EOS system.15 3D spine reconstruction was
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performed for each pair of images using the semi-automated method described in 16. For the evaluation set,
reconstruction was performed by an expert before being corrected twice. The 3D spine is represented using a
parametric spine model,1 resulting in 1124 parameters including the 3D position of the pedicles, endplates and
centers of each vertebra. As in 1 the origin is the middle of the two femoral head, the z axis is the axis joining
the origin to the topmost vertebral center, the y axis is the axis joining the origin to the left femoral head and
the x axis is perpendicular to the z and y axis and and pointing towards the front of the subject.

2.3 Experiments

Two sets of experiments were performed. In a first set of experiments, we evaluate the impact of clipping in a
controlled simulated setting, by using the SSM to correct a simulated noise on vertebral centers. In a second set
of experiments we evaluate the impact of clipping the SSM in a real pipeline, which aims at reconstructing a 3D
model of the spine from 2D images. Both sets of experiments are described in more details bellow.

For all experiments, the SSM was evaluated by studying the 3D distance between estimated landmarks and
true values for vertebral centers, pedicles and endplate centers. When PCA is performed, 99.999% of explained
variance is kept.

2.3.1 Using simulated errors

The first set of experiments aims at evaluating the capacity of the SSM to correct simulated errors on vertebral
centers by regularizing the global spine shape. This set of experiments was performed on the AIS data set by
adding a simulated noise on vertebral centers for all vertebrae.

The noise added to the vertebral centers used as predictors was simulated using a gaussian mixture of
two components, representing a standard gaussian noise (standard deviation of 3 mm across all vertebral levels)
applied to all coordinates, and an aberrant noise (20 mm with a probability of p = 2

46 ) on the x and y components
only. As sagittal and frontal views are combined, detection error in z rarely happens,1 so no aberrant noise was
added on the z component. The resulting probability function for the simulated noise of the x and y components
is:

P (e) = (1− p)N (0, σ) +
p

2
N (20, σ) +

p

2
N (−20, σ) (5)

As different errors can be expected for each coordinate and vertebra levels, different σ are used. The standard
deviation were computed so that they are proportional to the global root mean square error reported in 1, with
a standard deviation of 3 mm across all axes and vertebral levels. The combination of the standard and aberrant
errors leads to an average 3D residual of 4.9 mm (standard deviation of 5 mm).

The noisy vertebral centers were the only predictors in the SSM, which was used to estimate the other spine
parameters (providing pedicle and endplate landmarks) and denoise the vertebral centers. Different SSMs were
considered, by varying the value of the regularization weight β between β = 10−5 and β = 1.0, with and without
clipping. 10-fold cross-validation was used to get an estimation on the whole data set.

2.3.2 Using the reconstruction pipeline

The second set of experiments was performed in actual conditions, on the mixed data set of adolescent and adult
patients, using the automatic reconstruction method of the 3D spine from a pair of x-ray images proposed in 1.

This method combines the detection of vertebral landmarks (vertebral centers in a first stage, pedicles and
endplate centers in a second stage), performed iteratively for each vertebra, with a correction by the spine
SSM, performed after each vertebra detection. The whole spine is initialized and updated after each vertebra
detection using the SSM. The landmark detection is performed using a convolutional neural network (CNN),
which computes the optimal landmark displacements given the previous positions. In this method, the purpose
of the SSM is two-fold: firstly, the SSM gives the position of landmarks which have not yet been detected and
the value of spine parameters which are not computed from the image; secondly, the SSM corrects the position of
landmarks that have already been detected, taking into account the global spine shape so as to output realistic
spines. Four sets of parameters were considered: SSM with clipping, using β = 0.01 (original method1) and
β = 0.2; and SSM without clipping, using β = 0.01 and β = 0.1. The full pipeline was trained on the training
set of 1536 subjects, and the evaluation of 210 subjects was used to evaluate the SSM.
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Figure 1: Effect of the regularization
weight β, with and without clipping, on
the AIS data set with simulated errors.
3D distance (mm) is averaged over all
vertebral centers over 768 patients after
cross-validation.

Figure 2: Mean 3D residual (mm) across verte-
bral centers for each of the 210 subjects in the
mixed evaluation set, with and without clipping,
(β = 0.01). The diagonal line represents equal-
ity with and without clipping, points bellow the
line represent subjects for which the 3D residual is
lower without clipping.

3. RESULTS

3.1 Using simulated error

Parameters
β 0.01 0.1 0.01 0.2

clipping no no yes yes

3D residuals
(mm): mean
(std)

vertebral center 3.8 (3.3) 3.6 (2.7) 5.1 (5.5) 4 (3.3)
superior endplate 4.1 (3.5) 3.8 (2.9) 5.3 (5.6) 4.1 (3.4)
inferior endplate 4.4 (3.9) 4 (3.2) 5.5 (5.5) 4.2 (3.4)

left pedicle 5.9 (4) 4.9 (3.3) 6.5 (5.4) 4.9 (3.5)
right pedicle 6 (4.2) 4.9 (3.4) 6.4 (5.2) 4.8 (3.4)

Table 1: Simulated noise: 3D distance (in mm) between output and true spine on several vertebra landmarks,
across all subjects and vertebrae, for different regularization weights β, with and without clipping. Measures are
given as mean (standard deviation).

By varying the regularization weight β in the SSM model, with and without clipping, we can better understand
the effect of regularization and clipping as well as the interaction between them. Figure 1 shows the impact of
these parameters on the distance between the outputs and the noisy spines, used as predictors for the SSM, as
well as the distance between the outputs and the true spines, which should ideally be minimized.

First looking at the results without clipping (in blue), we can see that a regularization weight close to 0 leads
to no noise correction, resulting in an output equal to the noisy input and a large output to true spine distance.
As β increases, the outputs get closer to the true spines and farther from the noisy ones, showing the expected
noise correction. The distance to true spine reaches a minimum for a regularization weight of 0.05. Increasing β
above this value leads to a slight increase in the distance to true spine, showing that the regularization results
in a loss of information as well a noise correction. The improvement on noise correction is however still greater
than the loss of information, until larger values of β (around 0.3).
Secondly, looking at the results with clipping (in red), we can see that a regularization weight close to 0 leads
to a large distance both to true and noisy spines, showing that shape information is not well represented. As
β increases up to 0.01, the output gets closer to the true spine, but the distance to noisy spine also decreases.
Clipping prevents the representation of global shapes in the test set by thresholding some latent coordinates. As
β increases, high values are penalized, encouraging spreading across all modes, limiting the impact of thresholding
the latent representation and hence of clipping. For values higher than 0.01, increasing β leads to effects similar
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to those observed without clipping, first removing noise, then removing shape information as well when β is too
large. The loss of shape information however happens at 0.05, which is larger than without clipping, probably
because increasing regularization also mitigates the negative impacts of clipping more strongly. The distance
to true input obtained with clipping is however never smaller than the distance to true input obtained without
clipping.

Table 1 shows the distance between the SSM output and true spine for vertebral centers, pedicles and
endplate centers, with and without clipping, for different values of β. Together with figure 1, these results show
that clipping has a negative impact, regardless of the choice of regularization weight, as the model without
clipping removes the simulated noise (albeit not completely), while loosing less information, leading to outputs
closer to the true spines for all β values.

The choice of β highly depends on the noise magnitude, which was arbitrarily set here. Values from 0.05 to
0.2 seem reasonable choices, both with and without clipping, although validating this parameter properly would
require access to the true noisy inputs, corresponding to the vertebral center detection in the images by the
CNN. This information is not available, but experiments using the reconstruction pipeline allow more insight.

3.2 Using the reconstruction pipeline

Parameters
β 0.01 0.1 0.01 0.2

clipping no no yes yes

3D residuals
(mm): mean
(std)

vertebral center 1.9 (3.2) 2.3 (3.1) 2.1 (3.7) 2.8 (3.7)
superior endplate 2.1 (3.2) 2.5 (3.1) 2.2 (3.6) 2.9 (3.7)
inferior endplate 2.1 (3.3) 2.5 (3.2) 2.3 (3.7) 2.9 (3.8)

left pedicle 2.7 (3.2) 3.2 (3.1) 2.9 (3.5) 3.6 (3.6)
right pedicle 2.7 (3.1) 3.1 (3.1) 2.9 (3.5) 3.6 (3.6)

Table 2: Reconstruction pipeline: 3D distance (in mm) between output and true spine on several vertebra
landmarks, across all subjects and vertebrae, for different regularization weights β, with and without clipping.
Measures are given as mean (standard deviation).

Table 2 shows the 3D residuals obtained on vertebra landmarks, with and without clipping, for different
β values. For β = 0.01, the table shows that the results are better on average without clipping (1.9 mm for
vertebral centers, standard deviation of 3.2 mm) than with clipping (2.1 mm, standard deviation of 3.7 mm), for
all studied landmarks.

Although the average improvement is small, study of 3D residuals for each subject shows the impact of
clipping more clearly. Figure 2 shows the average 3D residual across vertebral centers for each subject, with and
without clipping, for β = 0.01. Most points are on or close to the diagonal line, representing subjects for whom
the 3D residual is similar with and without clipping. Subjects lying exactly on this diagonal are subjects for
which clipping has no effect, because no coordinates are saturated in the latent representation. Subjects at the
bottom of the figure, bellow the diagonal, are subjects for whom the SSM without clipping yields better results
than with clipping. These are subjects with unusual spine shapes, for which some coordinates are saturated.
Figure 3 shows an example of such subjects. Figure 2 also shows about 12 subjects who have high residuals with
clipping and for whom the residual stays high when removing clipping. Further examination of these subjects
shows that the computed global spine curve is right, but the vertebrae are not well placed along the spinal curve.
In particular, some vertebrae seem to not be detected at all, leading to a shift in a series of vertebrae which are
identified as the next one. An example is provided in Figure 4. Subjects with at least one vertebral center with
a z absolute error of more than 8.6 mm (minimum difference in the z coordinate between 2 adjacent vertebrae
in the data set) are colored in orange in Figure 2. This figure shows that all the subjects with a high error that
is not corrected when removing clipping belong to this category. Notably, the only subject with an error smaller
with clipping than without belongs to this category. This issue is probably due to an error in the CNN detection
which is not modeled by our simulated noise. Given that all the subjects that still have a high error without
clipping belong to this category, this issue seems of particular importance and requires further study.
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Figure 3: Example of a subject for which the reconstruction is worse using clipping (left, average 3D residual
across all vertebral centers of 4.9 mm) than without clipping (right, average 3D residual across all vertebral
centers of 2.9 mm) for β = 0.01. For the true spine vertebral centers are displayed using squares linked by
dashed lines. For the output vertebral centers are displayed using dots linked by plain lines.

Regarding the regularization weight, Table 2 shows that increasing β leads to worse results, with clipping
(3D residual of 2.1 mm (std=3.7) for β = 0.01 and of 2.8 mm (std=3.7) for β = 0.2) and without (3D residual
of 1.9 mm (std=3.2) for β = 0.01 and of 2.3 mm (std=3.1) for β = 0.1).

4. DISCUSSION AND CONCLUSION

We studied the impact of clipping in a SSM fit process from constraints that were simulated or detected in
actual X-ray images. Both sets of experiments show that clipping limits model performance, by not allowing
spine shapes that are not well represented in the training set, and therefore making the model depend heavily
on the choice of training set. The regularizing effect of clipping, which corrects landmark detection errors, is not
necessary when using a regularization term in the objective function used to fit the SSM on partial data. This
regularization term penalizes deviation from the mean shape, attributing a higher cost to shapes farther from the
average shape. We showed that it is equivalent to using a slack variable accounting for the non-representativity
of the training set, which attributes a higher cost to shapes not represented in the training set without making
the reconstruction of these shapes impossible. We showed that this regularization term lessens the negative
impact of clipping, but it also makes clipping unnecessary by correcting landmark detection errors. Because
using the regularized SSM model also allows the reconstruction of out-of-distribution spine shapes, resulting in
better reconstruction performance, it should be used instead of and without clipping. It is to be noted that
these conclusions are only valid for fully automatic reconstruction. When the user is allowed to edit the model
by manually moving landmarks, clipping restricts manual modifications to valid shapes. If clipping is removed,
another method for limiting user modifications has to be used.

A downside of the addition of the regularization term is the introduction of the new hyper-parameter, β, which
depends on the input errors that the SSM should remove, and should therefore be validated for each pipeline and
data set. Although regarding clipping the same conclusions can be drawn from the experiments performed on
simulated errors and on the reconstruction pipeline, the same cannot be said for the choice of the regularization
weight. This discrepancy can have several explanations. It can first be a sign of the sensitivity of the hyper-
parameter, which could highly depend on the context and data. Secondly, the simulated error may not fully

Proc. of SPIE Vol. 12032  1203212-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 4: Example of a subject with a shift in the vertebra labelling, with clipping (left) and without clipping
(right) for β = 0.01 (average 3D residual across all vertebral centers of 11.7 mm for both). For the true spine
vertebral centers are displayed using squares linked by dashed lines. For the output vertebral centers are displayed
using dots linked by plain lines. The shift is highlighted using arrows.

represent the detection errors made by the CNN. Improving error simulation would require more information
on these detection errors. Lastly, besides this difference between real and simulated errors, the experimental
conditions are very different: in the experiments with simulated errors the SSM is only used once, using all
noisy vertebral centers as input. By contrast, in the reconstruction pipeline, the SSM is applied iteratively, after
detection of each new vertebral center, and the process is repeated for pedicles and endplate centers after all
vertebral centers are detected. The use of these landmarks in addition to vertebral centers during the second
stage may also explain the lower error in the reconstruction pipeline compared to the experiments on simulated
detection errors.
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