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Abstract. Nowadays, in many real-world problems, objects are char-
acterized by properties and interactions that evolve over time. Several
temporal property graph models associated with query languages are
proposed in the literature to manage the temporal and interconnectivity
features of such problems. However, they are not widely used due to the
lack of a conceptual view. To overcome this drawback, we propose user-
oriented operators to analyze temporal evolution of property graphs. We
also define translation rules between our operators and existing property
graph query languages to implement them directly. To illustrate the fea-
sibility of our solution, we present two case studies based on a Neo4j and
an OrientDB implementations of our operators and show some real-world
querying examples.

Keywords: Operators · Temporal evolution · Implementation · Neo4j ·
OrientDB.

1 Introduction

Many activities involve people (or objects) that interact in many ways over time
[26]. For instance, an infectious disease spreads over time through the contacts
among a population. Developing applications to manage these activities requires
taking into account both the interconnectivity and the temporal features of the
latter. In the context of the Information System, the interconnectivity can be
managed by a property graph, which connects entities together through relation-
ships and describes them with attributes [4]. The temporality, however, is not
studied in this field. In other words, changes in interconnected data over time
(adding, removing and updating entities, relationships as well as their attributes)
are neither represented nor exploitable in existing property graph based systems.
Our research question is therefore how to model and query interconnected data,
taking into account their different types of changes over time.

Temporal management of data has been studied in other domains, such as
relational databases [14] and Semantic Web [13]. In light of this work, the graph
community has been working on classic graph modelling [7] and graph-oriented
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databases [3] that have failed to manage data temporality up to now [18,23].
Some works propose different extensions of classic graph data models to inte-
grate time dimension [27]. In parallel, some works have developed their own
management systems for temporal graph data [10,11,15,20]. The overall obser-
vation is thus that there is no unified framework for both modelling and querying
temporal interconnected data [6,24]. Existing solutions focus mainly on specific
implementations and lack of a conceptual view to meet the needs of designers
and developers [3,6,24].

The contribution of our work is to provide a conceptual solution (indepen-
dent of any implementation aspects) for designers and developers to model and
query temporal interconnected data. To do so, we propose operators for query-
ing temporal graph data, which are based on a model proposed in our previous
work [2]. The remainder of the paper is organized as follows. First, we review
the literature on the management of temporal graph data (Section 2). Second,
we define our conceptual model (Section 3.1) and operators (Section 3.2). Third,
we present translation rules of our solution into technical environments in Sec-
tion 3.3. Fourth, we evaluate the feasibility of our operators, presented in Sec-
tion 4. Finally, we conclude the paper.

2 Related work

Temporal evolution of interconnected data shows how entities, relationships and
their attributes may evolve in time. This evolution can be categorized into two
categories: topological evolution (addition and removal of entities and relation-
ships) and attributes evolution (addition, removal and update of attributes of
entities and relationships) [27]. To address the management of such data, we
study their modelling and querying in the literature.

Property-graph and RDF data models are commonly used in the context of
graph data management [3]. The property graph model allows for representing
entities and relationships, using nodes linked by edges, and their attributes,
using properties contained in nodes and edges [4]. The RDF model allows for
representing the semantic links between data, using nodes linked by edges, but
does not allow the nesting of data such as properties contained in nodes and
edges [17]. Several graph query languages rely on the previous models such as
SPARQL (W3C) 3 for the RDF data model, Cypher (Neo4j) 4, G-Core (LDBC)
[5] and PQGL (Oracle) [25] (and so on) for the property graph model. However,
they only provide basic graph operations for interconnected data [6,24]. To query
temporal aspects of interconnected data, it requires an underlying data model
that traces evolution. Although the property graph model incorporates some
aspects of data we are interested in, it does not take into account the different
types of changes that may occur on interconnected data.

To support temporal evolution, some works propose to extend current graph
query languages, based on temporal property graph models, to support basic
3 https://www.w3.org/TR/rdf-sparql-query/
4 https://neo4j.com/developer/cypher/querying/

https://www.w3.org/TR/rdf-sparql-query/
https://neo4j.com/developer/cypher/querying/
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graph operations and add expressions for time dimension querying [10,11,15].
However, graph query languages are database-dependent but not user-oriented.
Implementation details behind graph query languages need to be understood to
formulate queries. Therefore, the use of these extended graph query languages
can be difficult for designers and developers [9]. Moreover, graph query languages
may evolve over time (the addition or removal of functionalities) so they are
not very consistent as a basis of a new query language [9]. The work of [20]
proposes a graph query language independent of current graph query languages.
However, it has the same limited composability as for graph query languages.
Composability5 allows complex queries to be built up from smaller (or simpler
ones). This facilitates the understanding of complex queries and the reuse of
existing operations [5].

Other works propose an algebra of composable operators for querying tem-
poral property graphs models, in the same idea as the relational algebra [19,22].
They extend existing graph operations [3,6,24], such as the basic graph pat-
tern matching6, to incorporate temporal operators functionally similar to Allen
operators [1]. They also introduce novel operators such as the snapshot opera-
tor, which extracts subgraphs (nodes and edges) that existed at a user-defined
time range. They allow operators to be combined for advanced analysis, such
as comparing two graphs obtained by the snapshot operator to observe changes
between the two. However, the algebra in [19] relies on the sequence of property
graph snapshots, a graph-specific adaptation of the temporal data modelling
strategy in the relational databases [12]. This approach fails to trace changes at
the level of the graph component (node and edge). Therefore, it does not allow
direct querying of temporal graph data at the graph component level [16]. Both
[19] and [22]’s operators manipulate data-oriented concepts from their under-
lying models, such as nodes and edges, instead of user-oriented concepts, such
as entities and relationships. Moreover, there is no technical environment that
implements them directly.

To sum up, existing works fail to either provide a user-oriented solution or
support all temporal analysis operations. To do so, we propose a solution to
query temporal graph data according to the following user-oriented criteria (i, ii
and iii) and analysis criteria (iv and v): (i) to rely on a user-oriented conceptual
model, (ii) to be composable to facilitate the formulation of temporal queries
and their combination, (iii) to be directly implementable, (iv) to support basic
and temporal graph operations, and (v) to support direct querying at all levels
of the graph (a component, a set of components and the whole graph). To satisfy
the previous criteria, we introduce in the following section our conceptual model
and operators for representing and querying temporal interconnected data.

5 Graphs are input and output of queries [5].
6 Basic graph pattern matching consists in retrieving subgraphs that match a user-
defined pattern (or graph structure).
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3 Proposition

3.1 Model

We define a conceptual model of temporal property graphs, on which rely our
operators. All the details of this model are available in [2].

Our model provides concepts to represent objects, relationships between ob-
jects and their evolution in terms of (i) topology i.e., their addition and removal
over time as well as (ii) attributes (or properties) i.e, the addition and removal
of new attributes and the change in attribute values. To handle such evolution,
the model manages time through the concept of valid time interval, which rep-
resents when something has occurred or changed in the real world. We denote
it T = [ts, tf [ which indicates a time interval starting from the time instant ts
and extending to but excluding the time instant tf .

To describe an object, we propose the concept of temporal entity. A temporal
entity ei has an identifier id and a label l that describes its semantic. At each
change of an entity, in terms of topology and attributes, a new state of the
entity is created instead of overwriting the old state version to keep track of
changes. Therefore, a temporal entity is composed of a non-empty set of states
Sei . Each state sj ∈ Sei describes the characteristics of the entity through a set
of attributes Asj , the related set of attribute values V sj and a valid time interval
T sj indicating the time during which Asj and V sj do not change. The function
Σe returns for a temporal entity all of its states:

Σe : ei → {s1, ..., sm}

A relationship between two objects does not have an independent existence.
Its existence depends on the objects it links. To describe such relationship, we
propose the concept of temporal relationship. A temporal relationship ri is defined
according to the same concepts and functions as a temporal entity. Its particu-
larity is to describe the link between two entity states (sk, sj). The function ρ
returns, for two entity states sk and sj and a relationship label l, a temporal
relationship ri if it exists:

ρ : sk × sj × l→ ri

Following these definitions, a Temporal Property Graph is defined by
TG = 〈E,R〉 where E = {e1, ..., eg} is a finite set of temporal entities and
R = {r1, ..., rh} is a finite set of temporal relationships. Subsets of entities (or
relationships) in the graph can share the same semantic. The function δ returns
for a label l, the set of entities Ek (or relationships Rk) having the label l:

δe : l→ Ek where Ek ⊂ E
δr : l→ Rk where Rk ⊂ R
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Fig. 1: Graphical notation of our temporal property graph.
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Example 1. In this example, we propose a real-world use case of our temporal
property graph model to present its graphical notation. A social experiment7
was designed to study the contagion of flu symptoms of students from MIT. The
study includes daily surveys about the flu symptoms of students: cough, fever
and so on. Moreover, it includes information about interpersonal relationships
(close friends, socialize8, etc.) and physical information (proximity9, call, etc.).

We present in Figure 1 a short example of the temporal property graph repre-
sentation of such dataset. Students are modelled as labelled temporal entities and
illustrated by nodes in grey. All descriptive information, such as flu symptoms of
students, are modelled through attributes. Students evolve in terms of their at-
tribute values. Indeed, they have different states (illustrated by the white nodes)
because their flu symptoms can change over time10. For instance, the student
identified 35 has two states numbered 4 and 5 because he got fever and cough
at state 5 that he did not have at state 4. The interpersonal relationships and
physical information between students evolve only according to their topology
(addition and removal over time). Each of them is modelled as a temporal re-
lationship between two states of students and illustrated by a black edge. Each
temporal relationship is labelled with its semantic (socialize, proximity or call
etc.). It can have several states (illustrated by white rectangles) as they occur
several times. For instance, the student 76 calls two times the student 15 that is
why the relationship CALL has two states numbered 7 and 8.

3.2 Operators

In this section, our objective is to propose user-oriented operators. Instead of
proposing a set of operations with a technical view (such as projection), we
propose two emblematic operators for temporal graph analysis: (i) extraction
of a subgraph satisfying selection and temporal criteria and (ii) extraction of a
subgraph satisfying pattern criteria.

Our proposed operators rely on the previous model of temporal property
graph (Section 3.1). They return a temporal subgraph TGoutput whose entities
and relationships are subsets of an input temporal property graph TGinput.

In the context of temporal interconnected data, users may reason over
time dimension to express their analyses [26]. To do so, we propose the
matchingpredicate operator for querying temporal property graphs according to
conditions on attributes and time.

7 available on the Reality Commons website http://realitycommons.media.mit.
edu/socialevolution.html

8 participate at least one common activity
9 Bluetooth signal sent from whose mobile phone and received by whose mobile phone
and time, indicating the sender’s mobile phone was within 10 meters of the receiver’s
mobile phone at the time of the record.

10 The value of a symptom attribute equals 0 if the student does not have the symptom
and 1 if the student has the symptom.

http://realitycommons.media.mit.edu/socialevolution.html
http://realitycommons.media.mit.edu/socialevolution.html
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Table 1: Predicate matching operator.
Operator: matchingpredicate(TGinput, π)

Input: an input graph TGinput;
a set of user-defined predicates π

Output: a subgraph TGoutput

Actions: 1. Extract all the labels in π
2. TGoutput ← 〈∅, ∅〉
3. For each l ∈ π
4. Extract the set of entities or relationships labelled l

from TGinput using δe(l) or δr(l)
5. For each eh ∈ δe(l) or rh ∈ δr(l)
6. Get the states of eh or rh using Σe(eh) or Σr(rh)
7. For each si ∈ Σe(eh) or si ∈ Σr(rh) linking (sj , sk)
8. If si satisfies all conditions in π
9. TGoutput ← TGoutput ∪ 〈{si}, ∅〉
10. or TGoutput ← TGoutput ∪ 〈{sj , sk}, {si}〉
11. End If
12. End For
13. End For
14. End For
15. Return TGoutput.

Definition 1. The matchingpredicate operator is used to extract the subgraph
TGoutput from an input graph TGinput according to a user-defined set of predi-
cates on each element of entity and relationship sets of the input graph. Within
a predicate, the user has access to an entity or relationship label l, attributes,
valid time intervals and can express a logical condition. The algorithm of the
execution of time matching operator is presented in Table 1.

matchingpredicate : TGinput × π → TGoutput

where π = {p1 β p2...pn−1 β pn} is a set of user-defined predicates combined
with connective operators β such as AND or OR (etc.).

Each predicate pi equals l.aθw or l.T θw where l is an entity or relationship
label, a is an attribute, T is a valid time interval, w is a user defined value and
θ is a comparison operator.

In the case of an attribute predicate pi = l.aθw, θ could be, for instance =, <
or > (etc.) to express that the attribute a satisfies a given value or range. In the
case of a time predicate pi = l.T θw, θ is a temporal operator such as an Allen
operator presented in Table 2.

Contrary to the filter operation for static property graphs [3,6,24], the pro-
posed matchingpredicate operator allows filtering graph data not only according
to predicates on attributes but also on valid time intervals. As we can see in
Table 1, the matchingpredicate operator extracts only entities and relationships
that satisfy the set of predicates at the level of states.
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Table 2: Allen operators. T = [ts, tf [ is a valid time interval. Tu = [x, y[ is a
user-defined time interval where variables x and y are time instants.

Operators Description Relations between time instants
T < Tu T precedes Tu tf < x

Tu > T Tu is preceded by T x > tf
T mTu T meets Tu tf = x

T ◦ Tu T overlaps Tu max(ts, x) < min(tf , y)

T s Tu T starts Tu ts = x

T dTu T during Tu (ts > x) AND (tf < y)

T f Tu T finishes Tu tf = y

T = Tu T equals Tu (ts = x) AND (tf = y)

Fig. 2: Result of example 2.

Example 2. Following Example 1, we want to know how did
evolve the symptoms of the student 76 since 03/11/2021. To
do so, we apply TG1 = matchingpredicate(TG, {(STUDENT.T ◦
[03/11/2021,+∞[)AND (STUDENT.id = 76)}) to the temporal graph
TG in Figure 1. We use the temporal operator "overlaps" denoted ◦ in Table 2
to express the time predicate. The previous operation extracts the states of the
student identified 76 with a valid time interval overlapping [03/11/2021,+∞[.
We obtain the subgraph TG1 illustrated in Figure 2. We observe that student
76 has two states, meaning that he experienced a change in its flu symptoms.

A fundamental operation of graph analytics is to explore subgraphs that
match a user-defined graph pattern. To do so, we propose the following operator.

Definition 2. A matchingpattern operator returns for an input graph TGinput,
an output subgraph TGoutput matching a user-defined graph pattern defined by a
starting entity label lEi

, an ending entity label lEk
, and a relationship label lRj
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Table 3: Graph pattern matching operator.
Operator: matchingpattern(TGinput, (lEi , lRj , lEk ))

Input: two entity labels lEi and lEk ;
a relationship label lRj

Output: a subgraph TGoutput

Actions: 1. TGoutput ← 〈∅, ∅〉
2. Extract the set of entities labelled lEi and lEk

from TGinput using δe(lEi) and δe(lEk )
3. For each eh ∈ δe(lEi)
4. Get the states of eh using Σe(eh)
5. For each ef ∈ δe(lEk )
6. Get the states of ef using Σe(ef )
7. For each si ∈ Σe(eh)
8. While there exists an entity state sj ∈ Σe(ef )

such that ρ(si, sj , lRj ) 6= ∅
9. TGoutput ← TGoutput ∪ 〈{si, sj}, {ρ(si, sj , lRj )}〉
10. End while
11. End For
12. End For
13. End For
14. Return TGoutput

to be traversed between the two entity labels. The algorithm of the execution of
graph pattern matching operator is presented in Table 3.

matchingpattern : TGinput × (lEi
× lRj

× lEk
)→ TGoutput

Contrary to the graph pattern matching operation for static property graphs
[3,6,24], the proposed matchingpattern operator allows extracting subgraph
structures with time dependent information. Indeed, it extracts subgraphs hav-
ing the same pattern as the user-defined graph pattern at the level of states
(Table 3). It excludes from the result set the states of entities and relationships
that are not labelled with the labels specified in the user-defined graph pattern
and that do not verify the existence of relationship states between each pair of
entity states.

Example 3. Following Example 1, we want to know if students that had
fever socialized since 03/11/2021 with students that did not have fever.
To do so, we apply to the temporal graph TG in Figure 1 TG2 =
matchingpredicate(TG, {(STUDENT1.fever = 0)AND (STUDENT2.fever =
1)AND (SOCIALIZE.T ◦ [03/11/2021,+∞[)}) to select entities and relation-
ships satisfying our attribute and time conditions. Then, we apply TG3 =
matchingpattern(TG2, (STUDENT1, SOCIALIZE, STUDENT2)) on TG2 to
obtain the relationships between the selected entities. We obtain the subgraph
TG3 in Figure 3. We observe that the relationship has two states (numbered
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9 and 11) meaning that the relationship has changed. Here, as there is no at-
tribute in the relationship, we only have information about its evolution in terms
of topology, i.e. the time of its occurrence (when it is added and removed).

Fig. 3: Result of example 3.

3.3 Mapping from temporal graph operators to a property graph
operators

In this section, our objective is to define translation rules of our operators into ex-
isting property graph operations to enable a direct implementation in property-
graph based systems.

As a preliminary step, we have to map our conceptual temporal property
graph TG into a logical property graph PG [4]. A property graph PG is com-
posed of nodes and edges. Each edge is associated to a pair of nodes. Each node
(or edge) can be associated with a set of labels and can contain properties. Each
property is a key-value pair. For each state s of an entity e in TG, a node is
created in PG with a label corresponding to the label of e and a set of proper-
ties corresponding to the identifier of e, the attributes of s, the start and end
instants of the valid time interval of s. An entity in the property graph corre-
sponds therefore to a set of nodes having the same identifier. For each state s of
a relationship r in TG, an edge is created in PG by connecting the two nodes
corresponding to two states that r links, with a label corresponding to the label
of r and a set of properties corresponding to the attributes of s, the start and
end instants of the valid time interval of s. A relationship in the property graph
corresponds therefore to a set of edges linking the same pair of nodes. As a re-
sult, we obtain the translation rules in Table 4 of our temporal property graph
into the property graph to implement the model in any graph oriented NoSQL
database compatible with the property graph.

In Table 6, we define translation rules of our proposed operators in existing
property graph languages. The algorithms of our proposed operators (Tables 1
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Table 4: Translation rules of our conceptual model into the logical model of prop-
erty graph, the property graph in Neo4j and the property graph in OrientDB.
∗startvalidtime and endvalidtime. ∗∗with different valid time intervals.

Temporal property graph Property graph Neo4j OrientDB
a state of a temporal entity sj a node a node a vertex

a state of a temporal relationship sb an edge an edge an edge
a valid time interval of an entity state T sj two properties∗ two properties two properties

a valid time interval of a relationship state T sb two properties∗ two properties two properties
a temporal entity ei a set of nodes∗∗ a set of nodes a set of vertices

a temporal relationship ri a set of edges∗∗ a set of edges a set of edges
a label of a temporal entity l a label a label a vertex class

a label of a temporal relationship l a label a type an edge class
an attribute of a temporal entity aeiq a property a property a property

an attribute of a temporal relationship arid a property a property a property

Table 5: Graph operations to query property graphs. Bgpm = Basic graph pattern
matching.

Operator Description Notation

Bgpm Extracts subgraphs from a property graph G according to pattern P τ (G,P )

Projection Returns a subset of the output variables O of the result of a bgpm µ(G,O)

Filter Extracts subgraphs from G satisfying user-defined conditions C σ(G,C)

and 3) define the scope of the sequence of basic operations in existing property
graph query languages (Table 5). A matchingpredicate(TGinput, π) operation is
translatable into property graph query languages through the execution of the
filter operation σ(TGinput, π) to extract the subgraphs G1 from the temporal
property graph TGinput satisfying user-defined predicates π. Then, the projec-
tion operation µ(G1, G1) returns the graph resulting from the previous operation.
A matchingpattern(TGinput, (lEi

, LRj
, lEk

)) operation is translatable into prop-
erty graph query languages through the execution of the basic pattern matching
operation τ(TGinput, (lEi , LRj , lEk

)) to extract subgraphs G1 with the pattern
(lEi , LRj , lEk

). Then, it uses the µ operator as in the chain of operations of
matchingpredicate to get the result set.

In some environments, existing property graph query languages include suf-
ficient functionalities to translate easily our proposed operators. In other en-
vironments, our proposed operators could not be easily implementable via the
property graph query language. Due to the rich functionalities of the query lan-
guages of Neo4j and OrientDB graph databases, the mapping of our operators
is simple.
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Table 6: Translation of our temporal graph operators into property graph query
languages. l.px and l.py are user-defined predicates in π. TG = Temporal Prop-
erty Graph, PG = Property Graph, QL = Query Language.
TG Operators matchingpredicate matchingpattern

(TGinput, π) (TGinput, (lEi, lRj, lEk))

PG Operators 1. G1 = σ(TGinput, π) G1 = τ (TGinput, (lEi, lRj, lEk))

2. G2 = µ(G1, G1) G2 = µ(G1, G1)
Neo4j QL MATCH (a : l) MATCH (a : lEi)− (b : lRj)

WHERE l.pxAND l.py −(c : lEk)
RETURN a RETURN a, b, c

OrientBD QL MATCH{class : l, as : a,MATCH{class : lEi}.outE(lRj)
where : pxANDpy} .inV (lEk)

RETURN ∗ RETURN ∗

4 Experimental evaluation

We run an experiment with the objective of evaluating the feasibility of our
solution (our model and operators) through their implementation in technical
environments.

4.1 Protocol

To validate the feasibility of our solution, we implement two datasets in two
different graph database systems.

We used Neo4j and OrientDB graph database systems. More precisely, we
used the following hardware configuration for the experiment: PowerEdge R630,
16 CPUs x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40Ghz, 63.91 GB. Two vir-
tual machines are installed on this hardware. Each virtual machine has 6 GB in
terms of RAM and 100 GB in terms of disk size. On each of the two virtual ma-
chines, we installed respectively a graph database compatible with the property
graph model: (i) Neo4j (version 4.1.3) and (ii) OrientDB (version 3.0.4). To avoid
any bias in the disk management, we did not use any customized optimization
techniques, but relied on default tuning of Neo4j and OrientDB.

To avoid any bias in datasets, we need to include both real and bench-
mark datasets. The first one we used is the Social experiment dataset pre-
sented in Example 1. The second one is a dataset generated from a reference
benchmark available online, namely TPC-DS benchmark11. We transformed
both datasets into the temporal property graph. Then, we stored the Social

11 http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.
pdf

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf
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Table 7: Characteristics of datasets. Y= Yes, N= No, AV = Attribute Value, AS
= Attribute Set, T = Topology.
Implementation Social experiment TPC-DS
Number of nodes 33 934 2 348 965
Number of edges 2 168 270 41 898 261
Size in GB 0.3 17
Evolution types of entities AV,T AV,AS,T
Evolution types of relationships T AV,AS,T

experiment dataset in Neo4j and the TPC-DS dataset in OrientDB by apply-
ing the mapping rules in Table 4. As a result, we obtained two implementa-
tions having different volumes (from 0.3 GB to 17 GB), different temporal
evolutions (many nodes in one dataset and many edges in another) and dif-
ferent domains (social networks and a retail company). Details of both im-
plementations are presented in Table 7 and available on the website https:
//gitlab.com/2573869/queryingtemporalpropertygraphs.

Finally, we need temporal analyses adapted for each dataset. The objective
is to express them into our operators and then translate them into the graph
query languages of the graph database systems we used.

4.2 A Neo4j-based implementation

We query the Social Experiment dataset in Neo4j to make temporal analyses
based on our operators. The first query concerns the analysis of the evolution
of an entity during a period. The second query concerns the analysis of the
evolution of several entities at a time point. In the following, we express the
previous analyses using our operators and translating them into Cypher, the
Neo4j’s query language.

Query 1 : How did evolve the symptoms of student 76 during the period from
19/01/2009 to 23/01/2009 ? This query corresponds to the following operation
in our solution:

– TG1 = matchingpredicate(TGinput, {(STUDENT.id = 76)AND
(STUDENT.Td[19/01/2009, 23/01/2009])}

The above query is translated (Table 6) into Cypher as:
MATCH (s:Student)
WHERE s.id="76"
AND date(s.startvalidtime) > date("2009-01-19")
AND date(s.endvalidtime) < date("2009-01-23")
RETURN s

https://gitlab.com/2573869/queryingtemporalpropertygraphs
https://gitlab.com/2573869/queryingtemporalpropertygraphs
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Query 2 : Are there students that had fever and socialized at the day
05/03/2009 with other students that did not have fever ? This query corresponds
to the following sequence of operations in our solution:

– TG1 = matchingpredicate(TGinput, {(STUDENT1.fever = 1)
AND (STUDENT2.fever = 0)
AND (SOCIALIZE.T ◦ [05/03/2009, 06/03/2009[)})

– TG2 = matchingpattern(TG1, (STUDENT1, SOCIALIZE, STUDENT2))

The above query is translated (Table 6) into Cypher as:

MATCH p=(s1:Student)-[r:Socialize]-(s2:Student)
WHERE s1.fever="1"
AND s2.fever ="0"
AND date(r.startvalidtime) < date("2009-03-06")
AND date(r.endvalidtime) >= date("2009-03-05")
RETURN p

4.3 An OrientDB-based implementation

We query the TPC-DS dataset in OrientDB to conduct a temporal analysis
based on our operators. The query concerns the analysis of the evolution of a
set of entities during a period. In the following, we express the previous query
using our operators and translating them into OrientDB query language.

Query 3 : Find the stores that proposed a promotion at the month 03/1996 ?
This query corresponds to the following sequence of operations in our solution:

– TG1 = matchingpredicate(TGinput, {(Promotion.T ◦ ([03/1996, 04/1996[)})
– TG2 = matchingpattern(TG1, (Store, SS_Promotion, Promotion))

The above query is translated (Table 6) into OrientDB query language as:

MATCH {class: Store, as: s}.outE("SS_Promotion").inV("Promotion")
{as: p, where: (start_valid_time.asDate().format("yyyy-MM")
< date("1996-04", "yyyy-MM").format("yyyy-MM")
AND end_valid_time.asDate().format("yyyy-MM")
>= date("1996-03", "yyyy-MM").format("yyyy-MM"))}
RETURN *

5 Conclusion and future work

In this paper, we proposed two conceptual operators to help designers and de-
velopers to query temporal property graphs. They combine several advantages
compared to current graph query languages and operators. First, they support
classic and temporal graph operations. Second, they allow for a direct querying
at different levels of the graph and at different time granularity. Third, they
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manipulate user-oriented concepts instead of database-oriented concepts to fa-
cilitate the formulation of queries. Finally, they are directly implementable into
existing property graph database systems. To validate their feasibility, we ex-
amined use cases based on real and benchmark datasets. We showed how our
operators can be used to express real-world analysis cases, and how they can be
easily translated into queries in Neo4j and OrientDB using our translation rules.

In our future work, we will have several research directions. First, regarding
our proposition, we will make a theoretical study to prove the completeness of
our operators and add new operators if necessary. Second, regarding the evalua-
tion of our solution, we are currently working on the performance evaluation of
our operators. This evaluation will include several experiments based on several
alternative implementations of graph database management systems and graph
query languages, and based on different datasets and query types. Then, we will
evaluate the query performance via experiments. To do so, we will study differ-
ent optimization techniques, and propose several scale factors to test scalability.
The objective is to propose guidelines for the implementation choice according
to the analytical needs. Finally, we identified a possible extension of our solution
in other domains, such as the Semantic Web domain [8,21]. We will verify its
implementation in new environments and make a performance comparison with
classic graph database systems such as the ones used in our paper.
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